TY - CONF A1 - Bernardy, Christopher A1 - Konert, Florian A1 - Popiela, Bartosz A1 - Sarif, Raduan T1 - H2Safety@BAM: Competence Center for safe hydrogen technologies N2 - Presentation of the competence center H2Safety@BAM at the European PhD Hydrogen Conference 2024 in Ghent, Belgium. T2 - European PhD Hydrogen Conference 2024 (EPHyC2024) CY - Ghent, Belgium DA - 20.03.2024 KW - H2safety KW - Hydrogen KW - Safety KW - Competence center PY - 2024 AN - OPUS4-59756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nietzke, Jonathan A1 - Konert, Florian A1 - Poka, Konstantin A1 - Merz, Benjamin A1 - Sobol, Oded A1 - Böllinghaus, Thomas T1 - Performance of Conventional and Additive Manufactured Austenitic Stainless Steels under Gaseous Hydrogen Environment using in-situ Hollow Specimen Technique N2 - Hydrogen and its derivatives (e.g. ammonia) are considered as a suitable energy carrier in the future supply of renewable energy. Hydrogen transportation systems require pipes, valves and fittings, among other components. In this sense, austenitic stainless steels are commonly used structural materials for pure hydrogen applications. Stable austenitic alloys, like AISI 316L, are often assumed to be practically unsusceptible to hydrogen embrittlement. At the same time, a number of studies show the influence of hydrogen even in 316L under some circumstances. Some other studies state that this embrittlement could be avoided by using steel grades with a higher nickel equivalent which contributes to a more stable austenitic phase. Nonetheless, 316L is widely used in hydrogen atmospheres since many years because of lower costs and positive practical experience. For these reasons, not only 316L but also 304 could be further utilized by identifying the exact constraints. With increasing demand for components regarding hydrogen applications, additive manufacturing technologies are getting increasingly important complementary to conventional manufacturing. In the context of additive manufacturing, 316L is a common material as well. The manufacturing process offers great advantages due to higher freedoms in design and the possibility for customized components in small batches. For example, valves with improved flow characteristics and reduced component weight can be produced. Nevertheless, there is still lack of experience and experimental results concerning additively manufactured parts under hydrogen service. Therefore, the influence on the material properties for additively manufactured parts in hydrogen environments needs to be further investigated. In the present work, slow strain rate testing (SSRT) has been applied using hollow specimens. This testing procedure allows to perform practicable and faster in-situ tests in comparison to tests in autoclaves and investigate the influence of hydrogen on the mechanical properties. Conventional AISI 304 and 316L specimens as well as additively manufactured 316L specimens were tested at room temperature and a pressure of 200 bar. Elongation at fracture and relative reduction of area (RRA) have been used to evaluate the influence of hydrogen. It is shown that the influence of hydrogen is more pronounced in 304 than in 316L. Furthermore, potentially influencing factors such as surface roughness, microstructure and porosity are discussed. T2 - International Hydrogen Conference CY - Park City, Utah, USA DA - 17.09.2023 KW - Hydrogen KW - Hollow Specimen Technique KW - Additive Manufacturing KW - Austenitic Steels PY - 2023 AN - OPUS4-58776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Zaghdoudi, Maha T1 - Comparison of ageing behaviour of O-ring seals under hydrogen and air N2 - Elastomeric seals are essential components in the infrastructure which prevent leakage of gas and proper function of technical devices and are therefore highly safety relevant. For proper function a remaining resilience and tolerance to pressure changes is required. The ageing of elastomers is an undesirable but inevitable process leading to a limited lifetime of rubber products such as seals. Independent of the application, as e.g. automotive, piping or container applications, a long lifetime or at least a timely exchange of a seal before occurrence of critical failure is desired. Hydrogen is a key element for the energy turnaround and therefore the compatibility of seals with hydrogen is essential. In addition to the effect of hydrogen uptake and release, which might also cause destructive effects such as rapid gas decompression, ageing at high temperature under hydrogen atmosphere is of interest too. Most of the existing work is addressing the performance of new materials and comprises only very limited investigations concerning long-term use and the behaviour of aged materials in contact with hydrogen. As ageing can lead to substantial changes of material properties, it must be evaluated whether these changes are beneficial or deteriorating for the component function. In this work we present and compare results of the characterisation of three sealing materials (EPDM, HNBR, FKM) after ageing at high temperature under hydrogen and air. Despite the common assumption that ageing under hydrogen atmosphere should be less severe for the material in comparison to air ageing, this is not the case for every material. T2 - RubberCon 2023 CY - Edinburgh, Scotland DA - 09.05.2023 KW - Hydrogen KW - Ageing KW - Seal PY - 2023 AN - OPUS4-58178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Konert, Florian A1 - Nietzke, Jonathan A1 - Sobol, Oded A1 - Schütz, S. A1 - Böllinghaus, Thomas T1 - Application of an in-situ H2Test Method N2 - The degradation effect of hydrogen on the mechanical properties of steels is well known, but still not sufficiently understood. The fast and safe market ramp up of hydrogen technologies makes it evident to evaluate a wider understanding of this topic. In general it is often described as hydrogen embrittlement. Therefore it is desirable to achieve a test method which is able to provide material properties under hydrogen atmosphere in an easy way. Currently mechanical tests under hydrogen atmosphere are executed in autoclaves. For this technique complex hardware is needed, therefore tests are expensive and test capacities are only available in a small scale. The shown test method promises a trendsetting approach for reducing costs and machine time by using hollow specimen. T2 - 4th International Conference on Metals and Hydrogen - Steely & Hydrogen 2022 CY - Ghent, Belgium DA - 11.10.2022 KW - Hydrogen KW - Hollow specimen KW - In-situ KW - Test procedure PY - 2022 AN - OPUS4-56032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nietzke, Jonathan A1 - Konert, Florian A1 - Rhode, Michael A1 - Mente, Tobias A1 - Kannengießer, Thomas T1 - Experimental and numerical characterization of hydrogen diffusion in thick-walled submerged arc welded joint of S420G2+M offshore steel grade N2 - Offshore wind turbines are an important goal in national energy strategies worldwide. Foundation structures are manufactured from submerged arc welded (SAW) plates with thicknesses up to 200 mm. In that connection, high-strength steels like the S420G2+M are more and more applied offering the possibility for increased stability and load-bearing capacity of the foundations. These offshore steel grades can show a susceptibility for delayed hydrogen assisted cold cracking of the weld joints. For that purpose, a minimum waiting time (MWT) of up to 48 h (dependent on applied standards) is recommended before non-destructive testing is allowed and conducted. But this concept is based on older steel grades that have been used for three or more decades. Nowadays, the metallurgical improvements (clean steels, proper rolling, and heat treatment) of base materials and well as welding consumables must be anticipated. Hence, the MWT concept should be critically discussed as it is assumed to be very conservative. For that reason, the focus of this study was to investigate the diffusion behavior in S420G2+M steel and its multi-layer SAW joint. Electrochemical permeation experiments were carried at room temperature. Boundary conditions were anticipated in terms of using different sample thicknesses. From the experimental data, hydrogen diffusion coefficients and absorbed diffusible hydrogen concentrations had been calculated. It was shown that hydrogen diffusion in the base material is increased compared to the weld metal. In addition, the sample thickness had a significant on the calculated diffusion coefficients. The minimum and maximum diffusion coefficients had been used for numerical modelling of the hydrogen diffusion in the welding joint. It became clear that a MWT must be always regarded together with a critical initial diffusible hydrogen concentration for the evaluation of a possible delayed cracking as diffusion times were mostly > 48 h due to the thick plates. T2 - 4th International Conference on Metals and Hydrogen - Steely & Hydrogen 2022 CY - Ghent, Belgium DA - 11.10.2022 KW - Hydrogen KW - Submerged arc welding KW - Minimum Waiting Time KW - Cold Cracking KW - Offshore steel grade PY - 2022 AN - OPUS4-56008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nattuveettil, Keerthana A1 - Brunner, Nanine A1 - Tiebe, Carlo A1 - Melzer, Michael A1 - Johann, Sergej A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias T1 - Einsatz von Sensortechnologien an einer Wasserstofftankstelle als Beitrag zur digitalen Qualitätsinfrastruktur T1 - Use of sensor technologies at hydrogen test platform as a part of QI Digital N2 - Die Optimierung und Validierung des digitalen Wasserstofftankstellenmanagements mit Sensortechnologien ist das übergeordnete Ziel des Teilprojekts Digitale Qualitätsinfrastruktur mit Sensortechnologien (QIST) am Use Case H2, im Rahmen der digitalen Qualitätsinfrastruktur (QI digital[1]). Hierfür sollen u.a. Sensornetzwerke mit digital-gestützten Auswertungsstrategien intelligent gestaltet werden (Stichwort KI bzw. digitaler Zwilling). Verschiedene, sich ergänzende Sensoren, Systemkomponenten und KI-Methoden stehen als Bausteine intelligenter Sensorsysteme zur Verfügung, mit dem Zweck, die physikalischen und chemischen Parameter an und in Anlagen umfassend und effizient zu überwachen sowie Fehlfunktionen zuverlässig zu detektieren und zu interpretieren, Abbildung 1. Konkrete Arbeitsschritte sind, nach dem Aufbau der Versuchsplattform „Wasserstofftankstelle“, die Instrumentierung von Sensorik und deren digitale Integration in das Tankstellenmanagementsystem sowie die Validierung im Realbetrieb. Die somit erzielten Messergebisse sowie die Messunsicherheiten, Historien und Verfahren werden in digitaler Form aufbereitet, gespeichert und fortlaufend in die KI-basierte Datenauswertung einbezogen, inkl. der Anbindung an die metrologische Rückführungskette. Ziele sind: • Einführung eines neuen messtechnischen Ansatzes und eines digitalen Zwillings für den Anwendungsfall "Wasserstofftankstelle" auf Basis der H2-Sensorik sowie der Zustandsgrößen Druck und Temperatur • Qualitätssicherung durch Applikationen zuverlässiger Gassensorik, Manometer und Thermometer sowie KI-Methoden zur Prozesskontrolle und Detektion von Fehlfunktionen • Nutzung von digitalen Kalibrierscheinen (DCCs) insbesondere für die Messgröße Temperatur zur Realisierung der metrologischen Rückführung in einer digitalen Qualitätsinfrastruktur T2 - Sensorik für die Digitalisierung chemischer Produktionsanlagen CY - Frankfurt a. M., Germany DA - 13.06.2022 KW - QI Digital KW - H2Safety@BAM KW - Wasserstoff KW - Hydrogen KW - Sensorik KW - Digitalisierung KW - Digitalisation PY - 2022 AN - OPUS4-55399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Benchmarking of polymer materials for tribological applications in hydrogen N2 - The focus of this study is to evaluate the influence of hydrogen on the friction and wear behavior of a wide range of polymer materials. Thereby, the tribological performance of filled und unfilled polymers from different suppliers were compared at room temperature in air and hydrogen gas (H2) as well as in liquid hydrogen at -235°C (LH2). T2 - 23rd International Conference on Wear of Materials CY - Online meeting DA - 26.04.2021 KW - Polymers KW - Hydrogen KW - Friction KW - Wear PY - 2021 AN - OPUS4-52651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Röhsler, Andreas A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Sputtering derived artefacts in austenitic steel during Time-of-Flight Secondary Ion Mass Spectrometry analyses N2 - Among the very few techniques to localize hydrogen (H) at the microscale in steels, Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a reliable tool. The necessity to detect hydrogen stems from its deleterious effects in metals, that are often used as structural components and to obtain better understanding of the underlying metallurgical mechanisms of hydrogen embrittlement (HE) which are still unclear. Austenitic stainless steels are nowadays commonly used in a wide variety of application, from hydrogen transport and storage facilities to petrochemical and offshore applications where they are exposed to aggressive environments and therefore prone to HE. One of the greater risks in the austenitic class is the embrittlement of the material due to the instability of the γ austenite and its transformation into a brittle α martensitic phase. This transformation takes place due to the local stresses that are induced by the uptake of hydrogen during service. Nonetheless, it was shown that this transformation can occur as an artefact during SIMS analysis itself where Cs-sputtering is necessary not only to remove surface contaminations but mainly to enhance H/D secondary ion yield. In the following contribution we show the influence of different sputtering conditions on AISI 304L austenitic stainless steel in order to distinguish the artefact from the hydrogen induced transformation. The material was charged electrochemically in a deuterium based electrolyte. Deuterium (D) must be in these experiments as a replacement for hydrogen which cannot be used because adsorbed hydrogen superimposes hydrogen originating from charging the sample in the SIMS images. ToF-SIMS analyses were conducted by ToF SIMS IV (IONTOF GmbH, Münster, Germany). The experiments were carried out on deuterium charged and non-charged samples. The structural characterization was carried out by SEM and EBSD examinations before and after charging, both with a Leo Gemeni 1530VP field-emission scanning electron microscope and a Zeiss Supra 40 instrument (Carl Zeiss Microscopy GmbH, Oberkochen, Germany). The results showed that the use of 1keV Cs+ beam induces stacking faults while higher sputter beam energies results in γ→α transformation. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Austenitic steel KW - Hydrogen KW - ToF-SIMS KW - Artefact PY - 2018 AN - OPUS4-46701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Analysis of deuterium in austenitic stainless steel AISI 304L by Time-of-Flight Secondary Ion Mass Spectrometry N2 - Due to their excellent combination of ductility, strength and corrosive resistance, austenitic stainless steels (ASS) are widely used in many industrial applications. Thus, these steel grades can be found as structural components in the (petro-)chemical industry, in offshore applications and more recent for storage and transport of hydrogen fuel. Steels employed for these applications are exposed to aggressive environments and hydrogen containing media. The ingress and accumulation of hydrogen into the microstructure is commonly observed during service leading to a phenomenon called “hydrogen embrittlement”. A loss in ductility and strength, the formation of cracks and phase transformations are typical features of this hydrogen-induced degradation of mechanical properties. Although, great efforts are made to understanding hydrogen embrittlement, there is an ongoing debate of the underlying mechanisms. This knowledge is crucial for the safe use and durability of components on the one side and the development of new materials on the other. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a powerful tool for depicting the distribution of the hydrogen isotope deuterium in the microstructure of austenitic and duplex steels. The combination with imaging techniques such as electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM), delivering structural and morphological information, creates a comprehensive picture of the hydrogen/deuterium-induced effects in the materials. All the gathered data is treated with principal component analysis (PCA) and data fusion to enhance the depth of information. The mobility of hydrogen and deuterium in a steel microstructure is affected by external mechanical stress. To investigate the behaviour of deuterium in a strained microstructure, a new in situ experimental approach was developed. This gives the possibility of analysing samples in the SIMS instrument simultaneously to four-point-bending-tests. Specimens made from ASS AISI 304L were electrochemically charged with deuterium instead of hydrogen. This necessity stems from the difficulty to separate between artificially charged hydrogen and hydrogen existing in the pristine material or adsorbed from the rest gas in the analysis chamber. Nonetheless, similar diffusion, permeation and solubility data allow to draw qualitative conclusions from the experiments, which are relevant for the application addressed. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Hydrogen KW - Deuterium KW - Austenitic stainless steel KW - SIMS PY - 2018 AN - OPUS4-46029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - In-situ observation of the hydrogen behaviour in austenitic stainless steel by time-of-flight secondary ion mass spectrometry during mechanical loading N2 - The reduction of harmful emissions to the environment is one of the most urgent challenges of our time. To achieve this goal, it is inevitable to shift from using fossil fuels to renewable energy sources. Within this transition, hydrogen can play a key role serving as fuel in transportation and as means for energy storage. The storage and transport of hydrogen using austenitic stainless steels as the infrastructure, as well as the use of these grades in hydrogen containing aggressive environments, remains problematic. The degradation of the mechanical properties and the possibility of phase transformation by ingress and accumulation of hydrogen are the main drawbacks. Advanced studies of the behaviour of hydrogen in austenite is necessary to fully understand the occurring damage processes. This knowledge is crucial for the safe use of components in industry and transportation facilities of hydrogen. A powerful tool for depicting the distribution of hydrogen in steels, with high accuracy and resolution, is time-of-flight secondary ion mass spectrometry (ToF-SIMS). We here present a comprehensive research on the hydrogen degradation processes in AISI 304L based on electrochemical charging and subsequent ToF-SIMS experiments. To obtain furthermore information about the structural composition and cracking behaviour, electron-backscattered diffraction (EBSD) and scanning electron microscopy (SEM) were performed afterwards. All the gathered data was treated employing data fusion, thus creating a thorough portrait of hydrogen diffusion and its damaging effects in AISI 304L. Specimens were charged with deuterium instead of hydrogen. This necessity stems from the difficulty to separate between artificially charged hydrogen and traces existing in the material or adsorbed from the rest gas in the analysis chamber. Similar diffusion and permeation behaviour, as well as solubility, allow nonetheless to draw onclusions from the experiments. T2 - International Conference on Metals and Hydrogen; Steely Hydrogen 2018 CY - Ghent, Belgium DA - 29.05.2018 KW - Hydrogen KW - Deuterium KW - ToF-SIMS KW - AISI 304L PY - 2018 AN - OPUS4-45079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Yahyaoui, Hamza A1 - Kannengießer, Thomas T1 - Hydrogen distribution in multi-layer welds of steel S960QL N2 - High-strength low-alloyed (HSLA) steels with yield strength ≥ 690 MPa have increasing im-portance in steel construction and civil engineering. However, weld processing of those steels is a major challenge. The susceptibility for degradation of mechanical properties of weld joints sig-nificantly increases in presence of hydrogen and can result in hydrogen assisted cracking (HAC). Generally, risk for HAC increases with increasing yield strength of HSLA steels. To min-imize the incidence of HAC, it is essential to gain knowledge about both the (1) absorbed hydro-gen amount and its distribution in the weld seam and (2) options to lower the amount of intro-duced hydrogen. Existing standards recommend heat treatment procedures (interpass tempera-ture or post weld heat treatment) to reduce the diffusible hydrogen concentration in weldments. In this context, different weld seam geometries should be considered. For HSLA steel fabrication weld processing with seam opening angles of 45° to 60° is typical. Modern weld technologies allow welding with seam opening angles of 30° - reduced welding time and costs. In the present study, the hydrogen distribution in multi-layer welds of a 960 MPa HSLA steel was analysed. Influence of different seam opening angles as well as heat input, interpass temperature and post weld heat treatments were investigated. The welded samples were quenched in ice water imme-diately after welding and subsequently stored in liquid nitrogen. After defined warming up, small specimens were machined from the weld seam by water jet cutting. The diffusible hydrogen concentration was measured by carrier gas hot extraction with coupled mass spectrometer. The results showed, that low heat input and post weld heat treatment procedures can lower hydrogen concentrations in welds. Furthermore, a gradient of the hydrogen concentration was identified with increasing weld pool depth. By varying the seam opening angles different hydrogen concen-trations were measured. T2 - 3rd International Conference on Metals & Hydrogen CY - Ghent, Belgium DA - 29.05.2018 KW - Hydrogen KW - Welding KW - High-strength steels KW - Heat treatment KW - Carrier gas hot extraction PY - 2018 AN - OPUS4-45076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel T1 - Hydrogen in Iron visualized in 3D by neutron tomography N2 - Presented are neutron tomographies on hydrogen charged iron samples. T2 - RACIRI Summer School 2015 CY - Sellin, Rügen, Germany DA - 22.08.2015 KW - Tomographie KW - Wasserstoff KW - Neutronen KW - Hydrogen KW - Neutron KW - Tomography PY - 2014 AN - OPUS4-44838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - The use of time-of-flight secondary ion mass spectrometry for the investigation of hydrogen-induced effects in austenitic steel AISI 304L N2 - In the course of the energy transformation from fossil fuels to renewable energy sources, the use of hydrogen as fuel and energy storage can play a key role. This presents new challenges to industry and scientific community alike. The storage and transport of hydrogen, which is nowadays mainly realised by austenitic stainless steels, remains problematic. That is due to the degradation of mechanical properties and the possibility of phase transformation by hydrogen diffusion and accumulation. Development of materials and technologies requires a fundamental understanding of these degradation processes. Therefore, studying the behaviour of hydrogen in austenitic steel contributes to an understanding of the damage processes which is crucial for both life assessment and safe use of components in industry and transportation. As one of the few tools that is capable of depicting the distribution of hydrogen in steels, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was conducted after electrochemical charging. To obtain furthermore information about the structural composition and cracking behaviour, electron-backscattered diffraction (EBSD) and scanning electron microscopy (SEM) were performed. Gathered data of chemical composition and topography was treated employing data fusion, thus creating a comprehensive portrait of hydrogen-induced effects in the austenite grade AISI 304L. Specimens were electrochemically charged with deuterium instead of hydrogen. This arises from the difficulties to distinguish between artificially charged hydrogen and traces existing in the material or the rest gas in the analysis chamber. Similar diffusion and permeation behaviour, as well as solubility, allow nonetheless to draw conclusions from the experiments. T2 - SIMS21 CY - Krakau, Poland DA - 11.09.2017 KW - Austenitic stainless steel KW - ToF-SIMS KW - Hydrogen PY - 2017 AN - OPUS4-42315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Marzok, Ulrich A1 - Reinsch, Stefan A1 - Gaber, Martin A1 - Welter, T. A1 - Deubener, J. T1 - Hydrogen permeability of glass measured by VHE-MS powder methods N2 - Glasses are can serve as exceptionally tight hydrogen barriers e.g. used for hydrogen storage in micro glass containers or cover glasses in micro electronic systems. Respective glass development, however, requires precise measurements of minimal hydrogen permeability, PH2. Recent studies showed that PH2 can be measured down to 2 10-21 mol s-1 Pa-1m-1 by means of Vacuum Hot Extraction (VHE) powder methods [1]. In this respect the isothermal gas release from glass powder particles is fitted in terms of classical diffusion models assuming spherical particles of uniform size thus obtaining the hydrogen diffusion coefficient, DH2. PH2 is then given by D H2 × S H2, where hydrogen solubility, SH2, is obtained from VHE studies of glass powders exposed to hydrogen atmosphere for different exposure time and hydrogen pressure. Measurements of minimal values of hydrogen permeability, however, require a careful evaluation and error discussion of this method. Against that background, we modeled hydrogen degassing during heating and subsequent isothermal annealing of glass powder particles of different shape and particle size distribution by means of COMSOL Multiphysics® [2] and verified related effects on DH2 obtained by the VHE powder method. T2 - SGT Centenary Conference, & ESG 2016 CY - Sheffield, UK DA - 4.9.2016 KW - Glass KW - Hydrogen KW - Permeability KW - Storage PY - 2016 AN - OPUS4-38307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Steger, Jörg A1 - Böllinghaus, Thomas A1 - Hoffmeister, H. A1 - Münster, C. A1 - Kannengießer, Thomas T1 - Hydrogen in Welded Microstructures of T24 Steel: Effect on Mechanical Properties and Corresponding Hydrogen Diffusion N2 - Low-alloyed CrMoV steels, such as T24, are widely used for welded components in fossil power stations due to their excellent creep-strength. Spectacular failure cases in the recent years exhibited severe cracking in T24 welds. The results showed that hydrogen-assisted cracking (HAC) occurring up to 200 degree Celsius cannot be excluded. Hence, a basic understanding is necessary on how hydrogen affects the material properties of welded microstructures. In this regard, each weld microstructure (HAZ and weld metal) has influence on the HAC susceptibility and respective hydrogen diffusion. Thus, the present contribution summarizes different results obtained from experiments with grades T24 (CrMoV alloy) and T22 (CrMo) and thermally simulated HAZ. Tensile tests were conducted with hydrogen charged specimens and compared to hydrogen-assisted stress corrosion cracking results obtained from slow strain rate tests (SSRT) up to 200 degree Celsius. Electrochemical permeation and degassing experiments were performed to identify a particular weld microstructure influence on hydrogen diffusion and trapping (especially in the HAZ). The results showed that T24 base material has improved resistance to hydrogen-assisted degradation/cracking. In contrast, the as-welded HAZ had remarkably increased susceptibility (tesnile tests at hydrogen concentration of 1 to 2 ppm). SSRT experiments confirmed this at elevated temperatures for both the T24 and the T22. Hence, the evaluation of a particular degradation of the mechanical properties should be performed independently for each weld microstructure. In addition, the HAZ showed decreased diffusion coefficients (at room temperature) of approximately one magnitude compared to the base materials. Trapped hydrogen was determined in the T24 at temperatures up to 120 degree Celsius compared to 75 degree Celsius in the T22. This has to be considered in case of changing operational temperatures, e.g. in the case of start-up and shutdown processes of boiler components. T2 - 10th Conference on Trends in Welding Research CY - Tokyo, Japan DA - 11.10.2016 KW - Degradation of Mechanical Properties KW - Hydrogen KW - Creep-resistant Steel KW - Weld Joint KW - Diffusion PY - 2016 AN - OPUS4-37827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Münster, Christoph A1 - Mente, Tobias A1 - Steger, Jörg A1 - Böllinghaus, Thomas T1 - Influence of Experimental Conditions and Calculation Method on Hydrogen Diffusion Coefficient Evaluation at Elevated Temperatures N2 - Hydrogen-assisted cracking (HAC) represents a significant failure risk for (high strength) creep resistant low-alloyed steel components in fossil-fired power plant applications at temperatures of up to and above 200 °C. This particularly applies to respective start-up and shut-down processes associated with alternating service-conditions in terms of load flexible power plants. For quantitative determination of localized crack critical hydrogen concentrations, the temperature dependent hydrogen diffusion coefficients have to be determined as exactly as possible. However, available literature provides a wide range of hydrogen diffusion coefficients for low alloyed steels with similar microstructures. Additionally, the available diffusion data seem not to be very reliable and their scatter increases with decreasing temperature. One reason is that the experimental boundary conditions can have a major impact on the determination of respective effective diffusion coefficients. Hence, the scope of this study is to evaluate the influence of the experimental boundary conditions on the derived diffusion coefficients. In addition, different methods for calculating diffusion coefficients are discussed. To elucidate such influences and to draw a line to practical application, the diffusion and trapping behavior in the creep resistant steel 7CrMoVTiB10 10 has been studied. For such purpose, hydrogen charged specimens were isothermally degassed at different temperatures using carrier gas hot extraction (CGHE). Based on experimental data, a numerical model has been developed by which the hydrogen transport behavior and the respective hydrogen distribution during CGHE can be assessed. It is demonstrated that the specimen heating rate has a large influence on the calculated diffusion coefficients under assumption of isothermal degassing which elsewhere has been underestimated in the assessment of diffusion data in creep-resistant steels. The numerical results suggest that calculation methods for diffusion coefficients are limited if compared to experimental results. It also turned out that the sample preparation time before CGHE can enormously influence determined diffusion coefficients. Consequently, non-homogeneous hydrogen concentration profiles have to be anticipated in the simulations to arrive at characteristic effusion curves consistent to respective CGHE experiments. In turn, validated diffusion coefficients are now available for the low-alloyed Cr-Mo-V steel, which can be helpful to calculate appropriate hydrogen removal heat treatment procedures. T2 - Project Meeting CAStLE CY - Colorado Springs, CO, USA DA - 07.09.2016 KW - Hydrogen KW - Diffusion Coefficient KW - Elevated Temperatures KW - Numerical Modeling KW - Carrier Gas Hot Extraction PY - 2016 AN - OPUS4-37408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Mente, Tobias A1 - Böllinghaus, Thomas T1 - Modeling of hydrogen-assisted cracking (HAC) in duplex stainless steels (DSS) N2 - Modeling of Hydrogen-Assisted Cracking (HAC) in Duplex Stainless Steels (DSS): - Hydrogen causes significant degradation in DSS and consequently HAC - Mechanisms of HAC have not been fully understood in two-phase microstructures - Mesoscale numerical modeling for HAC in DSS was created, coupled to the macroscale, enabling simulation of HAC in both phases independent from predefined crack paths T2 - International Hydrogen Conference - Material Performance in Hydrogen Environments CY - Jackson Lake Lodge, Moran, Wyoming, USA DA - 11.09.2016 KW - Hydrogen KW - Numerical modeling KW - Duplex stainless steel KW - Hydrogen assisted cracking PY - 2016 AN - OPUS4-37404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -