TY - CONF A1 - Hönig, D. A1 - Schneider, S. A1 - Domnick, R. A1 - Belzner, M. A1 - Beck, Uwe A1 - Hertwig, Andreas A1 - Stephanowitz, Ralph A1 - Weise, Matthias T1 - Optical layer systems for product authentication: interference, scattering, light diffusion and ellipsometric encoding as public, hidden and forensic security features T2 - PSE 2012 - 13th International conference on plasma surface engineering N2 - Embedding of information on surfaces is state of the art for identification testing in which public, hidden and forensic features are used. In many instances, the legal authentication of a product, a material or a document is required. Among the surface-based encoded labels, bar codes and data matrices are most frequently applied. They are publicly visible. The material itself is irrelevant, only a sufficient optical contrast is required. However, a strong material dependence of the label can be achieved by means of Fabry-Perot layer stacks. Stack designs are described with regard to all three security levels: public features (e.g. color and tilt effect) perceptible by the human eye, hidden features (e.g. optical response in a given spectral range) detectable by commonly available instruments and forensic features (ellipsometric quantities Ψ and Δ as a function of wavelength λ and angle of incidence AOI) only detectable by sophisticated instruments. Regarding material-correlated authentication, ellipsometric quantities Ψ and Δ are used as encoded forensic features for the first time. Hence, Fabry-Perot layer stacks as information carriers in combination with imaging ellipsometry as optical read-out system provide all-in-one anti-counterfeiting capabilities. T2 - PSE 2012 - 13th International conference on plasma surface engineering CY - Garmisch-Partenkirchen, Germany DA - 10.09.2012 KW - Fabry-Perot layers KW - Ellipsometry KW - Anti-counterfeiting PY - 2012 UR - http://www.pse-conferences.net/tl_files/pse2012/abstractupload/PSE2012-PO1001-ext.pdf SP - 1 EP - 4 AN - OPUS4-27304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -