TY - JOUR A1 - Schmid, Thomas A1 - Dariz, P. T1 - Chemical imaging of historical mortars by Raman microscopy N2 - Raman microspectroscopic imaging was just recently introduced into the analysis of cement stone. Here, we demonstrate this approach on 19th-century Roman and Portland cement mortars and extend it to gypsum-based samples originating from a medieval stucco sculpture (high-burnt gypsum) and a stucco ornament prefabricated at the beginning of the 20th century (plaster of Paris). Furthermore, the distributions of dolomite and Calcite were mapped in an accessory mineral grain with approx. 500 nm lateral Resolution demonstrating the ability for studying alteration processes such as dedolomitisation. As we would like to make this approach accessible to other researchers, we discuss its present status, advantages, limitations and pitfalls. KW - Raman microscopy KW - Chemical imaging KW - Cement clinker KW - Gypsum KW - Dedolomite PY - 2016 U6 - https://doi.org/10.1016/j.conbuildmat.2016.03.153 SN - 0950-0618 VL - 114 SP - 506 EP - 516 PB - Elsevier Science CY - Oxford, UK AN - OPUS4-36661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Graf, Nora A1 - Gross, Thomas A1 - Wirth, Thomas A1 - Weigel, W. A1 - Unger, Wolfgang T1 - Application of XPS and ToF-SIMS for surface chemical analysis of DNA microarrays and their substrates N2 - The chemical composition of the functional surfaces of substrates used for microarrays is one of the important parameters that determine the quality of a microarray experiment. In addition to the commonly used contact angle measurements to determine the wettability of functionalized supports, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) are more specific methods to elucidate details about the chemical surface constitution. XPS yields information about the atomic composition of the surface, whereas from ToF-SIMS, information on the molecular species on the surface can be concluded. Applied on printed DNA microarrays, both techniques provide impressive chemical images down to the micrometer scale and can be utilized for label-free spot detection and characterization. Detailed information about the chemical constitution of single spots of microarrays can be obtained by high-resolution XPS imaging. KW - Microarrays KW - Surface analysis KW - XPS KW - ToF-SIMS KW - Chemical imaging PY - 2009 U6 - https://doi.org/10.1007/s00216-009-2599-x SN - 1618-2642 SN - 1618-2650 VL - 393 IS - 8 SP - 1907 EP - 1912 PB - Springer CY - Berlin AN - OPUS4-19245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weigel, W. A1 - Unger, Wolfgang A1 - Graf, Nora A1 - Gross, Thomas A1 - Wirth, Thomas T1 - Surface Chemical Analysis of DNA Microarrays - Application of XPS and ToF-SIMS for Surface Chemical Imaging on the µm Scale KW - Microarrays KW - Oberflächenanalytik KW - XPS KW - ToF-SIMS KW - Chemical imaging PY - 2008 SN - 1611-597X VL - 12 IS - 10 SP - 14 EP - 16 PB - GIT-Verlag CY - Darmstadt AN - OPUS4-18307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Senoner, Mathias A1 - Unger, Wolfgang T1 - Chemical imaging in the nanoworld - A certified reference material for chemical imaging at the nanoscale KW - Reference material KW - Nanoscale KW - ToF-SIMS KW - Chemical imaging PY - 2008 SN - 1614-7847 SN - 1614-7855 VL - 01 SP - 34 EP - 38 PB - Wiley-VCH CY - Weinheim AN - OPUS4-17392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -