TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Winckelmann, Alexander A1 - Hoffmann, Volker A1 - You, Zengchao A1 - Richter, Silke A1 - Recknagel, Sebastian T1 - What does GD-OES reveal about the aging and manufacturing processes of lithium-ion batteries? N2 - Glow-Discharge Optical Emission Spectroscopy (GD-OES), a powerful analytical technique, sheds light on the two critical aspects of lithium-ion batteries (LIBs): manufacturing and aging 1, 2. We optimized cell production in manufacturing by adjusting parameters, including cathode doping, electrolyte concentration, and pressing force. GD-OES provided in-depth elemental composition and homogeneity analysis, which is crucial for identifying optimal manufacturing conditions. These findings were validated by electrochemical impedance spectroscopy, confirming the quality of the manufactured batteries. Shifting the focus to aging, we use GD-OES for fluorine depth profiling, a key element in understanding polymer and electrolyte degradation. However, fluorine presents analytical challenges. We addressed this by substituting argon with a neon:argon mixture, which significantly enhanced fluorine detection sensitivity. This advancement not only improves accuracy but also holds the potential to guide sustainable and cost-efficient manufacturing strategies. Through its versatility, GD-OES has proven to be a powerful tool for not only optimizing LIB manufacturing processes but also gaining deeper insights into their aging mechanisms. This research extends beyond academic interest, offering tangible benefits for the industry by translating into improved battery quality, extended lifespan, and overall performance. T2 - The 6th International Glow Discharge Spectroscopy Symposium CY - Liverpool, United Kingdom DA - 21.04.2024 KW - GD-OES KW - Depth profiles KW - Lithium KW - Battery KW - Fluorine KW - Aging KW - Manufacturing KW - Glow-discharge PY - 2024 AN - OPUS4-59945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia A1 - Winckelmann, Alexander A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Jacobsen, Lars A1 - Frick, Daniel A1 - Schmidt, Anita A1 - Leonhardt, Robert A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - High-resolution absorption isotopic spectrometry as a tool for aging studies of Li-ion batteries N2 - Lithium (Li) is the key element in the manufacturing of batteries. Isotopic study of Li may help to identify the causes of battery aging due to isotopic fractionation during charge/discharge cycles. Isotopic ratio determination is based on monitoring the isotopic components of lithium by their spin-orbit coupling and its isotopic shift of about 15 pm for the 22P←22S electronic transition around 670.788 nm. In this work, we propose improvements to our previous work [1] by using a higher-resolution double echelle modular spectrometer (HR-DEMON II) coupled to a continuum source graphite furnace atomic absorption spectrometer (HR-CS-GF-AAS) for the isotopic analysis of Li. The data analysis was carried out by using a decision-tree-based ensemble machine learning (ML) algorithm (XGBoost). A set of samples with 6Li isotope amount fractions ranging from 0.0004 to 0.99 mol mol-1 was used for the algorithm's training. Subsequently, the procedure was validated by a set of stock chemicals (Li2CO3, LiNO3, LiCl, and LiOH) and a BAM candidate reference material, a cathode material (NMC111). Finally, the ML model was applied to determine the isotope ratio of geological samples, including anorthosite, granite, soil, rhyolite, nepheline syenite, and basalt and battery samples. These samples were measured as digested without any further purification step. Improvements in the optical resolution resolve the lithium isotopic components of the atomic spectra. In the studied geological samples, were found δ7Li values between -0.5 and 4.5 ‰ with a precision range of 1 to 2 ‰. In addition, the proposed method was validated with multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), and these results are comparable and compatible. T2 - Caltech-BAM Meeting CY - Online meeting DA - 10.08.2022 KW - Lithium isotope KW - Machine learning KW - Battery KW - High-resolution absorption isotopic spectrometry PY - 2022 AN - OPUS4-56380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia A1 - Winckelmann, Alexander A1 - Abad Andrade, Carlos Enrique A1 - Recknagel, Sebastian A1 - Richter, Silke A1 - Panne, Ulrich T1 - What we need to know about lithium isotopes in batteries N2 - Flash talk presentation about the relevance of lithium in our lives and its influence on the battery aging process. T2 - Make and Measure Conference SALSA CY - Berlin, Germany DA - 15.09.2022 KW - Lithium isotope KW - Battery KW - Spectroscopy PY - 2022 AN - OPUS4-56360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Amano, K. A1 - Hahn, S. A1 - Tschirschwitz, Rico A1 - Rappsilber, Tim A1 - Krause, U. T1 - An Experimental Investigation of Thermal Runaway and Gas Release of NMC Lithium-Ion Pouch Batteries Depending on the State of Charge Level JF - Batteries 2022 N2 - In this study, 19 experiments were conducted with 25 pouch cells of NMC cathode to investigate thermal runaway and the release of gases from lithium-ion batteries (LIBs). Single cells, double cells, and a four-cell battery stack were forced to undergo thermal runaway inside an air-tight reactor vessel with a volume of 100 dm3 . The study involved two series of tests with two types of ignition sources. In the Series 1 tests, a heating plug was used to initiate thermal runaway in LIBs in the ranges of 80–89% and 90–100% SOC. In the Series 2 tests, a heating plate was used to trigger thermal runaway in LIBs in the ranges of 30–50%, 80–89%, and 90–100% SOC. Thermal runaway started at an onset temperature of 344 ± 5 K and 345 K for the Series 1 tests and from 393 ± 36 K to 487 ± 10 K for the Series 2 tests. Peak reaction temperatures ranged between 642 K and 1184 K, while the maximum pressures observed were between 1.2 bar and 7.28 bar. Thermal runaway induced explosion of the cells and lead to a rate of temperature increase greater than 10 K/s. The amounts of gases released from the LIBs were calculated from pressures and temperatures measured in the reactor. Then, the gas composition was analyzed using a Fourier transform infrared (FTIR) spectrometer. The highest gaseous production was achieved at a range of 90–100% SOC and higher battery capacities 72 L, 1.8 L/Ah (Series 1, battery stack) and 103 L, 3.2 L/Ah (Series 2, 32 Ah cell)). Among the gases analyzed, the concentration of gaseous emissions such as C2H4 , CH4 , and C2H6 increased at a higher cell capacity in both series of tests. The study results revealed characteristic variations of thermal behavior with respect to the type of ignition source used. KW - Lithium-ion batteries KW - Battery KW - Pouch cell KW - NMC Cathode KW - Thermal runaways PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548601 DO - https://doi.org/10.3390/batteries8050041 VL - 8 IS - 5 SP - 1 EP - 16 PB - MDPI CY - Basel, Switzerland AN - OPUS4-54860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia A1 - Winckelmann, Alexander A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Riedel, Jens A1 - Vogl, Jochen A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - Atomic absorption spectrometry with machine learning as a tool for lithium isotope analysis N2 - The general interest in the implementation of renewable energies, particularly in the development of lithium-ion batteries, makes lithium a key element to be analyzed. We are working to develop this tool to determine if the isotopic effect of lithium has an impact on battery aging. T2 - SALSA Konferenz CY - Berlin, Germany DA - 16.09.2021 KW - Atomic absorption spectrometry KW - Battery KW - Machine learning KW - Lithium KW - Isotope PY - 2021 AN - OPUS4-53693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Amano, K.O.A. A1 - Hahn, S.-K. A1 - Tschirschwitz, Rico A1 - Rappsilber, Tim A1 - Krause, U. T1 - Experimental Investigation on Explosion Pressure Characteristics of Lithium-based (NMC) Pouch Batteries during Thermal Runaway N2 - Lithium ion batteries (LIBs) are prone to spontaneous and subsequent fire or explosion resulting from thermal runaway. The vented gases are not only toxic and flammable, their emission can also raise the surrounding pressure rapidly. In this study, characteristic variations of explosion pressure rise, rate of explosion pressure rise and 𝐾(sT)-value have been evaluated. The characteristic 𝐾(𝑠𝑇)-values were determined to evaluate the explosive behavior of LIBs during thermal runaway. The estimated values were compared to that of other explosive substances. T2 - Batterieforum Deutschland 2021 CY - Online meeting DA - 20.01.2021 KW - Pressure KW - Lithium KW - Thermal Runaway KW - Battery KW - Pouch PY - 2021 AN - OPUS4-52033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fittschen, U.E.A. A1 - Möckel, R. A1 - Schreiner, M. A1 - klinger, M. A1 - Radtke, Martin A1 - Meyer, B. A1 - Guhl, S. A1 - Renno, A. A1 - Godinho, J. A1 - Gloaguen, R. A1 - Gutzmer, J. T1 - Bundling analytical capacities to understand phase formation in recycling of functional materials JF - Materials Science Forum N2 - Transitioning from combustion engine-driven transportation to e-mobility demands a paradigm shift – from a system geared to maximize energy efficiency (i.e. fuel consumption) to a system that may be constrained by the availability of high technology (critical) metals required for electrical energy storage systems and drives. In the wake of these developments efforts in securing new resources of these metals from recycling of end-of-life products are increasing steadily. Recycling of Li-Ion batteries has recently been evaluated. The results pinpoint to a critical need for understanding slag Formation and its dependence on metal components like Mn under extreme conditions. This will allow researchers to predict optimal Operation setting and to react quickly to changing market demands (which may be Li or Co at one point but may also shift to Ni or rare earth elements (REE)). The long-term goal is to control the formation of specific phases in slags allowing for a Maximum yield of elements of interest and optimal recovery in the separation processes that follows. The combination of data on the physical micro structure and local chemistry of the multi-Phase products during and after processing will help to understand and derive thermodynamic and kinetic data on its formation. In this paper we are giving an overview on the analytical challenges and approaches to provide robust data on local element concentration and species (especially Mn which is a common component of next generation Li-ion batteries cathodes), spanning the dimensions from the nanometer scale to the bulk material. The complementary interactions of X-rays and electrons make them ideal probes to collect Interface and “in-depth” information. Before- and -after studies as well as in situ structural changes and Phase (trans)formation, changes in elemental and elemental species (e.g. oxidation state) distribution may be tracked by X-ray diffraction (XRD), X-ray fluorescence microscopy and X-ray Absorption spectroscopy. The application of such advanced analytical tools will not only provide essential clues during early lab-based experiments towards the development of new recycling technologies, but may also be deployed for on-line and in-line monitoring of industrial processes. KW - Synchrotron KW - XANES KW - Slags KW - Battery PY - 2019 DO - https://doi.org/10.4028/www.scientific.net/MSF.959.183 SN - 1662-9752 VL - 959 SP - 183 EP - 190 PB - Trans Tech Publ. AN - OPUS4-48900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian A1 - Radant, Hendrik A1 - Kohlmeyer, R. T1 - Survey of mercury, cadmium and lead content of household batteries JF - Waste management N2 - The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels. KW - Lead KW - Mercury KW - Cadmium KW - Heavy metal KW - Battery KW - Analysis KW - Mono-cell KW - Zinc-carbon KW - Zinc chloride KW - Alkaline-manganese KW - Lithium KW - Button cell KW - Lithium-ion accumulator KW - Batteries Act KW - EU Batteries Directive PY - 2014 DO - https://doi.org/10.1016/j.wasman.2013.09.024 SN - 0956-053X VL - 34 IS - 1 SP - 156 EP - 161 PB - Pergamon Press CY - New York, NY AN - OPUS4-29727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Recknagel, Sebastian A1 - Richter, A. A1 - Richter, Silke T1 - Investigation on the heavy metal content of zinc-carbon and alkaline manganese dry cells JF - Waste management N2 - The objective of this work was to test the compliance of commercially available batteries with the German Battery Ordinance, a project of the German government that was initiated by the Federal Environment Agency. Different types of commercially available dry cells were analysed for their cadmium, lead and mercury contents. The dry cells underwent mechanical pre-treatment, separation of the different components and microwave-assisted digestion before determination of the heavy metals. Mercury is sometimes added to prevent the generation of gaseous hydrogen from the electrochemical process. Lead could be present since it is sometimes used as an alloying element of zinc. Cadmium has no technical importance and is an undesirable impurity. None of the batteries contained higher heavy metal mass fractions than the permissible limits. KW - Lead KW - Mercury KW - Cadmium KW - Battery KW - Analysis KW - Dry cell KW - Zinc-carbon KW - Alkaline manganese KW - German Battery Ordinance PY - 2009 DO - https://doi.org/10.1016/j.wasman.2008.06.042 SN - 0956-053X VL - 29 IS - 3 SP - 1213 EP - 1217 PB - Pergamon Press CY - New York, NY AN - OPUS4-18572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Recknagel, Sebastian A1 - Richter, Andrea T1 - Survey of Heavy Metal Content of Batteries - Analysis of Representative Samples of Customary Batteries and Batteries Sold in Appliances - Preparation of a Sampling Plan, Purchase of Samples and Analysis (Hg, Pb, Cd) - Forschungsprojekt im Auftrag des Umweltbundesamtes, FuE-Vorhaben, Förderkennzeichen 205 35 312 N2 - The aim of the project was to describe the situation concerning the compliance with the existing limits for heavy metal content in commercially available batteries in Germany on the basis of a representative sample. The allowed limits which not have to be exceeded are: 5 ppm of mercury (Hg; button cells: 20000 ppm Hg), 250 ppm of cadmium (Cd) and 4000 ppm of lead (Pb). Several batteries of different size such as „AA“ batteries (alkaline/manganese, zinc/carbon), „D“ batteries (alkaline/manganese, zinc/carbon) and button cells of different chemical systems (zinc-air; lithium; alkaline/manganese, silver oxide) were analysed for cadmium, lead and mercury. The test batteries came from different producers and were bought on different places in Germany. From each battery type two specimen were investigated, in total 294 samples. Following a sampling plan the batteries were purchased in four regions in Germany by retail, by mail order or on flew markets. Different strategies for the analysis of „AA“ and „D“ batteries (alkaline/manganese, zinc/carbon) and for button cells (alkaline/manganese, zinc-air, lithium, silver oxide) were developed. Button cells were dissolved completely whenever possible. From the bigger types only subspecimens were analysed after mechanical destruction. Button cells and the subspecimens of the bigger batteries were decomposed with acid in a microwave oven. For the analysis of the heavy metals ICP-MS, ICP OES and an automatic mercury analyser were used depending on the content of the interesting element. Some graphite parts from zinc/carbon batteries were analysed using solid sampling ICP OES. The result of the study was that only two of 147 batteries had Hg-contents slightly higher than the limit of 2 %. Pb- and Cd-contents were below the limits for all batteries investigated. The two batteries with higher Hg-contents were both zinc-air button cells declared by the manufacturer to be mercury-free. Differences between batteries of the same kind and producer purchased at different places or between batteries of different size but same producer and same chemical system could not be detected. KW - Zinc-air KW - Lithium KW - Silver oxide KW - Alkaline/manganese KW - Zinc/Carbon KW - Button cell KW - Battery KW - Determination of heavy metals KW - Cadmium KW - Lead KW - Mercury PY - 2007 UR - http://www.umweltbundesamt.de/publikationen/survey-of-heavy-metal-content-of-batteries SP - 1 EP - 68 PB - Umweltbundesamt CY - Dessau-Roßlau AN - OPUS4-16680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -