TY - CONF A1 - Mansurova, Maria A1 - Bell, Jérémy A1 - Gotor, Raul A1 - Rurack, Knut T1 - Fluorescence-based optical system for the detection of total petroleum hydrocarbons in water and soil with smartphone read-out compatibility - Spectrocube, a sensor for rapid oil test in water and soil N2 - Contamination of natural bodies of water with oil and lubricants (or generally, hydrocarbon derivatives such as petrol, fuel and others) is a commonly found phenomenon around the world due to the extensive production, transfer and use of fossil fuels. The timely identification of these contaminants is of utmost importance, since they directly affect water quality and represent a risk for wildlife and human health even in trace amounts. In this work, we develop a simple system for the on-field detection of total petroleum hydrocarbons (TPH) in water and soil, the "Spectrocube". The test is based on the measurement of the fluorescence signal emitted by the molecular rotor 4-DNS-OH dye. This dye is embedded in a hydrophobic polymeric matrix (PVDF), avoiding interactions of water with the dye and providing a robust support for use in test-strip fashion. The test-strip’s fluorescence intensity increases linearly at low concentrations of TPH, reaching a saturation value at higher concentrations. For excitation and evaluation of the test-strip fluorescence, a simple miniature optical system was designed. The system works semi-quantitatively as solvent-free TPH detection kit, as well as quantitatively when using a simple cyclopentane extraction step. To simplify the fluorescence read-out, the device is coupled to a tablet computer via Bluetooth, running a self-programmed software ("app"). T2 - Oil Spill India 2018 CY - New Delhi, India DA - 05.07.2018 KW - Oil analysis KW - Water analysis KW - Fluorescence KW - Spectrocube KW - Rapid test KW - Field test KW - Spectroscopy KW - Sensor PY - 2018 AN - OPUS4-45606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - Combining Fluorescent Probes, Functionalized Surfaces, Tailored Particles and Device Embedding for Robust, Reliable and User-friendly Analytical Assays N2 - Supramolecular chemistry, fluorescence detection, hybrid (nano)materials and device miniaturization are in themselves highly interesting areas of research, yet especially their combination paves the way to (bio)chemical analysis systems that show outstanding performance. The lecture gives an overview of the toolbox of single components developed in BAM’s Chemical and Optical Sensing Division over the years, and how their combination can result in powerful sensors, quick tests and assays. While at the core of a development is the analytical problem, that is, the determination of a certain analyte in a sample of interest with the required sensitivity and selectivity by a specific end user in a given setting, signaling mechanisms, recognition elements, signal transduction modes, materials functionalization, device design and system integration are adequately chosen, tailored and adapted. Examples including molecularly imprinted polymers, hybrid mesoporous nanomaterials, gated indicator release systems, microfluidic devices, test strips and smartphone-based analysis will be presented. T2 - GDCh CY - Chemnitz, Germany DA - 21.06.2018 KW - Fluorescence KW - Particles KW - Rapid tests KW - Device embedding PY - 2018 AN - OPUS4-45640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - Molecularly Imprinted Polymers with Integrated Fluorescence as Versatile Biomimetic Sensing Matrices N2 - Molecularly imprinted polymers (MIPs) are an established, versatile and high-performance matrix for the selective separation or enrichment of (bio)chemical species, especially small molecules of biochemical or environmental relevance. MIPs are prepared through the polymerization of a mixture of functional monomers and cross-linkers in the presence of the template with subsequent extraction of the latter. Conceptionally, this process can be seen as mimicking in a strongly accelerated, though single-step manner a biological process such as antibody formation. Because the resulting MIPs contain cavities in their matrix that are complementary in size, shape and electronic/ electrostatic or hydrogen bonding demand to the imprinted target molecule or template, these polymers are frequently termed “artificial antibodies”. Compared to natural antibodies, they are chemically and physically much more robust. Regarding sensitivity and selectivity, however, there is still a gap to bridge before MIPs can fully compete with antibodies. Another favorable aspect that distinguishes MIPs from antibodies is that they can be endowed with an explicit function, allowing the use of MIPs in applications that require more than only an efficient binder. For instance, if specifically designed and polymerizable fluorescent indicators are integrated as functional monomers into a MIP, direct fluorescence sensing can be accomplished. Because MIPs can be prepared in a variety of different formats, their combination with miniaturized or other specific analytical techniques or sensory devices is possible, especially when the transduction mode is light. This presentation will introduce basic design considerations, challenges, limitations and the potential that lies with such sensor materials with some recent examples of our group, targeting various organic oxoanions as analytes. T2 - 8th International Symposium on Bioanalysis, Biomedical Engineering and Nanotechnology CY - Changsha, Hunan, China DA - 25.05.2018 KW - Molecularly imprinted polymers KW - Fluorescence KW - Anion recognition PY - 2018 AN - OPUS4-45641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bell, Jérémy A1 - Tillo, Adam A1 - Chauhan, Vraj P. A1 - Bartelmeß, Jürgen A1 - Rurack, Knut T1 - Microfluidic analytical tool coupling a fluorescent molecular probe and a micro-hydrocyclone for the detection of water chlorination level N2 - Chlorination of pool water and wastewater, in food and pharmaceutical production, as well as in pesticide and paper manufacturing is a routinely used technique. However, the amount of chlorine in water must be strictly adjusted, to ensure enough concentration to kill pathogenic bacteria and viruses, while preventing too high concentrations inducing negative effects on human health. As an indicator, a molecular fluorescent probe based on a BODIPY structure was designed. This indicator exhibits a sensitive and selective fluorescence response upon increasing concentrations of hypochlorite in aqueous solvent mixtures. Real-time analyses became possible after the integration of this fluorescent indicator into newly designed 2D & 3D microfluidic chips incorporating a passive sinusoidal mixer and a micro-hydrocyclone, respectively. A comparison of the two microfluidic systems, including their ability to prevent accumulation or circulation of microbubbles, has shown excellent fluidic behaviour for the micro-hydrocyclone device. This system was distinctly more robust against gas bubbles, showed a higher signal gain and allowed to halve the limit of detection to 0.02 mg L–1. The use of the 3D system to quantify the chlorine content of pool water samples for sensitive and quantitative chlorine monitoring has been demonstrated. T2 - Konferenz CY - Ioannina, Greece DA - 22.09.2019 KW - Chlorine KW - Fluorescence KW - Microfluidics KW - Water KW - Chlor KW - Fluoreszenz KW - Mikrofluidik KW - Wasser PY - 2019 UR - https://media.conferre.gr/index.php/photos-videos/ima2019 AN - OPUS4-49130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Climent Terol, Estela A1 - Wan, Wei A1 - Weller, Michael G. A1 - Rurack, Knut T1 - Novel specific bio-gated hybrid materials and their integration into versatile platforms for advanced sensing applications N2 - Methods for the rapid and sensitive detection of target analytes are gaining importance in medical diagnostics and environmental monitoring, in the security, occupational health and safety as well as food sectors. Among all of the methods employed for rapid tests, lateral flow assays (LFAs) are the most commonly used, and hundreds of test kits based on this technique are available on the market. A major drawback is that most of these capture agents either indicate the analyte only indirectly, and in most cases a second binding agent able to bind directly or indirectly to the analytes is necessary (e.g., a secondary labeled antibody). Furthermore, in certain cases in which the (ultra)trace detection of an analyte is required, the traditional approach of a certain number of probe molecules being conjugated to a particular support is not sufficient. Therefore, novel concepts implementing steps of effective signal amplification are urgently required. Keeping in mind these limitations, we thought that the sensitivity of these systems should be improvable through employment of gated reporter molecule-releasing hybrid nanoparticle materials on novel lateral flow devices. On one hand, the gated sensor material can produce a massive signal amplification, by releasing many reporter molecules only after chemical recognition of a few analyte molecules has taken place in an independent and separate step at the pore openings. On the other hand, the employment of tailored capture materials for the selective interaction with the released reporter molecules in a second arbitrary zone on the strip allows to concentrate or focus the latter for more efficient detection or to create selective multi-spot detection zones, which renders the simultaneous detection of several reporter molecules at the same time in multiplexed detection of various analytes possible. For that purpose, we have prepared several stimuli-responsive materials for small-molecule sensing based on specific interactions between biomolecules such as antibodies with the corresponding analytes for the detection of certain explosives. In order to prepare these bio-capped materials, we have selected silica mesoporous nanoparticles (MSNs) as inorganic support due to their unique properties such as defined void structure, high inner surface area and flexible functionalization chemistry. These MSNs are loaded with a brightly fluorescent indicator dye, and the external surface is subsequently functionalized with suitable molecules able to interact with antibodies, efficiently inhibiting dye release. The opening protocol and delivery of the entrapped dye is reminiscent of a displacement reaction involving the presence of the target analyte, producing a displacement of the biomolecule and allowing the detection of the target analyte. The presentation discusses general aspects of system design as well as analytical performance and highlights the integration into a lateral-flow assay, showing as an example the determination of the explosives TATP, TNT and PETN with fluorescence readout, in single-substance and multiplexing modes. T2 - EBS 2019 CY - Florence, Italy DA - 18.02.2019 KW - Bio-gated hybrid materials KW - Signal amplification KW - Explosives determination KW - Fluorescence KW - Rapid test KW - Dip-stick assay PY - 2019 AN - OPUS4-47920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tobias, Charlie A1 - Climent Terol, Estela A1 - Gotor, Raúl A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Dip-stick coated with Polystyrene-Silica Core-Shell particles for the detection of microbiological fuel contamination N2 - The microbial contamination of fuels by fungi or bacteria presents risks such as corrosion and fuel system fouling, which can produce critical problems in refineries and distribution systems and has a significant economic impact at every phase of the process. Many factors have been cited as responsible for microbial growth, like the presence of water in the storage tanks. Indeed, only 1 % water in a storage system is enough for the growth of microorganisms like bacteria or yeasts, as well as for the development of fungal biomass at the oil/water interface.1 In this work, a rapid test for the accurate determination of genomic DNA from aqueous fuel extracts is presented. The detection is based on the employment of polystyrene-mesoporous silica core-shell particles, on which modified fluorescent molecular beacons are covalently grafted. Those beacons incorporate in the hairpin loop a target sequence highly conserved in all bacteria, corresponding to a fragment of the 16S ribosomal RNA subunit. The designed single-stranded molecular beacon contained fluorescein as an internal indicator and a quencher in its proximity when not hybridized. Upon hybridization in presence of the target sequence, the indicator and the quencher are spatially separated, resulting in fluorescence enhancement. To perform the assay the designed particles were disposed on different glass fiber strips to try to achieve a portable and sensitive rapid test. Assays showed that presence of genomic DNA extracts from bacteria down to 50–70 μg L-1 induces a fluorescence response. The optical read-out was adapted for on-site monitoring by adapting a 3D-printed case on a conventional smartphone, taking advantages of the CMOS detector sensitivity.2 Such embedded assembly allowed to detect genomic DNA in aqueous extracts down to the mg L-1 range and presents an interesting step toward on-site monitoring of fuel contamination. T2 - Europtrode 2021 CY - Warsaw, Poland DA - 28.11.2021 KW - Bacgteria KW - Fungi KW - Rapid test KW - Fluorescence KW - Smartphone KW - Biofouling PY - 2021 AN - OPUS4-53867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - Reaction-based BODIPY dyes as powerful tools in fluorescence sensing applications N2 - The reversible analyte-induced switching between a colourless leuco form of a dye and its coloured all-π-conjugated form is one of the oldest concepts in probe- or indicator-based optical analysis,1 constituting so-called “one-color indicators”.2 In contrast to colour changes in the visible region, for which usually a bond-forming or a non-covalent interaction between a functional group on an indicator and an analyte is responsible, the extraordinarily large shifts of 150–250 nm seen for leuco-to-all-π-conjugated transformation are only possible when the reaction takes place directly at a site that is an intrinsic part of a dye’s π-system; the classic case are triphenylmethane dyes.3 Despite its obvious potential, this approach has not been a very popular area of scientific research for decades, perhaps because it is much more difficult to implement selectivity than by modifying terminal functional groups. However, in recent years, reaction-based fluorescence probes have attracted increasing attention by virtue of their superior sensitivity.4,5 Nowadays, rhodamines and fluoresceins are by far the most prominent groups of reaction-based indicators.5 They are usually switched between a colourless and non-fluorescent and a greenish-yellowish absorbing and yellowish-reddish emitting form. Typically, the coloured and fluorescent form is ionic, while the colourless form is neutral, reactions having mainly be designed to occur at the end groups of the xanthenoid π-system. BODIPY dyes, with their favourable spectroscopic and chemical properties as well as facile wavelength tunability features have only very recently been explored into this direction.6,7 Reaction at the core dipyrrin framework of these dyes led to strong colour and fluorescence modulations with potential applications in materials sciences6 and cell imaging.7 The present contribution will highlight the mechanisms at play and the sensing performance realized so far, and will compare core-reactive approaches to reaction-based signalling that involves π-extension of BODIPYs.8,9 T2 - 11th International Conference on Porphyrins and Phthalocyanines (ICPP-11) CY - Online meeting DA - 26.06.2021 KW - Indicators KW - Fluorescence KW - Sensing KW - BODIPY Dyes PY - 2021 AN - OPUS4-54001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut A1 - Biyikal, Mustafa T1 - Development of a Lab-on-a-Chip for the Detection of Nerve Agents with a Handheld Device N2 - The development of a Lab-on-a-Chip (LoC) is presented, which can detect reactive phosphorous compounds in the gas phase in combination with an optochemical hand-held sensor. The LoC prototype contains three pairs of sensing materials containing fluorescent indicator dyes in various carrier materials. By measuring the fluorescence response to phosphoryl chloride, a surrogate compound, the detection of chemical warfare agents (CWAs) in gas phase becomes possible within seconds, introducing a novel approach to CWA detection. T2 - IEEE Sensors Conference CY - Vienna, Austria DA - 29.10.2023 KW - Chemical warfare agents KW - Lab-on-a-chip KW - Handheld sensors KW - Toxic industrial chemicals KW - Fluorescence PY - 2023 AN - OPUS4-58815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - PFAS Sensors N2 - This contribution provides an introduction to the development of sensors for PFAS analysis, presents the most common approaches, and describes the opto-microfluidic strategy in combination with polymerizable indicators and detection matrices currently being pursued by the Chemical and Optical Sensing Division at BAM. T2 - Advancements of Analytical Techniques for Per- and Polyfluoroalkyl Substances (PFAS) – Second Workshop 2023 CY - Berlin, Germany DA - 19.09.2023 KW - PFAS KW - Sensors KW - Molecularly imprinted polymers KW - Microfluidics KW - Fluorescence PY - 2023 AN - OPUS4-58533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sun, Yijuan A1 - Pérez-Padilla, Víctor A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Fluorescence Detection of Perfluoroalkyl Carboxylic Acids with a Miniaturised Assay N2 - Per- and polyfluoroalkyl substances (PFAS) are a class of man-made organo-fluorine chemicals that have become environmental contaminants of emerging concern, originating from a variety of materials such as adhesive, stain- and oil-resistant coatings, firefighting foams, etc. The high strength of this C-F bond makes PFAS thermodynamically stable and resistant to (bio)degradation, thus retaining them in the environment over time. Perfluoroalkyl carboxylic acids (PFCAs), one category of the most used PFAS, consist of a fully fluorinated carbon backbone and a charged carboxylic acid headgroup, and have been classified as Substances of Very High Concern (SVHC) and added to the REACH Candidate List due to their persistence in the environment, non-biodegradability and toxicological effects.[1-2] Traditional techniques for the analysis of PFCAs include GC-MS, HRMS and HPLC-based approaches, which are laborious, not portable, costly and require trained personnel. In contrast, fluorescence assays can be designed as easy-to-operate, portable and cost-effective methods with high sensitivity and fast response. Integration of fluorescent probes with an adequately miniaturized assay enables a promising alternative for PFCAs analysis. Here, a novel guanidine fluorescent probe has been synthesized and fully characterized for the detection of PFCAs in a biphasic extract-&-detect assay. The fluorescent probe was then incorporated into polymeric matrices supported by a red dye-doped SiO2 nanoparticle to construct a dual-emission sensing platform. Such a system allows precise and selective detection of PFCAs, reducing the interference of competitors, matrix effects and other factors except for the PFCAs. The system was then employed in a droplet-based microfluidic setup which offers a portable and easy to operate detection platform. T2 - IMA 2023 CY - Chania, Greece DA - 18.09.2023 KW - PFAS KW - MIP KW - Fluorescence KW - Microfluidics KW - Fluorezsenz KW - Mikrofluidik PY - 2023 AN - OPUS4-58527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -