TY - JOUR A1 - Rhode, Michael A1 - Mente, Tobias A1 - Kannengiesser, Thomas T1 - Parameters and challenges for reliable hydrogen determination in welded joints by carrier gas hot extraction N2 - For the hydrogen-based energy economy of tomorrow, the construction of the necessary infrastructure will play a central role. Most materials used to date, such as welded steels, can be prone to hydrogen embrittlement under certain conditions. This includes the classic delayed cold cracking during welding as well as degradation phenomena during service of components in hydrogen-containing environment. For the evaluation of any hydrogen effect, for example, on the mechanical properties of a welded metallic material, the hydrogen content must be precisely determined. In the case of weld seams, the carrier gas hot extraction (CGHE) according to ISO 3690 is meanwhile state-of-the-art. CGHE is based on accelerated hydrogen degassing due to the thermal activation of hydrogen at elevated temperatures. In addition to the quantification of hydrogen, thermal desorption analysis (TDA) with varying heating rates can be used to determine and evaluate the hydrogen trapping at microstructural defects in the material. For both techniques, experimental and metrological influences must be considered, which have a major effect on the result. For example, ISO 3690 suggests different sample geometries and minimum extraction times for CGHE. This study summarizes the results and experiences of numerous investigations at the Federal Institute for Materials Research and Testing (BAM) with different sample temperatures and geometries (ISO 3690 type B and cylindrical TDA samples) regarding the influence of the sample surface (polished/welded), measurement accuracy depending on the sample volume and the insufficient monitoring of the effect of PI control on the extraction temperature. A deviating extraction temperature from the target temperature can significantly falsify the measurement results. Based on the results, methods are shown which allow the desired extraction temperature to be reached quickly without physically interfering with the measuring equipment. This serves to significantly improve the reliability of the hydrogen measurement through increased signal stability and accelerated hydrogen desorption. In general, an independent temperature measurement with dummy samples is recommended for the heating procedure of choice to exclude possible undesired temperature influences before the measurement. The methods described can be transferred directly to industrial applications KW - Welding KW - Hydrogen measurement KW - ISO 3690 KW - Carrier gas hot extraction PY - 2024 U6 - https://doi.org/10.37434/tpwj2024.04.01 SN - 0957-798X VL - 4 SP - 3 EP - 10 PB - International Association Welding AN - OPUS4-60071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Witte, Julien A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Stresses in repair welding of high-strength steels—part 2: heat control and stress optimization N2 - In welding of high-strength steels, e.g. for foundations and erection structures of wind energy plants, unacceptable defects can occasionally be found in the weld area, which should be removed by thermal gouging and subsequent re-welding. High shrinkage restraint of repair welds may lead to crack formation and component failure, predominantly in interaction with degraded microstructures and mechanical properties due to repair cycles. This study aims for elaboration of recommendations for repair concepts appropriate to the stresses and materials involved to avoid cold cracking, damage and expensive reworking. In part 1 [1] of this study, systematic investigations of influences of shrinkage restraint on residual stresses and cold cracking risk during repair welding of two high-strength steels S500MLO for offshore application and S960QL for mobile crane structures were focussed. In this part 2, the microstructure, particularly hardness, and residual stresses due to gouging and influences of heat control parameters in repair welding are analysed. A clear reduction in residual stress after gouging can be observed, especially for the specimens with restrained transverse shrinkage. Gouging to a depth of approx. 2/3 of the seam height does not lead to a complete relaxation of the observed reaction forces. Particularly for the higher strength steel S960QL, there are pronounced areas influenced by the gouging process in which a degradation of the microstructure and properties should be assumed. Overall, the repair welds show a significant increase in the width of the weld and HAZ compared to the original weld, especially in the case of S960QL/G89. The repair welds show higher welding-induced stresses than the original welds, especially in the areas of the HAZ and the base metal close to the weld seam. This behaviour can be attributed overall to increased restraint conditions due to the remaining root weld or shorter gouge grooves. In good agreement with earlier investigations, the residual stresses transverse to the weld can be significantly reduced by upwardly limited working or interpass temperatures, and the reaction stresses resulting from high restraint conditions can be effectively counteracted. The influence of the heat input on the stress formation is low compared to the interpass temperature for both test materials. KW - Repair-welding KW - Wind Energy KW - High-strength steels KW - Cold cracking KW - Residual stresses KW - Offshore steels PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-600259 SN - 0043-2288 SP - 1 EP - 15 PB - Springer Nature AN - OPUS4-60025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Richter, Tim A1 - Erxleben, Kjell A1 - Schröpfer, Dirk A1 - Witt, Julia A1 - Özcan-Sandikcioglu, Özlem A1 - Kannengießer, Thomas T1 - Processing and application properties of multiple principal element alloys (MPEA) N2 - The presentation gives an overview of BAM's activities on processing influences and application properties of MPEAs in the form of joined and machined high and medium entropy alloys (CoCrFeMnNi and CoCrNi). In the case of welding, the focus is on defect-free welded joints with sufficient mechanical properties. In the case of machining, the focus is on the possible influence on the surface quality of the materials through adequate milling parameters. In addition, the hydrogen absorption and diffusion properties as well as the electrochemical corrosion behavior are fundamentally examined. T2 - FAU-Department Werkstoffwissenschaften, Seminar: Aktuelle Probleme der Werkstoffwissenschaften CY - Erlangen, Germany DA - 25.04.2024 KW - Welding KW - Application properties KW - Machining KW - High-entropy alloy KW - Hydrogen PY - 2024 AN - OPUS4-59975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Gornushkin, Igor A1 - Griesche, Axel A1 - Kannengießer, Thomas A1 - Treutler, Kai A1 - Wesling, Volker T1 - In situ chemical analysis of duplex stainless steel weld by laser induced breakdown spectroscopy N2 - The high corrosion resistance and good mechanical properties of duplex stainless steel (DSS) are due to its special chemical composition, which is a balanced phase ratio of ferrite (α) and austenite (γ). Many industrial applications require the integration of DSS components. For this, Gas tungsten arc welding (GTAW) is an excellent choice, as it allows an automated operation with high reproducibility. However, when the weld pool solidifies, critical ratios of α- and γ- phases can occur, which lead to solidification cracking, increased susceptibility to corrosion, and a decrease in ductility and critical strength. Previous studies have shown that these defects can be caused by the accumulation of manganese and chromium in the heat affected zone (HAZ), requiring ongoing monitoring of this accumulation. A suitable method for such monitoring is laser-induced breakdown spectroscopy (LIBS), which can be used in two operating modes: calibration using standard reference samples and calibration-free. Unlike conventional quantitative LIBS measurements, which require reference samples to generate a calibration curve, calibration-free LIBS (CF-LIBS) allows chemical compositions to be determined solely from the emission spectrum of the plasma. Numerous publications show that CF-LIBS is a fast and efficient analytical method for the quantitative analysis of metal samples. In this work, CF-LIBS is applied to spectra obtained during GTAW DSS welding and the result is compared with those obtained by PLS analysis. A good correlation was found between both types of analysis, demonstrating the suitability of the CF-LIBS method for this application. The CF-LIBS method has a significant advantage over conventional LIBS due to the rapid in situ measurement of concentrations of major alloying elements without calibration procedure. This, combined with fast feedback and appropriate adjustment of welding parameters, helps prevent welding defects. T2 - EMSLIBS 2023 CY - Porto, Portugal KW - LIBS KW - In situ measurement KW - Welding KW - Duplex stainless steel PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-597776 VL - 214 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-59777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liepold, Philipp A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - CTS Testing of High-Strength Filler Materials N2 - Controlled Thermal Severity (CTS) tests are known for applicatying high restraint intensity to fillet welds. Due to two different variations of the test it was possible to apply different amounts of restraint intensity to high-strength GMAW fillet welds at a high level of restraint. The results show the effect of heat input, filler material and restraint intensity on solidification cracking susceptibility. T2 - DIN Sitzung NA 092-00-05 GA „Zerstörende Prüfung von Schweißverbindungen“ (DVS AG Q 4/Q 4.1) CY - Berlin, Germany DA - 20.03.2024 KW - CTS PY - 2024 AN - OPUS4-59773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Quackatz, Lukas A1 - Westin, E.M. A1 - Griesche, Axel A1 - Kannengießer, Thomas A1 - Treutler, K. A1 - Wesling, V. T1 - Assessing ferrite content in duplex stainless steel weld metals: WRC '92 predictions vs. practical measurements N2 - The weldability of stainless steels is largely controlled by the chemical composition, and alloys with ferritic or ferritic-austenitic solidification show the highest resistance to hot cracking. As the resulting phase balance also affects the final properties, it may be beneficial to both foresee and measure the weld metal ferrite content. The WRC ’92 constitution diagram is currently the most accurate prediction tool available, but it does not take the cooling rate into consideration and the precision may be less accurate for stainless steels with high ferrite numbers (FN). This study aims to validate the reliability of the WRC ’92 diagram for weld metals with FN > 50. The chemical composition was altered through gas tungsten arc welding (GTAW) of UNS S32205 with ER347 filler wire that had been PVD-coated with either niobium (Nb), copper (Cu), nickel (Ni), manganese (Mn), carbon (C), or silicon (Si). The actual ferrite content was assessed using image analysis, FERITSCOPE® and X-ray diffraction (XRD). While the WRC ’92 diagram predictions were deemed accurate to acceptable for Ni, Si, and Mn, notable deviations were observed for Nb, Cu, and C. The FeriteScope exhibited a consistent trend with image analysis, though the values were higher, and scatter was wider, and the conversion factor is open for discussion. The lowest accuracy and largest spread were obtained using non-contact XRD, rendering it unsuitable for ferrite measurements of welds. T2 - IIW Intermediate Meeting Comission IX-H CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Duplex Stainless Steel KW - Ferrite KW - WRC 92 PY - 2024 AN - OPUS4-59750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Liepold, Philipp A1 - Kannengießer, Thomas T1 - Investigation of hot cracking susceptibility via Modified Varestraint Transvarestraint testing of high-strength filler material N2 - MVT testing was conducted in Transvarestraint mode in multiple welding conditions and under a range of bending speeds. The materials observed were high strength filler metals used in GTAW namely DIN EN ISO 16834-A G 69 4 M21 Mn3Ni1CrMo (G69), 16834-A G 89 6 M21 Mn4Ni2CrMo (G89 6), 16834-A G 89 5 M21 Mn4Ni2,5CrMo (G89 5) and a filler wire 18276-A T 89 4 ZMn2NiCrMo M M21 1 H5 (T89). For evaluation light optical microscope pictures were used. Pixels containing cracks were manually segmented using a self-written program. Out of the segmented images data including crack length, position and area can be calculated for every crack. The results show dependencies of solidification cracking on the test parameters. T2 - IIW Intermediate Meeting Comission II-C CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Solidification cracking KW - High strength steel KW - Varestraint test PY - 2024 AN - OPUS4-59749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Liepold, Philipp A1 - Kannengießer, Thomas T1 - Investigation of restraint intensity influence on solidification cracking of high-strength filler materials in fillet welds via CTS testing N2 - Next to chemical composition, metallurgy and welding parameters, the intensity of restraint is one of the variables influencing solidification cracking. Tests like the Houldcroft Test, rate the hot cracking susceptibility indirectly on the amount of restraint the welding can endure without cracking. Modern lightweight steel construction welds can be subject to a larger amount of restraint due to their high-strength nature compared to classical use cases. By varying the plate thickness of Controlled Thermal Severity (CTS) tests produced out of S1100 QL, it was possible to vary the intensity of restraint on fillet welds at a high level. Testing was conducted with four different filler wires for Metal Active Gas (MAG) welding, including three solid and one metal-cored wire. In addition, two sets of welding parameters were tested. The first set with high heat input and high welding speed was shown to be more prone to solidification cracking compared to the second set with lower heat input and welding speed. The results show an increase in solidification cracking with increasing restraint severity. T2 - IIW Intermediate Meeting Comission II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Solidification cracking KW - High strength steel KW - Weldability PY - 2024 AN - OPUS4-59748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Wandtke, Karsten A1 - Engelking, Lorenz A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kannengießer, Thomas A1 - Hensel, J. T1 - Influence of machining on residual stresses in additive manufactured high-strength steel components N2 - This study focuses on the effect of machining on the residual stresses and distortion of WAAM specimens. Defined specimens were welded fully automatically with a special WAAM solid wire (yield strength >820 MPa) with different geometric designs. The residual stresses state before and after cutting of the AM structure from the substrate plate were analyzed by means of X-ray diffraction on the specimen surface and complementary by 3d deformation analyses using photogrammetry. The results reveal significant influences of the geometry on the relaxation and redistribution of residual stresses. T2 - IIW Intermediate Meeting Comission IX-AM CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Residual stress KW - DED-arc KW - High strength steel PY - 2024 AN - OPUS4-59751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Hübner, Martin A1 - Dittmann, F. A1 - Varfolomeev, I. A1 - Kannengießer, Thomas T1 - Residual stress reduction using LTT welding consumables with focus on the weld geometry N2 - This article focuses on the selective placement of additional LTT layers to generate compressive residual stresses in fatigue-critical areas of conventional weld joints. This enables an economical solution without effecting the integrity of welded joints. For this, longitudinal stiffeners made of high-strength steel were gas metal arc welded using conventional welding consumable in the first layer. Afterwards, a chromium-nickel alloyed LTT welding consumable was deposit on front sides of the stiffeners. By varying the welding parameters, different weld geometries of the LTT filler metal could be analyzed. The effects of additional LTT layers were investigated with regards to residual stresses, microstructure and strength. X-ray residual stresses measurements show that the residual stresses at the failure critical weld toe are significantly reduced by using additional LTT layers. While the conventional weld is characterized by tensile residual stresses, compressive residual stresses can be detected at the LTT weld. The level of residual stresses is influenced by the geometry of the LTT layer. Additional LTT layers with a high offset to the conventional weld generate more compressive residual stress in the HAZ than with a low offset. Therefore, the weld geometry has a considerable impact on the residual stress profile. T2 - IIW Intermediate Meeting Comission II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - LTT KW - Residual stress KW - High strength steel PY - 2024 AN - OPUS4-59747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengiesser, Thomas T1 - Call for interested people to contribute to series of comprehensive papers on welding and joining of components for sustainable energy systems N2 - Joining and welding technologies are of high importance for the manufacturing of components and parts used in sustainable energy generation, conversion, and transport. In that connection, offshore and on-shore installed wind turbines are of high interest for the generation of electrical energy as well as photo-voltaic systems (solar cells). The electricity can be either directly transported or conversed via power-to-gas e.g., to hydrogen. In that scope, electrolyzer up to MW-range are of interest as well as the conver-sion back to electricity via fuel cells. In addition, hydrogen is a key element of the decarburization of in-dustries as well as the mobility sector encompassing sea, air and land transportation driven by hydrogen or its derivates. Well-known examples cover the direct reduction of iron ore to replace the conventional blast furnace process up to gas turbines or fuel cells for home-end use. All mentioned technologies re-quire reliable components, which are to a high extend dependent on joining and especially welding pro-cessing of materials. Especially, the (petro-) chemical industry has many years of experience with both materials used in hydrogen applications. The challenge is e.g., the transition to mass production of sys-tem components of electrolyzers/fuel cells and for distribution grids. At this point, the scalability of cur-rently applied joining processes often limits the economic efficiency, whereas especially laser welding or additive manufacturing will be of high interest. In that connection, it is very important to provide answers by joint research of universities, institutes, and industrial companies. Very often, solutions are already available and “just” have to be investigated and adapted for the new application, like repair welding of NG pipelines. For that reason, we want to set up a series of comprehensive papers with the aforementioned title. The idea is to get an in-depth but manageable overview of the importance of joining technologies in sustaina-ble energy generation, conversion, and transport encompassing current processes, limitations, and fur-ther perspectives. In that connection, the additive manufacturing is gaining more and more attention. If applicable, current challenges in the adaption or creation of new standards/regulations shall be addressed. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Hydrogen KW - Welding KW - Comprehensive study KW - Component manufatcturing KW - Additive manufacturing PY - 2024 AN - OPUS4-59676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Schroeder, Nina A1 - Kannengiesser, Thomas A1 - Kadoke, Daniel A1 - Kruse, Julius T1 - Evaluation of local strain behavior of cross-weld tensile specimens of micro-alloyed high-strength steels by digital image correlation N2 - Microalloying elements such as Nb and Ti play a decisive function in achieving the desired mechanical strength of quenched and tempered, high-strength fine-grain structural steels with a nominal yield strength ≥ 690 MPa. The current specifications for the chemical composition only provide manufacturers with upper limits. However, even minor deviations in the alloy concept can have a significant impact on the mechanical properties. Consequently, accurate prediction of weldability and the integrity of welded joints becomes difficult or even impossible due to differences in composition and the resulting microstructures. Undesirable consequences include a possible softening of the heat-affected zone (HAZ) or, conversely, hardening effects. In view of these challenges, various microalloying strategies with different Ti and Nb contents are being systematically investigated for the first time using specially developed laboratory casting alloys. Each alloying route is based on the common S690QL, maintaining both the chemical composition and the heat treatment parameters. To analyse the weldability, three-layer welds were performed using gas metal arc welding (GMAW) and critical microstructures, such as areas of the heat-affected zone (HAZ) that exhibit significant softening or hardening, were identified. The effect of the softened HAZ region on failure was evaluated using transverse tensile specimens. Digital image correlation (DIC) is used to image changes in local strains in different HAZ regions in situ. Using a specially developed mirror system, the local strains of the microstructure zones on the top and bottom of the weld are recorded simultaneously. This makes it possible to analyse how the weld seam geometry (e.g., V-seam) influences the strain gradients. In addition, the analysis of the local deformation helps to understand the effects of the softened HAZ on the global strain, the fracture constriction, the fracture position, and the overall fracture behavior. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Welding KW - High-strength steel KW - Alloy concept KW - Cross-weld tensile sample KW - Mechanical properties PY - 2024 AN - OPUS4-59675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Kaiser, Sebastian A1 - Kannengiesser, Thomas A1 - Kromm, Arne T1 - Repair welding of pressurized in-service hydrogen pipelines - A review on current challenges and strategies N2 - As energy carrier of the future, green hydrogen can make a decisive contribution to a sustainable energy supply. Particularly important is the decarbonization of heavy industry. Therefore, a reliable supply of hydrogen must be guaranteed. A hydrogen pipeline grid can achieve this purpose. In Europe concrete plans for a hydrogen pipeline grid already exist, as the so called “European Hydrogen backbone”. As building a completely new pipeline grid is economically not justifiable, a dual-way strategy of repurposing natural gas (NG) pipelines and newly built pipelines is intended. Long distance pipeline grids require regular maintenance and repairs. For natural gas (NG) pipelines in-service welding is state of the art. Concepts such as hot-tapping (drilling into pressurized pipelines) and “stoppling” (sealing off pipeline sections after installing bypasses or pressure relieves) allow the repair of damaged pipeline sections or the installation of new branches without shutting the pipeline down, which in most cases isn’t possible from an economic standpoint. The EIGA 121/14 guideline already pointed out in 2014 that “a hydrogen hot-tap shall not be considered a routine procedure”. This shows that the determination of the transferability of these repair concepts to hydrogen pipelines is of utmost importance. Due to the degrading effects of hydrogen on mechanical proper-ties, commonly referred to as “hydrogen embrittlement” it is necessary to understand and investigate the occurring effects. In the special case of repair welding on in-service hydrogen pipelines an increased hydro-gen uptake due to a large heat input and microstructural changes in the material needs to be considered. Therefore, material degradation must be investigated to determine whether modifications of repair procedures are necessary to ensure a reliable and safe hydrogen transportation via pipelines. For this reason, this paper gives an overview on existing weld repair concepts and its risks and limitations in terms of hydrogen absorption and possible embrittlement effects when transferred to hydrogen pipelines. The complexity lies in a large variety of materials (low alloyed steels), pipeline diameters and corresponding welded joints. The material compatibility of materials in used (repurposed NG-pipelines) and new condition must be investigated. Particularly for repurposed/used pipelines the effect of a pre-matured/corroded inner surface and sometimes insufficient documentation of the material “history” needs to be considered. An overview on ongoing and completed R&D-projects with respect to repair concepts for hydrogen pipelines and hydrogen effects on pipeline materials is given. The focus hereby lies on possible methods of material testing and modeling. Its current difficulties, limits and possible solution will be discussed. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Hydrogen KW - Repair welding KW - Pipelines KW - In-service PY - 2024 AN - OPUS4-59674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Czeskleba, Denis A1 - Kannengiesser, Thomas T1 - Combined effect of heating rate and restraint condition on stress relief cracking susceptibility during PWHT of thick-walled Cr-Mo-V steel submerged arc welded joints N2 - Contemporary steels creep-resistant steels like the 13CrMoV9-10 are used as thick plates e.g., for applications in hydrocrackers. The large plate thickness requires high efficiency welding processes like submerged arc welding (SAW) and a mandatory post weld heat treatment (PWHT). The PWHT-parameters stem from a combination of empirical knowledge and traditional experiments on free shrinking (FS) welds. In that connection, the formation of so-called stress-relief cracking (SRC) must be anticipated. The SRC susceptibility of a welded component is a complex combination and interaction of com-ponent specific, thermal, and metallurgical factors. Many of which have to date not been conclusively researched. For example, it is well known that SRCs develop during PWHT due to formation and growth of carbides on prior austenite grain boundaries, resulting in a significant hardness increase (secondary hardening) and toughness decrease. This leads to a high SRC susceptibility of the coarse grain heat-affected zone (CGHAZ) of the last weld bead during PWHT. This is intensified in case of high residual stresses from the component-specific, structurally induced stiffness. In combination with multi-layer welding this leads to a multiaxial stress distribution. Nonetheless, the combined effect of PWHT and high-residual stresses on the SRC formation is merely unknown. For that reason, this study presents the effect of different heating rates in conjunction with a certain component stiffness. For that reason, SAW joints of 13CrMoV9-10 steel were investigated under FS and defined external restraint condition. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Stress relief cracking KW - Welding KW - Post weld heat treatment KW - Submerged arc welding KW - Cr-Mo-V steel KW - Creep-resisting steel PY - 2024 AN - OPUS4-59673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Richter, Tim A1 - Schroepfer, Dirk A1 - Mente, Tobias A1 - Michael, Thomas T1 - Local mechanical properties of dissimilar metal TIG welded joints of CoCrFeMnNi high entropy alloy and AISI 304 austenitic steel N2 - Multiple principal element alloys encompass the well-known high entropy alloys (HEA). The alloy system represents a new class of materials consisting of at least three alloying elements, each containing 5 to 35 at.%. Thus, this alloying concept differs fundamentally from conventional materials such as steel or nickel alloys. For this purpose, the alloying elements are specifically selected, the microstructures are adjusted in a single-phase and, in some cases, multi-phase manner. In particular, conflicting goals, such as the trade-off between strength and ductility in conventional steels, are overcome. However, in the last 20 years, the focus has been on material synthesis. With the increase in available material quantities, the focus is now on processing issues such as joining and welding processes. The weldability of HEAs has received very little attention so far. The experience with dissimilar metal welds is completely lacking but is essential for the application of these materials in combination with conventional materials. The present study presents comprehensive experimental results on the weldability of an equimolar CoCrFeMnNi-HEA in cold-rolled and heat-treated condition, which was joined by tungsten inert gas welding to an austenitic steel AISI 304. The mechanical properties of the dissimilar metal welds were characterized by cross-weld tensile samples, whereas the local deformation in the weld of the different welding zones was measured by digital image correlation. In accordance with the respective initial HEA condition (cold-rolled vs. heat-treated), the local strain behavior was divergent and influenced the global mechanical properties of both DMW types. Nonetheless, the experiments provided proof in principle of the weldability for dissimilar joints of the CoCrFeMnNi-HEA welded to conventional materials like austenitic stainless steels ensuring a corresponding capability for mechanical loading. This allows further considerations on the application of these innovative materials. KW - TIG welding KW - High-entropy alloys KW - Mechanical properties KW - Dissimilar metal weld PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-595775 SN - 0043-2288 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-59577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Witte, Julien A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Stresses in repair welding of high-strength steels—part 1: restraint and cold cracking risk N2 - AbstractThe sustainable and resource-efficient production of wind energy plants requires the use of modern high-strength fine-grain structural steels. This applies to both foundation and erection structures, like mobile or ship cranes. During the assembly of steel structures, unacceptable defects can occasionally be found in the weld area. In most cases, the economical solution would be local thermal gouging of the affected areas and re-welding. Due to the high shrinkage restraint of the joint groove in the overall structure, the superposition of global and local welding-induced stresses may lead to crack formation and component failure, particularly in interaction with the degradation of the microstructure and mechanical properties of high-strength steels during the repair process. However, manufacturers hardly have any information about these issues and there is a lack of recommendations and guidelines to take these safety-relevant aspects into account in adequate repair concepts. The aim of this research is to derive recommendations for repair concepts appropriate to the stresses and materials involved providing a basis for standards and guidelines to avoid cold cracking, damage and expensive reworking especially for high-strength steels. Part 1 of this study involves systematic investigations of influences of shrinkage restraint during repair welding of two high-strength steels S500MLO for offshore application and S960QL for mobile crane structures. The quantification of the shrinkage restraint of repair weld joints was achieved by means of experimental and numerical restraint intensity analysis. In welding experiments with self-restrained slot specimens, restraint intensity and introduction of hydrogen via the welding arc using anti spatter spray were varied systematically to analyse the effect on welding result, residual stresses and cold cracking. It could be shown that increasing restraint intensities result in significantly higher transverse residual stress levels. In the case of hydrogen introduction S500MLO showed no cold cracking independent of the restraint conditions. However, S960QL was found to be considerably cold cracking sensitive if hydrogen is introduced. With increasing restraint intensity length and number of cold cracks increases significantly. Part 2 [1] of this study is focussed on microstructure and residual stresses due to gouging and stress optimization via adequate heat control parameters in repair welding. KW - Metals and Alloys KW - Mechanical Engineering KW - Mechanics of Materials PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-595212 SN - 0043-2288 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-59521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Thomas, Maximilian A1 - Kannengiesser, Thomas A1 - Gibmeier, Jens T1 - On the interpretation of Varestraint and Transvarestraint hot cracking test results N2 - The Varestraint test and its variant Transvarestraint are one of the most widely used techniques for evaluating a material solidification cracking sensitivity during welding. The result of such tests is a crack length which is proportional to the material’s cracking susceptibility. Nevertheless, the welding and load parameters can unintentionally influence the crack length, which in some cases can distort the material evaluation. An approach is described as to how these effects can be assessed with the aid of a digital crack analysis. The crack lengths are compared position-dependently with their possible propagation due to the weld pool movement during continuous loading. The index derived from this can be used by the operator to evaluate his test parameters. In addition, a comparison of the results of different Varestraint setups is made possible. Alongside experimental results, a numerical sensitivity analysis is presented on how individual welding and loading parameters can affect the crack lengths. KW - Varestraint test KW - Solidification cracking KW - Weldability PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-595089 SN - 0043-2288 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-59508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Nietzke, Jonathan A1 - Kannengießer, Thomas T1 - In situ measurement of hydrogen concentration in steel using laser‑induced breakdown spectroscopy (LIBS) N2 - The ISO 3690 standard “Determination of hydrogen content in arc weld metal” requires a thermal activation of the diffusible hydrogen in a piece of weld metal for the subsequent ex situ concentration measurement by carrier gas hot extraction CGHE or thermal desorption spectroscopy (TCD). Laser-induced breakdown spectroscopy (LIBS) offers a time and spatially resolved, almost non-destructive, in situ measurement of hydrogen at surfaces without sample preparation. We measured hydrogen in steels, which were charged either electrochemically or by high-pressure hydrogen gas, and compared the results. Further, the feasibility of quantitative hydrogen line scan measurements with LIBS was demonstrated by measuring hydrogen at water jet cut surfaces. The hydrogen concentrations measured with the help of LIBS were compared with CGHE measurements. It was observed that hydrogen can be reliably measured with LIBS for concentrations larger than 2 wt.-ppm. The maximum hydrogen concentration achieved using electrochemical charging was 85.1 ppm. The results show that LIBS is a promising technique for time- and spatially resolved measurements of hydrogen in steels. T2 - IIW Annual Assembly 2023 CY - Singapore KW - LIBS KW - Hydrogen measurement KW - Welding KW - Stainless steel KW - Diffusible hydrogen PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-593664 SP - 1 EP - 9 PB - Springer AN - OPUS4-59366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wandtke, Karsten ED - Becker, Amadeus ED - Schröpfer, Dirk ED - Kromm, Arne ED - Kannengießer, Thomas ED - Scharf-Wildenhain, R. ED - Hälsig, A. ED - Hensel, J. T1 - Residual Stress Evolution during Slot Milling for Repair Welding and Wire Arc Additive Manufacturing of High-Strength Steel Components N2 - High-strength steels offer potential for weight optimization due to reduced wall thicknesses in modern constructions. Additive manufacturing processes such as Wire Arc Additive Manufacturing (WAAM) enable the resource-efficient production of structures. In the case of defects occurring in weld seams orWAAM components due to unstable process conditions, the economical solution is local gouging or machining and repair welding. It is important to understand the effects of machining steps on the multiaxial stress state in conjunction with the design-related shrinkage restraints. Research into how welding and slot milling of welds andWAAM structures affects residual stresses is still lacking. For this reason, component-related investigations with high-strength steels with yield strengths ≥790 MPa are carried out in our research. In-situ digital image correlation (DIC) and ex-situ X-ray diffraction (XRD) were used to analyze the stresses and strains induced on specimens during and after milling. The systematic analyses revealed a significant interaction of the stiffness and microstructure of the specimens with the initial residual stresses induced by welding. Subsequent repair welds can result in significantly higher residual stresses. KW - High strength steels KW - Additive manufacturing KW - Residual stress KW - Repair welding KW - Ditigtal image correlation PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-593515 VL - 14 IS - 1 SP - 1 EP - 11 PB - MDPI CY - Basel AN - OPUS4-59351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -