TY - JOUR A1 - Nitz, Phillip D. H. A1 - Rosaz, Paul A1 - Kreysina, Daniela A1 - Kasprzak, Dawid A1 - Qi, Naiyu A1 - Baller, Johannes A1 - Graeber, Gustav T1 - Water-in-Salt Electrolytes Embedded in Polyacrylamide Hydrogels: A First Step toward Deformable Sodium-Ion Batteries N2 - The development of flexible, safe, and sustainable Energy storage systems is critical for next-generation technologies, including wearable electronics, biomedical devices, and soft robotics. In this work, we provide a systematic investigation of sodium perchlorate-based water-in-salt (WIS) electrolytes embedded in polyacrylamide (PAM) hydrogels as a potential platform for deformable sodium-ion batteries or aqueous supercapacitors. Using Raman spectroscopy, we track the transition from free to intermediate water states with increasing salt concentration, identifying the onset of the WIS regime around 10 mol kg−1. Electrochemical measurements reveal that both the aqueous and hydrogel-based electrolytes exhibit a broadened electrochemical stability window (ESW) at higher salt concentrations, reaching up to 2.75 V. Impedance spectroscopy shows that while aqueous electrolytes achieve higher peak conductivity (156 mS cm−1), hydrogel-based electrolytes offer greater stability across a range of concentrations. This observation was supported by cyclic voltammetry, as it showed enhanced electrochemical stability of the PAM hydrogel compared to the aqueous electrolyte. This comprehensive and systematic study demonstrates that highly concentrated WIS electrolytes can be successfullyembedded into PAM hydrogels, while preserving good electrochemical stability and ionic conductivity. This could make them a promising foundation for all-hydrogel, sodium-based energy storage devices that are safe, sustainable, and mechanically compliant. KW - Battery PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653156 DO - https://doi.org/10.1021/acsapm.5c03031 SN - 2637-6105 SP - 1 EP - 8 PB - American Chemical Society (ACS) AN - OPUS4-65315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krug von Nidda, Jonas T1 - Developing Core-Shell Carbon Materials to Link Porosity Features to Sodium Storage Capacities N2 - Porous carbon materials play an important role for energy storage and conversion. One (re-)emerging research field is the ability of porous carbons to store sodium metal ions. Current results shows that internal pores – hence, pores which are not accessible for the electrolyte – allow to store large amounts of sodium at low potentials, yielding high energy sodium-ion battery (SIB) anodes. The common synthesis approach to gain carbons with internal pores involves the pyrolysis of a non-graphitizing precursor, resulting in a so-called hard carbon (HC). However, HC-materials frequently show substantial non-reversible initial capacity losses. Commonly, significant losses are associated with the creation of the solid electrolyte interphase (SEI) on the carbon’s surface that occurs during the initial sodium insertion. Intriguingly, large irreversible capacities are often found for samples with experimentally determined low specific surface area.[2] A more comprehensive understanding of the structure-property relations is essential for quantifying and grasping the potential of carbon materials in SIBs. However, the typical synthesis methods do not allow to individually tune the storage properties – mainly connected to the internal properties of the carbons – and the SEI-formation – primarily related to the surface properties. Hence, the objective of the present work is to develop a synthesis route which tackles this challenge. Herein, the main approach is to develop tailor-made core-shell carbon materials consisting of a highly porous carbon core and a quasi-non-porous carbon shell. For the core, two strategies are pursued: A) microporous carbon materials with varied porosity, however, similar chemistry, and B) microporous carbons with tuneable chemistry, but similar porosity. Approach A involves the selection of commercially available activated carbons (ACs). Strategy B is based on the modification of the chemical composition (i.e., amount and type of N-sites) of zeolitic imidazolate framework (ZIF-8) derived carbons. In both cases, the shell is realized by chemical vapour deposition (CVD). Different analytical methods, e.g., powder XRD, gas physisorption (N2, Ar, CO2), XPS, and SAXS are used to thoroughly characterize morphological and chemical features of the core as well as of the core-shell carbons. These features are linked to the electrochemical characteristics of the materials. After CVD-coating, all materials show a significant reduction in detectable surface area (up to a factor of up to 190x) by N2-physisorption. The coating technique is successfully applied to a range of AC-materials, enabling to link porosity features to Na-storage behavior. For the best performing AC-based material, the reversible capacity is increased from ~140 mAhg-1 to ~400 mAhg-1 while irreversible capacity is decreased from ~640 mAhg-1 to ~90 mAhg-1. The results of the coated ZIF-derived carbon reveal that a higher nitrogen content leads to a greater capacity in the sloping region, but to a lower capacity in the plateau region of the voltage profile. Generally, core-shell carbon anodes promise to enable high capacities accompanied with low irreversible losses. T2 - 36. Deutsche Zeolith-Tagung CY - Erlangen, Germany DA - 26.02.2025 KW - Battery KW - Anode KW - Hard Carbon PY - 2025 AN - OPUS4-64960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Tracking Lithium-Ion Battery Ageing via Lithium Isotope Fractionation N2 - Lithium-ion batteries power portable devices, electric vehicles, and stationary power grids, yet hidden aging reactions still shorten their service life and raise concerns about cost and safety. An analytical proxy is needed to report these reactions and accelerate product development, quality control, and recycling. Here, we demonstrate that subtle shifts in the natural 7Li/6Li ratio accurately record the two decisive stages of cell aging, solid-electrolyte interphase (SEI) formation and field-driven aging, which can be detected using multi-collector ICP-MS. Because Li is easily stripped from digested electrodes or electrolyte in a one-step cation-exchange column, high-purity solutions reach the spectrometer in minutes. A streamlined MC-ICP-MS run yields a δ7LiLSVEC precision of 0.4 ‰, enabling dozens of battery fractions to be analyzed per day. Applying the workflow to LiCoO2 coin cells as models, sampled from pristine to 700 cycles, reveals a clear isotopic narrative. During the first ≈45 cycles, 7Li leaves the LiCoO2 lattice, dissolves into the electrolyte, and is locked in the SEI on graphite, driving cathode δ7Li from +8 to –10 ‰ and raising the anode to +13 ‰ while capacity drops by 10 %. After the interphase matures, the electric field takes over: the lighter 6Li migrates faster to the anode, 7Li accumulates in the contracting Li1-xCoO2 lattice, and the bulk separation factor rises to α≈1.045 by 700 cycles. The δ7Li curve flattens roughly 70 cycles before capacity falls to 80%, providing an early warning of end-of-life. Isotopic gradients scale linearly with impedance growth, SEI thickness, and crack density confirmed by LA-ICP-MS mapping, FIB-SEM, XANES, and EXAFS. Although each data point requires one cell, lithium-isotope fractionation provides direct, element-specific, and structural fatigue insight unavailable from non-destructive tests. The straightforward chemistry and fast MC-ICP-MS routine make the approach practical for targeted aging studies, additive screening, and forensic autopsies, complementing high-throughput electrochemical methods and supporting the design of longer-lived batteries. T2 - SciX 2025 CY - Covington, KY, USA DA - 05.10.2025 KW - Isotope KW - Lithium KW - MC-ICP-MS KW - MICAP-MS KW - Isotope fractionation KW - Battery PY - 2025 AN - OPUS4-64879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Data-Driven Spectrochemical Sensing for Elemental and Isotopic Analysis—from Energy Systems to Biomedicine N2 - High-resolution optical spectrometers generate spectra containing tens of thousands of data points per sample. Picometre-scale isotope shifts, matrix-induced line broadening, and strong inter-feature correlations render classical peak fitting unreliable. Current analytical challenges, therefore, require rigorous algorithms able to expose latent structure, quantify uncertainty, and remain chemically interpretable. The research program presented in this lecture integrates state-of-the-art spectrochemical instrumentation with mathematically disciplined data models. Principal Component Analysis and Partial Least Squares provide chemically meaningful latent variables, while gradient-boosted decision trees or deep neural networks (ANNDL) capture residual non-linearity without sacrificing traceability. All models are trained on isotope-enriched or synthetically generated spectra and distributed with full validation workflows. Two research areas illustrate this strategy: (1) Isotopic analytics for materials, environment, and medicine. (2) Data-fusion diagnostics for battery ageing and failure. T2 - Temple University: Mechanical Engineering Transformative Science and Technology Engineering Lecture Series CY - Philadelphia, PA, USA DA - 02.10.2025 KW - Isotope KW - Data analysis KW - Machine learning KW - Elemental analysis KW - Battery PY - 2025 AN - OPUS4-64877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meiers, Emelie A1 - Scholl, Juliane A1 - Droas, Morten A1 - Vogel, Christian A1 - Leube, Peter A1 - Sommerfeld, Thomas A1 - Bagheri, A. A1 - Adam, Christian A1 - Seubert, A. A1 - Koch, Matthias T1 - Development and evaluation of analytical strategies for the monitoring of per- and polyfluoroalkyl substances from lithium-ion battery recycling materials N2 - Per- and polyfluoroalkyl substances (PFAS) are well-known as “forever chemicals” and persistent pollutants released by different anthropogenic sources. The potential release of PFAS from accumulating electronic waste and lithium-ion battery (LIB) recycling activities has gained increasing attention in the past years. This creates a need for analytical methods tailored for the determination of PFAS out of environmental matrices related to the named activities or directly out of the concerned materials. In this work, analytical strategies for the monitoring of PFAS in LIB recycling materials were explored for a group of legacy perfluoro sulfonic- and carbonic acids (PFSA and PFCA) and of fluorinated sulfonylimides suspected to be LIB electrolyte ingredients. These analytical strategies comprehend PFAS target approaches with a herein optimized liquid chromatography tandem mass spectrometry (LC–MS/MS) method equipped with a HILIC (hydrophilic interaction liquid chromatography) column in combination with the TOP (total oxidizable precursor) assay and an adapted sample preparation method for high-matrix LIB recycling materials. The validated target method was applied to a set of LIB recycling materials: end-of-life batteries, black masses from hydrometallurgical recycling, and gas absorption solutions from thermal treatment of black masses as part of the recycling procedure. Investigation results show that the LIB industry can be connected to the release of both “LIB”-PFAS, such as the target sulfonylimides, and “already-legacy” PFAS, like the PFSA and PFCA. Especially, the presence of trifluoroacetic acid (TFA) as an emerging pollutant in every investigated LIB material type underlines the threat of PFAS emissions from LIB waste and recycling activities. KW - Per- and polyfluoroalkyl substances (PFAS) KW - Battery PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647015 DO - https://doi.org/10.1007/s00216-025-06165-8 SN - 1618-2642 VL - 417 SP - 6567 EP - 6583 PB - Springer Science and Business Media LLC AN - OPUS4-64701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Graeber, Gustav T1 - Using X -ray computed tomography to learn more about alkali -metal batteries: Trajectory towards operando analysis N2 - Here we discuss how X-ray computed tomography can be used to learn more about alkali-metal batteries. We show wetting phenomena in alkali-metal batteries, discuss various techniques to study them, and show our recent results obtained at DESY in Hamburg. T2 - Operando battery workshop at CSMB CY - Berlin, Germany DA - 17.09.2025 KW - Battery KW - X-ray computed tomography KW - Operando PY - 2025 AN - OPUS4-64468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baller, Johannes A1 - Hilger, André A1 - Qi, Naiyu A1 - Morini, Chiara A1 - Cornelio, Andrea A1 - Remhof, Arndt A1 - Osenberg, Markus A1 - Manke, Ingo A1 - Moosmann, Julian A1 - Beckmann, Felix A1 - Graeber, Gustav T1 - Wetting Interactions Between Porous Carbon Hosts and Liquid Sodium‐Potassium Alloys Toward Their Use in Negative Electrodes of Alkali‐Metal Batteries N2 - Batteries with liquid alkali‐metal negative electrodes offer a route to compact, high‐performance energy storage. Innovation in alkali‐metal management, i.e., controlled storage, release and transport of liquid alkali metal, can enable simpler and cheaper cell designs. Porous carbons have emerged as potential host materials for liquid alkali metals. Here, X‐ray computed tomography is used to study the wetting interactions between porous carbon hosts and liquid sodium‐potassium alloy (NaK) as a function of carbon host morphology and surface functionalization. While as‐received carbon samples show no affinity toward NaK, heat‐treated carbon is spontaneously infiltrated with NaK filling almost the entire pore volume. It is explored how forced wetting partially fills pores of NaK‐repellant hosts, showing large differences in pore filling based on the average pore size of the host material. In electrochemical discharge experiments, it is shown that both as‐received and heat‐treated carbon felt enable high areal capacities beyond 40 mAh cm−2. However, the heat‐treated carbon shows ten times lower overpotential. Finally, it is demonstrated how heat‐treated carbon felt can enable capillary transport of NaK. In summary, this study elucidates important aspects of the interactions between liquid alkali metals and porous carbon hosts, generating insights into possible applications in liquid alkali‐metal batteries. KW - Battery KW - Solid electrolyte KW - Sodium KW - Wetting PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644663 DO - https://doi.org/10.1002/adfm.202523169 SN - 1616-301X SP - 1 EP - 10 PB - Wiley VHC-Verlag AN - OPUS4-64466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sander, Luise T1 - Links Between Electrode Properties and Cell Performance in Commercial Sodium-Ion Batteries N2 - Our latest results of commercially purchased cylindrical sodium ion battery (SIB) cells will be presented. Two different cell types were dissasembled and thouroughly characterized on electrode as well as on material level. Both cell types comprise aluminum current collectors for anode and cathode, respectively. Furthermore, geometric electrode parameters, such as electrode size, thickness and loading, will be presented and linked to the electrical data-sheet values. Further in-depth characterization on material level revealed that both cathode active materials are composed of a cobalt free Ni-Mn-Fe-oxide. Interestingly, the cathode particles significantly differ in shape and size between the two cell types. Both anode active materials are graphite-free, and the particle structure points in both cases to a biomass-derived hard carbon material. Based on gas chromatography mesaurements coupled with mass spectrometry (GC-MS), both cell types utilize a mixture of carbonates as electrolyte, however, contain different conductive salts. Moreover, the measured, characteristic electrical features, e.g., capacity, Coulombic efficiency, and initial cycle life, will be discussed. Intriguingly, the cycling stability greatly differs between the cell types. Presumably, this behaviour can be mainly linked to the different morphology of the cathode active material. Overall, the work can give important insights in the composition and electrical behabiour of currently available SIB-cells. T2 - Sodium Battery Symposium (SBS-6) CY - Dresden, Germany DA - 03.09.2025 KW - Battery KW - Sodium-Ion-Battery KW - Electrochemical Energy Storage KW - Energy Storage PY - 2025 AN - OPUS4-64411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Graeber, Gustav T1 - Paste-like alkali-metal anodes in contact with solid electroytes N2 - Explaining the motivation of the BMFTR ANaBatt project. Presenting recent advances in alkali metal tensiometry and characterization of alkali-metal wetting in porous carbon materials via X-ray computed tomography. T2 - Sodium Battery Symposium 6 CY - Dresden, Germany DA - 03.09.2025 KW - Battery PY - 2025 AN - OPUS4-64070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Graeber, Gustav T1 - Paste-like interlayers in alkali-metal battery anodes N2 - Giving an introduction to high-temperature batteries with molten alkali-metal anodes and solid electroyltes. Presenting the research on alkali-metal tensiometry and the study about wetting interactions between liquid alkali-metal alloys and porous carbon hosts. T2 - AG Christina Roth Seminar CY - Bayreuth, Germany DA - 16.07.2025 KW - Battery PY - 2025 AN - OPUS4-64069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Analysis of fluorine/PFAS in battery black mass at HESEB N2 - Lithium iron phosphate (LiFePO4) batteries are a safe, cost-effective alternative to traditional lithium-ion batteries, but industrial-scale recycling is not yet available. The recycling process faces challenges, especially in purifying materials like lithium, phosphate, and iron, and managing fluorine contamination from fluoropolymers and salts (including PFAS). Fluorine K-edge XANES spectroscopy was used to analyze the chemical states of fluorine in the recycled materials for a safe reuse of elements and defluorination. T2 - SESAME – Germany Support and Networking Meeting CY - Hamburg, Germany DA - 30.06.2025 KW - Per- and polyfluoroalkyl substances (PFAS) KW - Battery PY - 2025 AN - OPUS4-63560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Data-Driven Spectrochemical Methods for Elemental and Isotopic Analysis N2 - High-resolution optical spectrometers generate spectra containing tens of thousands of data points per sample. Picometre-scale isotope shifts, matrix-induced line broadening, and strong inter-feature correlations render classical peak fitting unreliable. Current analytical challenges, therefore, require rigorous algorithms able to expose latent structure, quantify uncertainty, and remain chemically interpretable. The research program presented in this lecture integrates state-of-the-art spectrochemical instrumentation with mathematically disciplined data models. Principal Component Analysis and Partial Least Squares provide chemically meaningful latent variables, while gradient-boosted decision trees or deep neural networks (ANNDL) capture residual non-linearity without sacrificing traceability. All models are trained on isotope-enriched or synthetically generated spectra and distributed with full validation workflows. T2 - Chemisches Institutskolloquium, Humboldt-Universität zu Berlin CY - Berlin, Germany DA - 21.05.2025 KW - Spectrochemistry KW - Isotopes KW - Machine learning KW - Battery KW - Data fusion PY - 2025 AN - OPUS4-63488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Lithium isotope fractionation as a diagnostic tool for aging lithium-ion batteries N2 - Lithium-ion batteries (LIBs) are central to modern energy storage technologies, powering applications from portable electronics to electric vehicles and grid storage systems. Their popularity comes from their high energy density, efficiency, and extended cycle life. However, over time, various aging mechanisms lead to capacity loss, increased internal resistance, and, ultimately, battery failure. Understanding and predicting these aging processes is crucial for enhancing the reliability and longevity of LIBs. This necessity makes the development of advanced diagnostic tools essential. This study uses plasma-based spectrometry techniques to explore lithium isotope fractionation (LIF) as a predictive tool for monitoring LIB aging and degradation. Mass spectrometric techniques —including MC-ICP-MS, LA-ICP-MS, and MICAP-MS— were employed to analyze lithium isotopic composition in both new and aged lithium cobalt oxide (LCO) cells, including lab-made coin cells and commercial batteries. An isotopic fractionation was identified during electrochemical cycling: 6Li migrates towards the anode, while 7Li accumulates in the cathode. These isotopic patterns correlate with structural degradation, including solid electrolyte interphase (SEI) growth and crack formation, as confirmed by FIB-SEM, XANES, and EXAFS analyses. This correlation demonstrates that LIF aligns with key aging mechanisms in model coin cells and commercial batteries, such as capacity fade and impedance growth. LIF provides a powerful diagnostic tool for battery health monitoring and aging prediction by linking isotopic fractionation to structural degradation. This approach offers significant potential to extend battery lifespan and improve the reliability of energy storage systems. T2 - ANAKON 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Isotope KW - Lithium KW - Battery aging KW - Degradation KW - Fractionation KW - Battery PY - 2025 AN - OPUS4-63487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sander, Luise T1 - Linking Material and Electrode Properties to the Cell Performance of Two Types of Commercially Available SIBs N2 - As the first commercial sodium-ion-batteries (SIBs) are available for purchase, it is possible to investigate material composition. Gaining an insight into the material composition of these SIBs is of interest not only for the classification of possible safety risks and hazards, but also in regards to recycling. Herein we report the preliminary investigations of the chemical and structural composition of first commercial SIB-cells. Two different SIB-cell types were compared in terms of electrode size, thickness, loading etc. Furthermore, the composition of the active materials and electrolyte was investigated and compared. Finally, the gained results were linked to the different data sheet performance of the two cell types. T2 - WISPER - Women in Science Promoting Energy Research CY - London, UK DA - 21.05.2025 KW - Battery KW - Sodium-Ion-Battery KW - Electrochemical Energy Storage KW - Energy Storage PY - 2025 AN - OPUS4-63284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sander, Luise T1 - Commercially Available Sodium-Ion Cells: Links between Material and Electrode Properties and the electrochemical Performance N2 - As the first commercial sodium-ion-batteries (SIBs) are available for purchase, it is possible to investigate material composition. Gaining an insight into the material composition of these SIBs is of interest not only for the classification of possible safety risks and hazards, but also in regards to recycling. Herein we report the preliminary investigations of the chemical and structural composition of first commercial SIB-cells. Two different SIB-cell types were compared in terms of electrode size, thickness, loading etc. Furthermore, the composition of the active materials and electrolyte was investigated and compared. Finally, the gained results were linked to the different data sheet performance of the two cell types. T2 - MATSUS Conference 2025 CY - Sevilla, Spain DA - 03.03.2025 KW - Battery KW - Sodium-Ion-Battery KW - Electrochemical Energy Storage KW - Energy Storage PY - 2025 AN - OPUS4-62932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sander, Luise T1 - Linking Material and Electrode Properties to the Cell Performance of Commercially Available SIBs N2 - As the first commercial sodium-ion-batteries (SIBs) are available for purchase, it is possible to investigate material composition. Gaining an insight into the material composition of these SIBs is of interest not only for the classification of possible safety risks and hazards, but also in regards to recycling. Herein we report the preliminary investigations of the chemical and structural composition of first commercial SIB-cells.[1,2] Two different SIB-cell types were compared in terms of electrode size, thickness, loading etc. Furthermore, the composition of the active materials and electrolyte was investigated and compared. Finally, the gained results were linked to the different data sheet performance of the two cell types. T2 - Advanced Battery Power 2025 CY - Aachen, Germany DA - 01.04.2025 KW - Battery KW - Sodium-Ion-Battery KW - Electrochemical Energy Storage KW - Energy Storage PY - 2025 AN - OPUS4-62924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sander, Luise T1 - Comparison of Commercially Available SIBs: Linking Material and Electrode Properties to Cell Performance N2 - As the first commercial sodium-ion-batteries (SIBs) are available for purchase, it is possible to investigate material composition. Gaining an insight into the material composition of these SIBs is of interest not only for the classification of possible safety risks and hazards, but also in regards to recycling. Herein we report the preliminary investigations of the chemical and structural composition of first commercial SIB-cells. Two different SIB-cell types were compared in terms of electrode size, thickness, loading etc. Furthermore, the composition of the active materials and electrolyte was investigated and compared. Finally, the gained results were linked to the different data sheet performance of the two cell types. T2 - Batterieforum 2025 CY - Berlin, Germany DA - 21.01.2025 KW - Battery KW - Sodium-Ion-Battery KW - Electrochemical Energy Storage KW - Energy Storage PY - 2025 AN - OPUS4-62921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia T1 - Study of Age-Induced Isotope Fractionation in Lithium-ion Batteries using Microwave-Induced Cold Nitrogen Plasma Mass Spectrometry N2 - This study investigates the use of a microwave-induced cold nitrogen plasma ionization source, coupled with a single quadrupole mass analyzer, as a cost-effective alternative to multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) for analyzing lithium isotopic composition in lithium-ion batteries. The performance of both instruments was compared in measuring δ7Li values vs an isotopic standard in new and aged commercial lithium cobalt oxide (LCO) batteries. Results indicate that the microwave-induced ionization source, operating under cold plasma conditions at 800 W with an 8 mm torch depth position, achieves precision comparable to MC-ICP-MS, with δ7Li values ranging from 0.7 ‰ to 3.4 ‰. This method benefits from a dielectric resonator for uniform plasma, better ion velocity control, and higher energy efficiency [1-3]. Optimal settings were established as dwell times of 10 ms for 6Li and 1 ms for 7Li. The study found that 6Li migrates to the anode during multiple charge/discharge cycles, leading to the accumulation of 7Li at the cathode. This fractionation effect becomes more visible with repeated cycling. The microwave-induced ionization source offers a cost-effective and accurate alternative to MC-ICP-MS, with increased portability, facilitating further research into isotopic fractionation and aging of lithium-ion batteries. T2 - Adlershofer Forschungsforum 2024 CY - Berlin, Germany DA - 11.11.2024 KW - Cold nitrogen plasma KW - Lithium isotope KW - Battery PY - 2024 AN - OPUS4-62024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krug von Nidda, Jonas T1 - Separating Initial Loss from Storage Capacity: Core-Shell Materials as Advanced Anode Materials for Sodium Ion Batteries N2 - The current imperative to shift towards an energy grid equipped with sustainable energy storage solutions has caused a renewed interest in sodium-ion batteries (SIBs). Hard carbons (HCs) are a promising option high-capacity anode materials in SIBs. Nevertheless, their elevated capacities frequently come at the cost of experiencing substantial non-reversible initial capacity losses Commonly, significant losses are associated with irreversible reactions, such as the creation of the solid electrolyte interphase (SEI), that occur during the initial sodium insertion in HC-materials. Intriguingly, high values of irreversible capacity are often found for samples with experimentally determined low specific surface area.[1] A more comprehensive understanding of the structure-property relations is essential for quantifying and grasping the potential of hard carbon materials in sodium-ion batteries (SIBs). Thus, the objective is to employ analytical methods to establish a link between the structure and the electrochemical attributes of HC materials. This has been a challenge, partly due to the non-stoichiometric nature of the sodium storage mechanism and the disordered structure of HCs. To address the challenges mentioned above, our approach is to explore whether a core-shell structure can separate sodium storage and SEI-formation. This way, we can investigate and fine-tune storage capacity and irreversible losses, independently. The strategy involves the synthesis of various porous carbon structures to serve as the core material and their combination with sodium-conductive structures to core-shell materials. Herein, we will present different synthesis routes towards tailor-made carbon core materials. Moreover, different coatings concepts will be introduced, and the electrochemical performance of the core and core-shell materials compared. To elucidate the storage mechanism, the results of advanced analytical methods such as operando NMR and -SAXS will be presented. Generally, these core-shell anodes promise to enable high capacities accompanied with low irreversible losses due to optimized SEI-formation. T2 - Advanced Battery Power Conference 2024 CY - Münster, Germany DA - 10.04.2024 KW - Battery KW - Anode KW - Hard Carbon PY - 2024 AN - OPUS4-61968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lancaster, Shaun T. A1 - Sahlin, Eskil A1 - Oelze, Marcus A1 - Ostermann, Markus A1 - Vogl, Jochen A1 - Laperche, Valérie A1 - Touze, Solène A1 - Ghestem, Jean-Philippe A1 - Dalencourt, Claire A1 - Gendre, Régine A1 - Stammeier, Jessica A1 - Klein, Ole A1 - Pröfrock, Daniel A1 - Košarac, Gala A1 - Jotanovic, Aida A1 - Bergamaschi, Luigi A1 - Di Luzio, Marco A1 - D’Agostino, Giancarlo A1 - Jaćimović, Radojko A1 - Eberhard, Melissa A1 - Feiner, Laura A1 - Trimmel, Simone A1 - Rachetti, Alessandra A1 - Sara-Aho, Timo A1 - Roethke, Anita A1 - Michaliszyn, Lena A1 - Pramann, Axel A1 - Rienitz, Olaf A1 - Irrgeher, Johanna T1 - Evaluation of X-ray fluorescence for analysing critical elements in three electronic waste matrices: A comprehensive comparison of analytical techniques N2 - As the drive towards recycling electronic waste increases, demand for rapid and reliable analytical methodology to analyse the metal content of the waste is increasing, e.g. to assess the value of the waste and to decide the correct recycling routes. Here, we comprehensively assess the suitability of different x-ray fluorescence spectroscopy (XRF)-based techniques as rapid analytical tools for the determination of critical raw materials, such as Al, Ti, Mn, Fe, Co, Ni, Cu, Zn, Nb, Pd and Au, in three electronic waste matrices: printed circuit boards (PCB), light emitting diodes (LED), and lithium (Li)-ion batteries. As validated reference methods and materials to establish metrological traceability are lacking, several laboratories measured test samples of each matrix using XRF as well as other independent complementary techniques (instrumental neutron activation analysis (INAA), inductively coupled plasma mass spectrometry (ICP-MS) and ICP optical emission spectrometry (OES)) as an inter-laboratory comparison (ILC). Results highlighted key aspects of sample preparation, limits of detection, and spectral interferences that affect the reliability of XRF, while additionally highlighting that XRF can provide more reliable data for certain elements compared to digestion-based approaches followed by ICP-MS analysis (e.g. group 4 and 5 metals). A clear distinction was observed in data processing methodologies for wavelength dispersive XRF, highlighting that considering the metals present as elements (rather than oxides) induces overestimations of the mass fractions when compared to other techniques. Eventually, the effect of sample particle size was studied and indicated that smaller particle size (<200 μm) is essential for reliable determinations. KW - XRF KW - WEEE KW - PCB KW - Battery KW - LED KW - Recycling PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-614060 DO - https://doi.org/10.1016/j.wasman.2024.10.015 VL - 190 SP - 496 EP - 505 PB - Elsevier B.V. AN - OPUS4-61406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias T1 - Safety Aspects for Transport Containers with regard to Ageing and Battery Accident Scenarios N2 - In Germany, the search for a final repository for highly radioactive material is currently based on the assumption that interim storage will take considerably longer than was anticipated. At that time, authorization procedures assumed that interim storage would be brief, until the containment systems could be placed in a final repository. For today's new approvals and extensions, the IAEA (International Atomic Energy Agency) regulations for the transport of radioactive material require an assessment of all components and component groups with regard to ageing. To assess the safety requirements not only over the previously envisaged periods but also over long durations, numerous individual parts and component groups must be examined and evaluated for ageing and interactions between materials. The metal seals of a double lid sealing system, for example, are critical components that must be studied with respect to ageing. In a containment system for radioactive material, metal seals must not only undergo classic ageing, but also withstand mechanical influences and radiation over extended periods. In addition to assessments by the applicants, BAM must also independently analyze and evaluate these ageing mechanisms as part of its sovereign mandate. Another challenge in both new approvals and extensions is the assessment of transport regarding changes in the state of the art, which are not synchronously assessed in the regulations. In transporting radioactive material, a classic oil fire has been assumed in a hypothetical accident scenario from the development of the regulations to the present day. Due to the rapid development of propulsion technologies in recent years, such as battery or hydrogen-powered vehicles, investigations must be conducted in the revision process of the IAEA regulations to assess the impact of these new technologies on safety assessments. It is important for the member states of the IAEA to know whether new technologies are covered by the regulations or if changes are necessary to continue issuing international licenses. By focusing on batteries from the material to the cell to the module and the application, BAM contributes to the evaluation of batteries at every step of the chain. In addition to the safety of current and new battery technologies, BAM also endeavors to address issues of compositional trace and sustainable energy materials. T2 - MSD: Leaf CY - Livermore, CA , USA DA - 07.08.2024 KW - Safety Aspects KW - Ageing KW - Accident Scenarios KW - Battery PY - 2024 AN - OPUS4-60851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias T1 - Potential Effects of Battery and Hydrogen Fires regarding Regulatory Requirements N2 - Introduction and Necessity of the Investigation The IAEA regulations for the safe transport of radioactive material (IAEA SSR-6) define the safety requirements for different package types and consider different transport conditions. The accident conditions of transport specify different mechanical and thermal tests based on investigations of real accident scenarios. Considering the rapid development of new boundary conditions of transport such as electric mobility and the use of hydrogen as energy source for trucks and other kind of vehicles, potential effects of battery and hydrogen fires in transport accidents should be investigated. The aim is to evaluate the existing test requirements developed and derived decades ago, whether they are covering the current transport situation. This concept paper will briefly present the reasons for detailed investigations as bases for a coordinated research project under the roof of the IAEA. T2 - Technical Exchange IRSN – BAM Transport & Storage of Packages for Radioactive Material CY - Berlin, Germany DA - 04.06.2024 KW - Fire KW - Battery KW - Hydrogen KW - IAEA Regulations PY - 2024 AN - OPUS4-60338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - What does GD-OES reveal about the aging and manufacturing processes of lithium-ion batteries? N2 - Glow-Discharge Optical Emission Spectroscopy (GD-OES), a powerful analytical technique, sheds light on the two critical aspects of lithium-ion batteries (LIBs): manufacturing and aging 1, 2. We optimized cell production in manufacturing by adjusting parameters, including cathode doping, electrolyte concentration, and pressing force. GD-OES provided in-depth elemental composition and homogeneity analysis, which is crucial for identifying optimal manufacturing conditions. These findings were validated by electrochemical impedance spectroscopy, confirming the quality of the manufactured batteries. Shifting the focus to aging, we use GD-OES for fluorine depth profiling, a key element in understanding polymer and electrolyte degradation. However, fluorine presents analytical challenges. We addressed this by substituting argon with a neon:argon mixture, which significantly enhanced fluorine detection sensitivity. This advancement not only improves accuracy but also holds the potential to guide sustainable and cost-efficient manufacturing strategies. Through its versatility, GD-OES has proven to be a powerful tool for not only optimizing LIB manufacturing processes but also gaining deeper insights into their aging mechanisms. This research extends beyond academic interest, offering tangible benefits for the industry by translating into improved battery quality, extended lifespan, and overall performance. T2 - The 6th International Glow Discharge Spectroscopy Symposium CY - Liverpool, United Kingdom DA - 21.04.2024 KW - GD-OES KW - Depth profiles KW - Lithium KW - Battery KW - Fluorine KW - Aging KW - Manufacturing KW - Glow-discharge PY - 2024 AN - OPUS4-59945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia T1 - High-resolution absorption isotopic spectrometry as a tool for aging studies of Li-ion batteries N2 - Lithium (Li) is the key element in the manufacturing of batteries. Isotopic study of Li may help to identify the causes of battery aging due to isotopic fractionation during charge/discharge cycles. Isotopic ratio determination is based on monitoring the isotopic components of lithium by their spin-orbit coupling and its isotopic shift of about 15 pm for the 22P←22S electronic transition around 670.788 nm. In this work, we propose improvements to our previous work [1] by using a higher-resolution double echelle modular spectrometer (HR-DEMON II) coupled to a continuum source graphite furnace atomic absorption spectrometer (HR-CS-GF-AAS) for the isotopic analysis of Li. The data analysis was carried out by using a decision-tree-based ensemble machine learning (ML) algorithm (XGBoost). A set of samples with 6Li isotope amount fractions ranging from 0.0004 to 0.99 mol mol-1 was used for the algorithm's training. Subsequently, the procedure was validated by a set of stock chemicals (Li2CO3, LiNO3, LiCl, and LiOH) and a BAM candidate reference material, a cathode material (NMC111). Finally, the ML model was applied to determine the isotope ratio of geological samples, including anorthosite, granite, soil, rhyolite, nepheline syenite, and basalt and battery samples. These samples were measured as digested without any further purification step. Improvements in the optical resolution resolve the lithium isotopic components of the atomic spectra. In the studied geological samples, were found δ7Li values between -0.5 and 4.5 ‰ with a precision range of 1 to 2 ‰. In addition, the proposed method was validated with multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), and these results are comparable and compatible. T2 - Caltech-BAM Meeting CY - Online meeting DA - 10.08.2022 KW - Lithium isotope KW - Machine learning KW - Battery KW - High-resolution absorption isotopic spectrometry PY - 2022 AN - OPUS4-56380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia T1 - What we need to know about lithium isotopes in batteries N2 - Flash talk presentation about the relevance of lithium in our lives and its influence on the battery aging process. T2 - Make and Measure Conference SALSA CY - Berlin, Germany DA - 15.09.2022 KW - Lithium isotope KW - Battery KW - Spectroscopy PY - 2022 AN - OPUS4-56360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Amano, K. A1 - Hahn, S. A1 - Tschirschwitz, Rico A1 - Rappsilber, Tim A1 - Krause, U. T1 - An Experimental Investigation of Thermal Runaway and Gas Release of NMC Lithium-Ion Pouch Batteries Depending on the State of Charge Level N2 - In this study, 19 experiments were conducted with 25 pouch cells of NMC cathode to investigate thermal runaway and the release of gases from lithium-ion batteries (LIBs). Single cells, double cells, and a four-cell battery stack were forced to undergo thermal runaway inside an air-tight reactor vessel with a volume of 100 dm3 . The study involved two series of tests with two types of ignition sources. In the Series 1 tests, a heating plug was used to initiate thermal runaway in LIBs in the ranges of 80–89% and 90–100% SOC. In the Series 2 tests, a heating plate was used to trigger thermal runaway in LIBs in the ranges of 30–50%, 80–89%, and 90–100% SOC. Thermal runaway started at an onset temperature of 344 ± 5 K and 345 K for the Series 1 tests and from 393 ± 36 K to 487 ± 10 K for the Series 2 tests. Peak reaction temperatures ranged between 642 K and 1184 K, while the maximum pressures observed were between 1.2 bar and 7.28 bar. Thermal runaway induced explosion of the cells and lead to a rate of temperature increase greater than 10 K/s. The amounts of gases released from the LIBs were calculated from pressures and temperatures measured in the reactor. Then, the gas composition was analyzed using a Fourier transform infrared (FTIR) spectrometer. The highest gaseous production was achieved at a range of 90–100% SOC and higher battery capacities 72 L, 1.8 L/Ah (Series 1, battery stack) and 103 L, 3.2 L/Ah (Series 2, 32 Ah cell)). Among the gases analyzed, the concentration of gaseous emissions such as C2H4 , CH4 , and C2H6 increased at a higher cell capacity in both series of tests. The study results revealed characteristic variations of thermal behavior with respect to the type of ignition source used. KW - Lithium-ion batteries KW - Battery KW - Pouch cell KW - NMC Cathode KW - Thermal runaways PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548601 DO - https://doi.org/10.3390/batteries8050041 VL - 8 IS - 5 SP - 1 EP - 16 PB - MDPI CY - Basel, Switzerland AN - OPUS4-54860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia T1 - Atomic absorption spectrometry with machine learning as a tool for lithium isotope analysis N2 - The general interest in the implementation of renewable energies, particularly in the development of lithium-ion batteries, makes lithium a key element to be analyzed. We are working to develop this tool to determine if the isotopic effect of lithium has an impact on battery aging. T2 - SALSA Konferenz CY - Berlin, Germany DA - 16.09.2021 KW - Atomic absorption spectrometry KW - Battery KW - Machine learning KW - Lithium KW - Isotope PY - 2021 AN - OPUS4-53693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Amano, K.O.A. A1 - Hahn, S.-K. A1 - Tschirschwitz, Rico A1 - Rappsilber, Tim A1 - Krause, U. T1 - Experimental Investigation on Explosion Pressure Characteristics of Lithium-based (NMC) Pouch Batteries during Thermal Runaway N2 - Lithium ion batteries (LIBs) are prone to spontaneous and subsequent fire or explosion resulting from thermal runaway. The vented gases are not only toxic and flammable, their emission can also raise the surrounding pressure rapidly. In this study, characteristic variations of explosion pressure rise, rate of explosion pressure rise and 𝐾(sT)-value have been evaluated. The characteristic 𝐾(𝑠𝑇)-values were determined to evaluate the explosive behavior of LIBs during thermal runaway. The estimated values were compared to that of other explosive substances. T2 - Batterieforum Deutschland 2021 CY - Online meeting DA - 20.01.2021 KW - Pressure KW - Lithium KW - Thermal Runaway KW - Battery KW - Pouch PY - 2021 AN - OPUS4-52033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fittschen, U.E.A. A1 - Möckel, R. A1 - Schreiner, M. A1 - klinger, M. A1 - Radtke, Martin A1 - Meyer, B. A1 - Guhl, S. A1 - Renno, A. A1 - Godinho, J. A1 - Gloaguen, R. A1 - Gutzmer, J. T1 - Bundling analytical capacities to understand phase formation in recycling of functional materials N2 - Transitioning from combustion engine-driven transportation to e-mobility demands a paradigm shift – from a system geared to maximize energy efficiency (i.e. fuel consumption) to a system that may be constrained by the availability of high technology (critical) metals required for electrical energy storage systems and drives. In the wake of these developments efforts in securing new resources of these metals from recycling of end-of-life products are increasing steadily. Recycling of Li-Ion batteries has recently been evaluated. The results pinpoint to a critical need for understanding slag Formation and its dependence on metal components like Mn under extreme conditions. This will allow researchers to predict optimal Operation setting and to react quickly to changing market demands (which may be Li or Co at one point but may also shift to Ni or rare earth elements (REE)). The long-term goal is to control the formation of specific phases in slags allowing for a Maximum yield of elements of interest and optimal recovery in the separation processes that follows. The combination of data on the physical micro structure and local chemistry of the multi-Phase products during and after processing will help to understand and derive thermodynamic and kinetic data on its formation. In this paper we are giving an overview on the analytical challenges and approaches to provide robust data on local element concentration and species (especially Mn which is a common component of next generation Li-ion batteries cathodes), spanning the dimensions from the nanometer scale to the bulk material. The complementary interactions of X-rays and electrons make them ideal probes to collect Interface and “in-depth” information. Before- and -after studies as well as in situ structural changes and Phase (trans)formation, changes in elemental and elemental species (e.g. oxidation state) distribution may be tracked by X-ray diffraction (XRD), X-ray fluorescence microscopy and X-ray Absorption spectroscopy. The application of such advanced analytical tools will not only provide essential clues during early lab-based experiments towards the development of new recycling technologies, but may also be deployed for on-line and in-line monitoring of industrial processes. KW - Synchrotron KW - XANES KW - Slags KW - Battery PY - 2019 DO - https://doi.org/10.4028/www.scientific.net/MSF.959.183 SN - 1662-9752 VL - 959 SP - 183 EP - 190 PB - Trans Tech Publ. AN - OPUS4-48900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian A1 - Radant, Hendrik A1 - Kohlmeyer, R. T1 - Survey of mercury, cadmium and lead content of household batteries N2 - The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels. KW - Lead KW - Mercury KW - Cadmium KW - Heavy metal KW - Battery KW - Analysis KW - Mono-cell KW - Zinc-carbon KW - Zinc chloride KW - Alkaline-manganese KW - Lithium KW - Button cell KW - Lithium-ion accumulator KW - Batteries Act KW - EU Batteries Directive PY - 2014 DO - https://doi.org/10.1016/j.wasman.2013.09.024 SN - 0956-053X VL - 34 IS - 1 SP - 156 EP - 161 PB - Pergamon Press CY - New York, NY AN - OPUS4-29727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian A1 - Richter, A. A1 - Richter, Silke T1 - Investigation on the heavy metal content of zinc-carbon and alkaline manganese dry cells N2 - The objective of this work was to test the compliance of commercially available batteries with the German Battery Ordinance, a project of the German government that was initiated by the Federal Environment Agency. Different types of commercially available dry cells were analysed for their cadmium, lead and mercury contents. The dry cells underwent mechanical pre-treatment, separation of the different components and microwave-assisted digestion before determination of the heavy metals. Mercury is sometimes added to prevent the generation of gaseous hydrogen from the electrochemical process. Lead could be present since it is sometimes used as an alloying element of zinc. Cadmium has no technical importance and is an undesirable impurity. None of the batteries contained higher heavy metal mass fractions than the permissible limits. KW - Lead KW - Mercury KW - Cadmium KW - Battery KW - Analysis KW - Dry cell KW - Zinc-carbon KW - Alkaline manganese KW - German Battery Ordinance PY - 2009 DO - https://doi.org/10.1016/j.wasman.2008.06.042 SN - 0956-053X VL - 29 IS - 3 SP - 1213 EP - 1217 PB - Pergamon Press CY - New York, NY AN - OPUS4-18572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Recknagel, Sebastian A1 - Richter, Andrea T1 - Survey of Heavy Metal Content of Batteries - Analysis of Representative Samples of Customary Batteries and Batteries Sold in Appliances - Preparation of a Sampling Plan, Purchase of Samples and Analysis (Hg, Pb, Cd) - Forschungsprojekt im Auftrag des Umweltbundesamtes, FuE-Vorhaben, Förderkennzeichen 205 35 312 N2 - The aim of the project was to describe the situation concerning the compliance with the existing limits for heavy metal content in commercially available batteries in Germany on the basis of a representative sample. The allowed limits which not have to be exceeded are: 5 ppm of mercury (Hg; button cells: 20000 ppm Hg), 250 ppm of cadmium (Cd) and 4000 ppm of lead (Pb). Several batteries of different size such as „AA“ batteries (alkaline/manganese, zinc/carbon), „D“ batteries (alkaline/manganese, zinc/carbon) and button cells of different chemical systems (zinc-air; lithium; alkaline/manganese, silver oxide) were analysed for cadmium, lead and mercury. The test batteries came from different producers and were bought on different places in Germany. From each battery type two specimen were investigated, in total 294 samples. Following a sampling plan the batteries were purchased in four regions in Germany by retail, by mail order or on flew markets. Different strategies for the analysis of „AA“ and „D“ batteries (alkaline/manganese, zinc/carbon) and for button cells (alkaline/manganese, zinc-air, lithium, silver oxide) were developed. Button cells were dissolved completely whenever possible. From the bigger types only subspecimens were analysed after mechanical destruction. Button cells and the subspecimens of the bigger batteries were decomposed with acid in a microwave oven. For the analysis of the heavy metals ICP-MS, ICP OES and an automatic mercury analyser were used depending on the content of the interesting element. Some graphite parts from zinc/carbon batteries were analysed using solid sampling ICP OES. The result of the study was that only two of 147 batteries had Hg-contents slightly higher than the limit of 2 %. Pb- and Cd-contents were below the limits for all batteries investigated. The two batteries with higher Hg-contents were both zinc-air button cells declared by the manufacturer to be mercury-free. Differences between batteries of the same kind and producer purchased at different places or between batteries of different size but same producer and same chemical system could not be detected. KW - Zinc-air KW - Lithium KW - Silver oxide KW - Alkaline/manganese KW - Zinc/Carbon KW - Button cell KW - Battery KW - Determination of heavy metals KW - Cadmium KW - Lead KW - Mercury PY - 2007 UR - http://www.umweltbundesamt.de/publikationen/survey-of-heavy-metal-content-of-batteries SP - 1 EP - 68 PB - Umweltbundesamt CY - Dessau-Roßlau AN - OPUS4-16680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -