TY - JOUR A1 - Schröpfer, Dirk A1 - Witte, Julien A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Stresses in repair welding of high-strength steels—part 1: restraint and cold cracking risk N2 - AbstractThe sustainable and resource-efficient production of wind energy plants requires the use of modern high-strength fine-grain structural steels. This applies to both foundation and erection structures, like mobile or ship cranes. During the assembly of steel structures, unacceptable defects can occasionally be found in the weld area. In most cases, the economical solution would be local thermal gouging of the affected areas and re-welding. Due to the high shrinkage restraint of the joint groove in the overall structure, the superposition of global and local welding-induced stresses may lead to crack formation and component failure, particularly in interaction with the degradation of the microstructure and mechanical properties of high-strength steels during the repair process. However, manufacturers hardly have any information about these issues and there is a lack of recommendations and guidelines to take these safety-relevant aspects into account in adequate repair concepts. The aim of this research is to derive recommendations for repair concepts appropriate to the stresses and materials involved providing a basis for standards and guidelines to avoid cold cracking, damage and expensive reworking especially for high-strength steels. Part 1 of this study involves systematic investigations of influences of shrinkage restraint during repair welding of two high-strength steels S500MLO for offshore application and S960QL for mobile crane structures. The quantification of the shrinkage restraint of repair weld joints was achieved by means of experimental and numerical restraint intensity analysis. In welding experiments with self-restrained slot specimens, restraint intensity and introduction of hydrogen via the welding arc using anti spatter spray were varied systematically to analyse the effect on welding result, residual stresses and cold cracking. It could be shown that increasing restraint intensities result in significantly higher transverse residual stress levels. In the case of hydrogen introduction S500MLO showed no cold cracking independent of the restraint conditions. However, S960QL was found to be considerably cold cracking sensitive if hydrogen is introduced. With increasing restraint intensity length and number of cold cracks increases significantly. Part 2 [1] of this study is focussed on microstructure and residual stresses due to gouging and stress optimization via adequate heat control parameters in repair welding. KW - Metals and Alloys KW - Mechanical Engineering KW - Mechanics of Materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595212 DO - https://doi.org/10.1007/s40194-024-01691-y SN - 0043-2288 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-59521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Konert, Florian A1 - Wieder, Frank A1 - Nietzke, Jonathan A1 - Meinel, Dietmar A1 - Böllinghaus, Thomas A1 - Sobol, Oded T1 - Evaluation of the impact of gaseous hydrogen on pipeline steels utilizing hollow specimen technique and μCT N2 - The high potential of hydrogen as a key factor on the pathway towards a climate neutral economy, leads to rising demand in technical applications, where gaseous hydrogen is used. For several metals, hydrogen-metal interactions could cause a degradation of the material properties. This is especially valid for low carbon and highstrength structural steels, as they are commonly used in natural gas pipelines and analyzed in this work. This work provides an insight to the impact of hydrogen on the mechanical properties of an API 5L X65 pipeline steel tested in 60 bar gaseous hydrogen atmosphere. The analyses were performed using the hollow specimen technique with slow strain rate testing (SSRT). The nature of the crack was visualized thereafter utilizing μCT imaging of the sample pressurized with gaseous hydrogen in comparison to one tested in an inert atmosphere. The combination of the results from non-conventional mechanical testing procedures and nondestructive imaging techniques has shown unambiguously how the exposure to hydrogen under realistic service pressure influences the mechanical properties of the material and the appearance of failure. KW - Energy Engineering and Power Technology KW - Condensed Matter Physics KW - Fuel Technology KW - Renewable Energy, Sustainability and the Environment KW - µCT KW - Hollow Specimen Technique KW - Hydrogen Embrittlement PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595077 DO - https://doi.org/10.1016/j.ijhydene.2024.02.005 SN - 0360-3199 VL - 59 SP - 874 EP - 879 PB - Elsevier B.V. AN - OPUS4-59507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Artinov, Antoni T1 - On the mathematical analysis of the relationship between the bulging region and the centerline solidification cracking in laser beam welding N2 - The present Ph.D. thesis provides a comprehensive experimental and theoretical study of the bulging-cracking relationship in laser beam welding of thick unalloyed steel sheets. It focuses on experimentally proving the existence of the bulging region and on developing a coupled multiphysics mathematical framework to analyze its influence on the three critical factors controlling the susceptibility to solidification cracking, namely the thermal, metallurgical, and mechanical factors. The research employs a novel experimental setup, utilizing a combination of transparent quartz glass and thick unalloyed steel sheet, enabling real-time visualization of the weld pool geometry and confirming the existence of a distinctive bulging region. To deepen the understanding of these experimental insights, an extensive multiphysics mathematical framework was developed and rigorously verified and validated. This framework introduces an innovative approach using Lamé curves for accurately describing complex three-dimensional weld pool geometries, including the bulging region's characteristics. Through analytical solutions and numerical procedures, it facilitates the computation of solidification parameters, which are crucial for understanding the metallurgical aspects of crack formation. The framework also incorporates a mechanical model to assess and evaluate the local stress distribution within the bulging region. The findings indicate that an elongated, sharply shaped bulging region significantly increases the susceptibility to solidification cracking. This is attributed to its adverse impact on the distribution and local dwell time of liquid metal residing at grain boundaries during solidification, combined with the localized tensile stresses identified in the bulging region. In essence, this research contributes to the broader understanding of solidification cracking in laser beam welding of thick unalloyed steel sheets, with a particular focus on the bulging region. The insights and methodologies developed in this thesis are valuable for future research and advancements in the application of the laser beam welding technology for joining high-thickness unalloyed steel components. KW - Bulging effect KW - Centerline solidification cracking KW - Mathematical modeling KW - Structural steel KW - High power laser beam welding PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599010 DO - https://doi.org/10.14279/depositonce-20090 SP - 1 EP - 152 CY - Berlin AN - OPUS4-59901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Konert, Florian T1 - Deep Dive: Visualizing hydrogen assisted cracks in hollow specimens utilizing µCT N2 - The Deep-Dive provides a short introduction and summary of the performed tests on API X65 Pipelinesteels. The aim of the tests is the visualization of hydrogen assisted crack popagation in hollow specimens. T2 - DAAD Green Hydrogen Workshop CY - Online meeting DA - 07.05.2024 KW - Hydrogen KW - Hollow specimen technique KW - µCT KW - Hydrogen embrittlement KW - Pipeline steel PY - 2024 AN - OPUS4-60001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Richter, Tim A1 - Erxleben, Kjell A1 - Schröpfer, Dirk A1 - Witt, Julia A1 - Özcan-Sandikcioglu, Özlem A1 - Kannengießer, Thomas T1 - Processing and application properties of multiple principal element alloys (MPEA) N2 - The presentation gives an overview of BAM's activities on processing influences and application properties of MPEAs in the form of joined and machined high and medium entropy alloys (CoCrFeMnNi and CoCrNi). In the case of welding, the focus is on defect-free welded joints with sufficient mechanical properties. In the case of machining, the focus is on the possible influence on the surface quality of the materials through adequate milling parameters. In addition, the hydrogen absorption and diffusion properties as well as the electrochemical corrosion behavior are fundamentally examined. T2 - FAU-Department Werkstoffwissenschaften, Seminar: Aktuelle Probleme der Werkstoffwissenschaften CY - Erlangen, Germany DA - 25.04.2024 KW - Welding KW - Application properties KW - Machining KW - High-entropy alloy KW - Hydrogen PY - 2024 AN - OPUS4-59975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strobl, Dominic A1 - Unger, Jörg F. A1 - Ghnatios, C. A1 - Klawoon, Alexander A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Robens-Radermacher, Annika T1 - Efficient bead-on-plate weld model for parameter estimation towards effective wire arc additive manufacturing simulation N2 - Despite the advances in hardware and software techniques, standard numerical methods fail in providing real-time simulations, especially for complex processes such as additive manufacturing applications. A real-time simulation enables process control through the combination of process monitoring and automated feedback, which increases the flexibility and quality of a process. Typically, before producing a whole additive manufacturing structure, a simplified experiment in the form of a beadon-plate experiment is performed to get a first insight into the process and to set parameters suitably. In this work, a reduced order model for the transient thermal problem of the bead-on-plate weld simulation is developed, allowing an efficient model calibration and control of the process. The proposed approach applies the proper generalized decomposition (PGD) method, a popular model order reduction technique, to decrease the computational effort of each model evaluation required multiple times in parameter estimation, control, and optimization. The welding torch is modeled by a moving heat source, which leads to difficulties separating space and time, a key ingredient in PGD simulations. A novel approach for separating space and time is applied and extended to 3D problems allowing the derivation of an efficient separated representation of the temperature. The results are verified against a standard finite element model showing excellent agreement. The reduced order model is also leveraged in a Bayesian model parameter estimation setup, speeding up calibrations and ultimately leading to an optimized real-time simulation approach for welding experiment using synthetic as well as real measurement data. KW - Proper generalized decomposition KW - Model order reduction KW - Hardly separable problem KW - Additive manufacturing KW - Model calibration KW - Wire arc additive manufacturing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596502 DO - https://doi.org/10.1007/s40194-024-01700-0 SN - 0043-2288 SP - 1 EP - 18 PB - Springer AN - OPUS4-59650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Witte, Julien A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Stresses in repair welding of high-strength steels—part 2: heat control and stress optimization N2 - In welding of high-strength steels, e.g. for foundations and erection structures of wind energy plants, unacceptable defects can occasionally be found in the weld area, which should be removed by thermal gouging and subsequent re-welding. High shrinkage restraint of repair welds may lead to crack formation and component failure, predominantly in interaction with degraded microstructures and mechanical properties due to repair cycles. This study aims for elaboration of recommendations for repair concepts appropriate to the stresses and materials involved to avoid cold cracking, damage and expensive reworking. In part 1 [1] of this study, systematic investigations of influences of shrinkage restraint on residual stresses and cold cracking risk during repair welding of two high-strength steels S500MLO for offshore application and S960QL for mobile crane structures were focussed. In this part 2, the microstructure, particularly hardness, and residual stresses due to gouging and influences of heat control parameters in repair welding are analysed. A clear reduction in residual stress after gouging can be observed, especially for the specimens with restrained transverse shrinkage. Gouging to a depth of approx. 2/3 of the seam height does not lead to a complete relaxation of the observed reaction forces. Particularly for the higher strength steel S960QL, there are pronounced areas influenced by the gouging process in which a degradation of the microstructure and properties should be assumed. Overall, the repair welds show a significant increase in the width of the weld and HAZ compared to the original weld, especially in the case of S960QL/G89. The repair welds show higher welding-induced stresses than the original welds, especially in the areas of the HAZ and the base metal close to the weld seam. This behaviour can be attributed overall to increased restraint conditions due to the remaining root weld or shorter gouge grooves. In good agreement with earlier investigations, the residual stresses transverse to the weld can be significantly reduced by upwardly limited working or interpass temperatures, and the reaction stresses resulting from high restraint conditions can be effectively counteracted. The influence of the heat input on the stress formation is low compared to the interpass temperature for both test materials. KW - Repair-welding KW - Wind Energy KW - High-strength steels KW - Cold cracking KW - Residual stresses KW - Offshore steels PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600259 DO - https://doi.org/10.1007/s40194-024-01731-7 SN - 0043-2288 SP - 1 EP - 15 PB - Springer Nature AN - OPUS4-60025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Heldmann, Alexander A1 - Hofmann, Michael A1 - Evans, Alexander A1 - Petry, Winfried A1 - Bruno, Giovanni T1 - Diffraction and Single-Crystal Elastic Constants of Laser Powder Bed Fused Inconel 718 N2 - In this presentation, the results of the determination of the diffraction and single-crystal elastic constants of laser powder bed fused Inconel 718 are presented. The analysis is based on high-energy synchrotron diffraction experiments performed at the Deutsches Elektronen-Synchrotron. It is shown that the characteristic microstructure of laser powder bed fused Inconel 718 impacts the elastic anisotropy and therefore the diffraction and single-crystal elastic constants. Finally, the consequences on the diffraction-based residual stress determination of laser powder bed fused Inconel 718 are discussed. T2 - AWT-Fachausschuss 13 "Eigenspannungen" CY - Wolfsburg, Germany DA - 19.03.2024 KW - Additive Manufacturing KW - Laser Powder Bed fusion KW - Diffraction KW - In-Situ Testing KW - Diffraction Elastic Constants PY - 2024 AN - OPUS4-59900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher A1 - Konert, Florian A1 - Popiela, Bartosz A1 - Sarif, Raduan T1 - H2Safety@BAM: Competence Center for safe hydrogen technologies N2 - Presentation of the competence center H2Safety@BAM at the European PhD Hydrogen Conference 2024 in Ghent, Belgium. T2 - European PhD Hydrogen Conference 2024 (EPHyC2024) CY - Ghent, Belgium DA - 20.03.2024 KW - H2safety KW - Hydrogen KW - Safety KW - Competence center PY - 2024 AN - OPUS4-59756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzwarth, Marcel A1 - Mayer, Uwe A1 - Baer, Wolfram T1 - Investigating the Applicability of the Master Curve Concept for Ductile Cast Iron – Early Results for 2 Different Test Temperatures N2 - Based on the state-of-the-art research and regulations, the application of the fracture mechanics master curve (MC) concept to ferritic ductile cast iron (DCI) is being investigated in a joint research project between MPA Stuttgart and BAM Berlin. This paper outlines the research approach, the planned investigations and first results of the experimental program. T2 - 8th SEDS Workshop: Safety of Extended Dry Storage CY - Garching, Germany DA - 15.05.2024 KW - Dynamic fracture KW - Brittle fracture KW - Ductile cast iron KW - Master Curve PY - 2024 SP - 1 EP - 4 AN - OPUS4-60013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Mente, Tobias A1 - Kannengiesser, Thomas T1 - Parameters and challenges for reliable hydrogen determination in welded joints by carrier gas hot extraction N2 - For the hydrogen-based energy economy of tomorrow, the construction of the necessary infrastructure will play a central role. Most materials used to date, such as welded steels, can be prone to hydrogen embrittlement under certain conditions. This includes the classic delayed cold cracking during welding as well as degradation phenomena during service of components in hydrogen-containing environment. For the evaluation of any hydrogen effect, for example, on the mechanical properties of a welded metallic material, the hydrogen content must be precisely determined. In the case of weld seams, the carrier gas hot extraction (CGHE) according to ISO 3690 is meanwhile state-of-the-art. CGHE is based on accelerated hydrogen degassing due to the thermal activation of hydrogen at elevated temperatures. In addition to the quantification of hydrogen, thermal desorption analysis (TDA) with varying heating rates can be used to determine and evaluate the hydrogen trapping at microstructural defects in the material. For both techniques, experimental and metrological influences must be considered, which have a major effect on the result. For example, ISO 3690 suggests different sample geometries and minimum extraction times for CGHE. This study summarizes the results and experiences of numerous investigations at the Federal Institute for Materials Research and Testing (BAM) with different sample temperatures and geometries (ISO 3690 type B and cylindrical TDA samples) regarding the influence of the sample surface (polished/welded), measurement accuracy depending on the sample volume and the insufficient monitoring of the effect of PI control on the extraction temperature. A deviating extraction temperature from the target temperature can significantly falsify the measurement results. Based on the results, methods are shown which allow the desired extraction temperature to be reached quickly without physically interfering with the measuring equipment. This serves to significantly improve the reliability of the hydrogen measurement through increased signal stability and accelerated hydrogen desorption. In general, an independent temperature measurement with dummy samples is recommended for the heating procedure of choice to exclude possible undesired temperature influences before the measurement. The methods described can be transferred directly to industrial applications KW - Welding KW - Hydrogen measurement KW - ISO 3690 KW - Carrier gas hot extraction PY - 2024 DO - https://doi.org/10.37434/tpwj2024.04.01 SN - 0957-798X VL - 4 SP - 3 EP - 10 PB - International Association Welding AN - OPUS4-60071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hartwig, Philipp A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Scheunemann, Lisa A1 - Schröder, Jörg A1 - Rethmeier, Michael T1 - A Physically Motivated Heat Source Model for Laser Beam Welding N2 - In this contribution, we present a physically motivated heat source model for the numerical modeling of laser beam welding processes. Since the calibration of existing heat source models, such as the conic or Goldak model, is difficult, the representation of the heat source using so-called Lamé curves has been established, relying on prior Computational Fluid Dynamics (CFD) simulations. Lamé curves, which describe the melting isotherm, are used in a subsequent finite-element (FE) simulation to define a moving Dirichlet boundary condition, which prescribes a constant temperature in the melt pool. As an alternative to this approach, we developed a physically motivated heat source model, which prescribes the heat input as a body load directly. The new model also relies on prior CFD simulations to identify the melting isotherm. We demonstrate numerical results of the new heat source model on boundary-value problems from the field of laser beam welding and compare it with the prior CFD simulation and the results of the Lamé curve model and experimental data. KW - Welding simulation KW - Heat source models KW - Laser beam welding KW - Thermal analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600899 DO - https://doi.org/10.3390/met14040430 VL - 14 IS - 4 SP - 1 EP - 26 PB - MDPI CY - Basel AN - OPUS4-60089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yang, Chunliang A1 - Yan, Fan A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Phase-field simulation of the dendrite growth in aluminum alloy AA5754 during alternating current electromagnetic stirring laser beam welding N2 - Electromagnetic stirring is known to promote material flow, reduce porosity, uniform elements distribution, and refine grain in laser beam welding (LBW), which enhances the applicability of LBW in various industries. In this study, a phase-field model of dendrite growth in AA5754 Al alloy electromagnetic stirring laser beam welding was established. The model considered the thermal electromagnetic Lorentz force resulting from the interaction between the electric field generated by the Seebeck effect and the magnetic field, as well as the temperature gradient and solidification rate of the solidification interface obtained from the computational fluid dynamics electromagnetic stirring LBW model. The variation rules of dendrite growth with different magnetic parameters and effects are analyzed. Comprehensively, the magnetic field promotes the solidification rate, thus promoting interfacial instability and a large magnetic flux density leads to a faster interface instability. The solidification rate as well as the temperature gradient affect the growth rate, and the accelerated growth caused by the so lidification rate with a high frequency and a large magnetic flux density effectively inhibits the slow growth caused by the temperature gradient. The thermal electromagnetic Lorentz force is the main factor for the branch increment at low frequencies, while both thermal electromagnetic Lorentz force and temperature gradient in crease the number of branches at high frequencies. The calculated average branch numbers considering various factors in the stable stage under different magnetic parameters were consistent with the results of the scanning electron microscope tests. KW - Laser beam welding KW - Electromagnetic KW - Aluminum alloys KW - Phase field method KW - Dendrite growth PY - 2024 DO - https://doi.org/10.1016/j.ijheatmasstransfer.2023.124754 SN - 0017-9310 VL - 218 SP - 1 EP - 16 PB - Elsevier Ltd. AN - OPUS4-58489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Liepold, Philipp A1 - Kannengießer, Thomas T1 - Investigation of restraint intensity influence on solidification cracking of high-strength filler materials in fillet welds via CTS testing N2 - Next to chemical composition, metallurgy and welding parameters, the intensity of restraint is one of the variables influencing solidification cracking. Tests like the Houldcroft Test, rate the hot cracking susceptibility indirectly on the amount of restraint the welding can endure without cracking. Modern lightweight steel construction welds can be subject to a larger amount of restraint due to their high-strength nature compared to classical use cases. By varying the plate thickness of Controlled Thermal Severity (CTS) tests produced out of S1100 QL, it was possible to vary the intensity of restraint on fillet welds at a high level. Testing was conducted with four different filler wires for Metal Active Gas (MAG) welding, including three solid and one metal-cored wire. In addition, two sets of welding parameters were tested. The first set with high heat input and high welding speed was shown to be more prone to solidification cracking compared to the second set with lower heat input and welding speed. The results show an increase in solidification cracking with increasing restraint severity. T2 - IIW Intermediate Meeting Comission II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Solidification cracking KW - High strength steel KW - Weldability PY - 2024 AN - OPUS4-59748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Hübner, Martin A1 - Dittmann, F. A1 - Varfolomeev, I. A1 - Kannengießer, Thomas T1 - Residual stress reduction using LTT welding consumables with focus on the weld geometry N2 - This article focuses on the selective placement of additional LTT layers to generate compressive residual stresses in fatigue-critical areas of conventional weld joints. This enables an economical solution without effecting the integrity of welded joints. For this, longitudinal stiffeners made of high-strength steel were gas metal arc welded using conventional welding consumable in the first layer. Afterwards, a chromium-nickel alloyed LTT welding consumable was deposit on front sides of the stiffeners. By varying the welding parameters, different weld geometries of the LTT filler metal could be analyzed. The effects of additional LTT layers were investigated with regards to residual stresses, microstructure and strength. X-ray residual stresses measurements show that the residual stresses at the failure critical weld toe are significantly reduced by using additional LTT layers. While the conventional weld is characterized by tensile residual stresses, compressive residual stresses can be detected at the LTT weld. The level of residual stresses is influenced by the geometry of the LTT layer. Additional LTT layers with a high offset to the conventional weld generate more compressive residual stress in the HAZ than with a low offset. Therefore, the weld geometry has a considerable impact on the residual stress profile. T2 - IIW Intermediate Meeting Comission II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - LTT KW - Residual stress KW - High strength steel PY - 2024 AN - OPUS4-59747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Wandtke, Karsten A1 - Engelking, Lorenz A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kannengießer, Thomas A1 - Hensel, J. T1 - Influence of machining on residual stresses in additive manufactured high-strength steel components N2 - This study focuses on the effect of machining on the residual stresses and distortion of WAAM specimens. Defined specimens were welded fully automatically with a special WAAM solid wire (yield strength >820 MPa) with different geometric designs. The residual stresses state before and after cutting of the AM structure from the substrate plate were analyzed by means of X-ray diffraction on the specimen surface and complementary by 3d deformation analyses using photogrammetry. The results reveal significant influences of the geometry on the relaxation and redistribution of residual stresses. T2 - IIW Intermediate Meeting Comission IX-AM CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Residual stress KW - DED-arc KW - High strength steel PY - 2024 AN - OPUS4-59751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Liepold, Philipp A1 - Kannengießer, Thomas T1 - Investigation of hot cracking susceptibility via Modified Varestraint Transvarestraint testing of high-strength filler material N2 - MVT testing was conducted in Transvarestraint mode in multiple welding conditions and under a range of bending speeds. The materials observed were high strength filler metals used in GTAW namely DIN EN ISO 16834-A G 69 4 M21 Mn3Ni1CrMo (G69), 16834-A G 89 6 M21 Mn4Ni2CrMo (G89 6), 16834-A G 89 5 M21 Mn4Ni2,5CrMo (G89 5) and a filler wire 18276-A T 89 4 ZMn2NiCrMo M M21 1 H5 (T89). For evaluation light optical microscope pictures were used. Pixels containing cracks were manually segmented using a self-written program. Out of the segmented images data including crack length, position and area can be calculated for every crack. The results show dependencies of solidification cracking on the test parameters. T2 - IIW Intermediate Meeting Comission II-C CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Solidification cracking KW - High strength steel KW - Varestraint test PY - 2024 AN - OPUS4-59749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Konert, Florian A1 - Freitas, Tomás A1 - Krzysch, Zephanja T1 - Evaluating X65 pipeline steel using the hollow specimen technique N2 - This presentation describes the usability of the hollow tensile specimen technique for in-situ material testing in a hydrogen atmosphere. In addition, the presentation provides an outlook on the methodology for investigating the suitability of pipeline steels and their weld seams for hydrogen operation. T2 - EPHyC 2024 CY - Ghent, Belgium DA - 19.03.2024 KW - Hydrogen embrittlement KW - Hollow specimen technique KW - Pipeline steel KW - SSRT PY - 2024 AN - OPUS4-59746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Quackatz, Lukas A1 - Westin, E.M. A1 - Griesche, Axel A1 - Kannengießer, Thomas A1 - Treutler, K. A1 - Wesling, V. T1 - Assessing ferrite content in duplex stainless steel weld metals: WRC '92 predictions vs. practical measurements N2 - The weldability of stainless steels is largely controlled by the chemical composition, and alloys with ferritic or ferritic-austenitic solidification show the highest resistance to hot cracking. As the resulting phase balance also affects the final properties, it may be beneficial to both foresee and measure the weld metal ferrite content. The WRC ’92 constitution diagram is currently the most accurate prediction tool available, but it does not take the cooling rate into consideration and the precision may be less accurate for stainless steels with high ferrite numbers (FN). This study aims to validate the reliability of the WRC ’92 diagram for weld metals with FN > 50. The chemical composition was altered through gas tungsten arc welding (GTAW) of UNS S32205 with ER347 filler wire that had been PVD-coated with either niobium (Nb), copper (Cu), nickel (Ni), manganese (Mn), carbon (C), or silicon (Si). The actual ferrite content was assessed using image analysis, FERITSCOPE® and X-ray diffraction (XRD). While the WRC ’92 diagram predictions were deemed accurate to acceptable for Ni, Si, and Mn, notable deviations were observed for Nb, Cu, and C. The FeriteScope exhibited a consistent trend with image analysis, though the values were higher, and scatter was wider, and the conversion factor is open for discussion. The lowest accuracy and largest spread were obtained using non-contact XRD, rendering it unsuitable for ferrite measurements of welds. T2 - IIW Intermediate Meeting Comission IX-H CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Duplex Stainless Steel KW - Ferrite KW - WRC 92 PY - 2024 AN - OPUS4-59750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiler, Géraldine A1 - Cano Murillo, Natalia A1 - Halder, Karabi A1 - Balasooriya, Winoj A1 - Hausberger, Andreas A1 - Kaiser, Andreas T1 - Effect of high-pressure hydrogen environment on the physical and mechanical properties of elastomers N2 - This study presents the influence of high-pressure hydrogen environment on the physical and mechanical properties of two types of cross-linked hydrogenated acrylonitrile butadiene rubbers. Based on the CSA/ANSI standard, static exposures in hydrogen experiments were performed up to 100 MPa at 120 °C. Characterization before and after exposure was conducted by means of density and hardness measurements, dynamic mechanical analysis (DMA), tensile tests, compression set, FT-IR and AFM analyses to assess effects after decompression. While the effect of high-pressure exposure is significant immediately after exposure, most of the physical and mechanical properties recover after 48 hours. FT-IR, AFM, SEM and compression set results indicate, however, permanent effects. KW - Hydrogen KW - Mechanical properties KW - Elastomers KW - High-pressure hydrogen environment PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597102 DO - https://doi.org/10.1016/j.ijhydene.2024.01.148 SN - 0360-3199 VL - 58 SP - 389 EP - 399 PB - Elsevier Ltd. AN - OPUS4-59710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liepold, Philipp A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - CTS Testing of High-Strength Filler Materials N2 - Controlled Thermal Severity (CTS) tests are known for applicatying high restraint intensity to fillet welds. Due to two different variations of the test it was possible to apply different amounts of restraint intensity to high-strength GMAW fillet welds at a high level of restraint. The results show the effect of heat input, filler material and restraint intensity on solidification cracking susceptibility. T2 - DIN Sitzung NA 092-00-05 GA „Zerstörende Prüfung von Schweißverbindungen“ (DVS AG Q 4/Q 4.1) CY - Berlin, Germany DA - 20.03.2024 KW - CTS PY - 2024 AN - OPUS4-59773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Thomas, Maximilian A1 - Kannengiesser, Thomas A1 - Gibmeier, Jens T1 - On the interpretation of Varestraint and Transvarestraint hot cracking test results N2 - The Varestraint test and its variant Transvarestraint are one of the most widely used techniques for evaluating a material solidification cracking sensitivity during welding. The result of such tests is a crack length which is proportional to the material’s cracking susceptibility. Nevertheless, the welding and load parameters can unintentionally influence the crack length, which in some cases can distort the material evaluation. An approach is described as to how these effects can be assessed with the aid of a digital crack analysis. The crack lengths are compared position-dependently with their possible propagation due to the weld pool movement during continuous loading. The index derived from this can be used by the operator to evaluate his test parameters. In addition, a comparison of the results of different Varestraint setups is made possible. Alongside experimental results, a numerical sensitivity analysis is presented on how individual welding and loading parameters can affect the crack lengths. KW - Varestraint test KW - Solidification cracking KW - Weldability PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595089 DO - https://doi.org/10.1007/s40194-024-01706-8 SN - 0043-2288 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-59508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Richter, Tim A1 - Schroepfer, Dirk A1 - Mente, Tobias A1 - Michael, Thomas T1 - Local mechanical properties of dissimilar metal TIG welded joints of CoCrFeMnNi high entropy alloy and AISI 304 austenitic steel N2 - Multiple principal element alloys encompass the well-known high entropy alloys (HEA). The alloy system represents a new class of materials consisting of at least three alloying elements, each containing 5 to 35 at.%. Thus, this alloying concept differs fundamentally from conventional materials such as steel or nickel alloys. For this purpose, the alloying elements are specifically selected, the microstructures are adjusted in a single-phase and, in some cases, multi-phase manner. In particular, conflicting goals, such as the trade-off between strength and ductility in conventional steels, are overcome. However, in the last 20 years, the focus has been on material synthesis. With the increase in available material quantities, the focus is now on processing issues such as joining and welding processes. The weldability of HEAs has received very little attention so far. The experience with dissimilar metal welds is completely lacking but is essential for the application of these materials in combination with conventional materials. The present study presents comprehensive experimental results on the weldability of an equimolar CoCrFeMnNi-HEA in cold-rolled and heat-treated condition, which was joined by tungsten inert gas welding to an austenitic steel AISI 304. The mechanical properties of the dissimilar metal welds were characterized by cross-weld tensile samples, whereas the local deformation in the weld of the different welding zones was measured by digital image correlation. In accordance with the respective initial HEA condition (cold-rolled vs. heat-treated), the local strain behavior was divergent and influenced the global mechanical properties of both DMW types. Nonetheless, the experiments provided proof in principle of the weldability for dissimilar joints of the CoCrFeMnNi-HEA welded to conventional materials like austenitic stainless steels ensuring a corresponding capability for mechanical loading. This allows further considerations on the application of these innovative materials. KW - TIG welding KW - High-entropy alloys KW - Mechanical properties KW - Dissimilar metal weld PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595775 DO - https://doi.org/10.1007/s40194-024-01718-4 SN - 0043-2288 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-59577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prabitz, Konstantin Manuel A1 - Antretter, Thomas A1 - Rethmeier, Michael A1 - El-Sari, Bassel A1 - Schubert, Holger A1 - Hilpert, Benjamin A1 - Gruber, Martin A1 - Sierlinger, Robert A1 - Ecker, Werner T1 - Numerical and experimental assessment of liquid metal embrittlement in externally loaded spot welds N2 - Zinc-based surface coatings are widely applied with high-strength steels in automotive industry. Some of these base materials show an increased brittle cracking risk during loading. It is necessary to examine electrogalvanized and uncoated samples of a high strength steel susceptible to liquid metal embrittlement during spot welding with applied external load. Therefore, a newly developed tensile test method with a simultaneously applied spot weld is conducted. A fully coupled 3D electrical, thermal, metallurgical and mechanical finite element model depicting the resistant spot welding process combined with the tensile test conducted is mandatory to correct geometric influences of the sample geometry and provides insights into the sample’s time dependent local loading. With increasing external loads, the morphology of the brittle cracks formed is affected more than the crack depth. The validated finite element model applies newly developed damage indicators to predict and explain the liquid metal embrittlement cracking onset and development as well as even ductile failure. KW - Resistance spot welding KW - Finite element simulation KW - Advanced high-strength steel KW - Liquid metal embrittlement KW - Damage prediction KW - Tensile resistance spot welding experiment PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594848 DO - https://doi.org/10.1007/s40194-024-01696-7 SN - 0043-2288 SP - 1 EP - 10 PB - Springer Science and Business Media LLC AN - OPUS4-59484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Konert, Florian A1 - Campari, Alessandro A1 - Nietzke, Jonathan A1 - Sobol, Oded A1 - Paltrinieri, Nicola A1 - Alvaro, Antonio T1 - Evaluation of the tensile properties of X65 pipeline steel in compressed gaseous hydrogen using hollow specimens N2 - Hydrogen has great potential on the path towards decarbonization of the energy and transport sectors and can mitigate the urgent issue of global warming. It can be sustainably produced through water electrolysis with potentially zero emissions, and efficiently used (e.g., in fuel cell systems). Despite its environmental advantages, hydrogen-metal interactions could result in the degradation of the mechanical properties of several structural materials. In order to determine the magnitude of the material degradation in relation to hydrogen exposure, extensive material testing is required. The standardized procedure for in-situ testing for the quantification of the impact of compressed gaseous hydrogen (CGH2) relies on the utilization of an autoclave around the tested specimen. Such test set-up is complex, expensive, time-consuming and requires special equipment, trained personnel, and strict safety procedures. A relatively recent method to circumvent these issues and provide affordable results consists of using hollow specimens, thus applying the hydrogen pressure inside rather than outside the specimen. It allows to reduce the volume of hydrogen by several orders of magnitude and to perform the tests more efficiently and in a safer manner. This study focuses on evaluating the tensile properties of X65 vintage pipeline steel tested in a high-pressure hydrogen environment using hollow specimens. Tests are performed in 6 MPa H2 and Ar at the nominal strain rate of 10−6 s−1 to evaluate the reduced area at fracture and the elongation loss. The effect of surface finishing on crack initiation and propagation is investigated by comparing two different manufacturing techniques. In this way, this study provides insights into the applicability of a novel, reliable, and safe testing method which can be used to assess the hydrogen-assisted ductility loss in metallic materials. KW - Mechanical Engineering KW - Hydrogen Embrittlement KW - SSRT KW - Hollow specimen KW - Pipeline steel KW - In-situ tensile test PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595887 DO - https://doi.org/10.1016/j.prostr.2024.01.074 SN - 2452-3216 VL - 54 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-59588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grimault de Freitas, Tomás T1 - State of the Art in the Qualification of Metallic Materials for Hydrogen Technologies N2 - The hydrogen economy is one of the main solutions for achieving climate neutrality in Europe. Metallic materials, predominantly steels, are the most common structural materials in the various components along the hydrogen supply chain. Ensuring their sustainable and safe use in hydrogen technologies is a key factor in the ramp-up of the hydrogen economy. This requires extensive materials qualification, however, most of the accepted, and standardised test methods for determining the influence of gaseous hydrogen on metallic materials describe complex and costly procedures that are only available to a very limited extent worldwide (e.g., autoclave technique). The hollow specimen technique is presented as an alternative method that can overcome the limitations of current techniques and complement them. To standardise the technique, a process has been initiated by ISO in 2021. Knowledge gaps for tests with the technique in hydrogen have been identified by DIN. The H2HohlZug project, which falls under the umbrella of TransHyDE, aims to address the identified knowledge gaps and provide a foundation for a comprehensive standardisation of the hollow specimen technique. T2 - E-World Energy & Water CY - Essen, Germany DA - 20.02.2024 KW - Hydrogen KW - Hydrogen Embrittlement KW - Hollow Specimen Technique KW - High-Pressure Gaseous Hydrogen KW - Standardisation KW - H2HohlZug KW - TransHyDE PY - 2024 AN - OPUS4-59564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Kaiser, Sebastian A1 - Kannengiesser, Thomas A1 - Kromm, Arne T1 - Repair welding of pressurized in-service hydrogen pipelines - A review on current challenges and strategies N2 - As energy carrier of the future, green hydrogen can make a decisive contribution to a sustainable energy supply. Particularly important is the decarbonization of heavy industry. Therefore, a reliable supply of hydrogen must be guaranteed. A hydrogen pipeline grid can achieve this purpose. In Europe concrete plans for a hydrogen pipeline grid already exist, as the so called “European Hydrogen backbone”. As building a completely new pipeline grid is economically not justifiable, a dual-way strategy of repurposing natural gas (NG) pipelines and newly built pipelines is intended. Long distance pipeline grids require regular maintenance and repairs. For natural gas (NG) pipelines in-service welding is state of the art. Concepts such as hot-tapping (drilling into pressurized pipelines) and “stoppling” (sealing off pipeline sections after installing bypasses or pressure relieves) allow the repair of damaged pipeline sections or the installation of new branches without shutting the pipeline down, which in most cases isn’t possible from an economic standpoint. The EIGA 121/14 guideline already pointed out in 2014 that “a hydrogen hot-tap shall not be considered a routine procedure”. This shows that the determination of the transferability of these repair concepts to hydrogen pipelines is of utmost importance. Due to the degrading effects of hydrogen on mechanical proper-ties, commonly referred to as “hydrogen embrittlement” it is necessary to understand and investigate the occurring effects. In the special case of repair welding on in-service hydrogen pipelines an increased hydro-gen uptake due to a large heat input and microstructural changes in the material needs to be considered. Therefore, material degradation must be investigated to determine whether modifications of repair procedures are necessary to ensure a reliable and safe hydrogen transportation via pipelines. For this reason, this paper gives an overview on existing weld repair concepts and its risks and limitations in terms of hydrogen absorption and possible embrittlement effects when transferred to hydrogen pipelines. The complexity lies in a large variety of materials (low alloyed steels), pipeline diameters and corresponding welded joints. The material compatibility of materials in used (repurposed NG-pipelines) and new condition must be investigated. Particularly for repurposed/used pipelines the effect of a pre-matured/corroded inner surface and sometimes insufficient documentation of the material “history” needs to be considered. An overview on ongoing and completed R&D-projects with respect to repair concepts for hydrogen pipelines and hydrogen effects on pipeline materials is given. The focus hereby lies on possible methods of material testing and modeling. Its current difficulties, limits and possible solution will be discussed. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Hydrogen KW - Repair welding KW - Pipelines KW - In-service PY - 2024 AN - OPUS4-59674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Czeskleba, Denis A1 - Kannengiesser, Thomas T1 - Combined effect of heating rate and restraint condition on stress relief cracking susceptibility during PWHT of thick-walled Cr-Mo-V steel submerged arc welded joints N2 - Contemporary steels creep-resistant steels like the 13CrMoV9-10 are used as thick plates e.g., for applications in hydrocrackers. The large plate thickness requires high efficiency welding processes like submerged arc welding (SAW) and a mandatory post weld heat treatment (PWHT). The PWHT-parameters stem from a combination of empirical knowledge and traditional experiments on free shrinking (FS) welds. In that connection, the formation of so-called stress-relief cracking (SRC) must be anticipated. The SRC susceptibility of a welded component is a complex combination and interaction of com-ponent specific, thermal, and metallurgical factors. Many of which have to date not been conclusively researched. For example, it is well known that SRCs develop during PWHT due to formation and growth of carbides on prior austenite grain boundaries, resulting in a significant hardness increase (secondary hardening) and toughness decrease. This leads to a high SRC susceptibility of the coarse grain heat-affected zone (CGHAZ) of the last weld bead during PWHT. This is intensified in case of high residual stresses from the component-specific, structurally induced stiffness. In combination with multi-layer welding this leads to a multiaxial stress distribution. Nonetheless, the combined effect of PWHT and high-residual stresses on the SRC formation is merely unknown. For that reason, this study presents the effect of different heating rates in conjunction with a certain component stiffness. For that reason, SAW joints of 13CrMoV9-10 steel were investigated under FS and defined external restraint condition. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Stress relief cracking KW - Welding KW - Post weld heat treatment KW - Submerged arc welding KW - Cr-Mo-V steel KW - Creep-resisting steel PY - 2024 AN - OPUS4-59673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Rethmeier, Michael T1 - A fundamental study of physical mechanisms of wineglass-shaped fusion zone profile in laser melting N2 - The fusion zone geometry in laser melting processes e.g., laser welding and laser-based additive manufacturing, of metallic materials has commonly a wineglass-shaped profile which is critical to the grain orientation and stress distribution. Hereby, we adopt for the first time a decoupling work through a combination of multi-physics modelling and experiments to reveal the fundamental mechanisms of this special morphology. Two physicsbased easy-to-use metal vapour models are proposed to consider the vapour’s momentum and thermal effects separately. It is found that the direct laser energy absorption and Marangoni shear stress which are widely hypothesised to dominate the wineglass-shape formation show only a minor influence. The additional heating from the metallic vapour plume rather than its momentum impact contributes predominantly to the enlarging of the molten pool top region, resulting directly in the formation of the wineglass-shaped fusion zone. The generality of the plume heating effect is also validated in two types of materials (steel and Al) in a wide range of parameters. KW - Laser melting KW - Fusion zone profile KW - Wineglass shape KW - Multi-physical modelling KW - Metallic vapour plume KW - Steel and Al PY - 2024 DO - https://doi.org/10.1016/j.jmatprotec.2023.118265 SN - 0924-0136 VL - 324 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-59692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Schroeder, Nina A1 - Kannengiesser, Thomas A1 - Kadoke, Daniel A1 - Kruse, Julius T1 - Evaluation of local strain behavior of cross-weld tensile specimens of micro-alloyed high-strength steels by digital image correlation N2 - Microalloying elements such as Nb and Ti play a decisive function in achieving the desired mechanical strength of quenched and tempered, high-strength fine-grain structural steels with a nominal yield strength ≥ 690 MPa. The current specifications for the chemical composition only provide manufacturers with upper limits. However, even minor deviations in the alloy concept can have a significant impact on the mechanical properties. Consequently, accurate prediction of weldability and the integrity of welded joints becomes difficult or even impossible due to differences in composition and the resulting microstructures. Undesirable consequences include a possible softening of the heat-affected zone (HAZ) or, conversely, hardening effects. In view of these challenges, various microalloying strategies with different Ti and Nb contents are being systematically investigated for the first time using specially developed laboratory casting alloys. Each alloying route is based on the common S690QL, maintaining both the chemical composition and the heat treatment parameters. To analyse the weldability, three-layer welds were performed using gas metal arc welding (GMAW) and critical microstructures, such as areas of the heat-affected zone (HAZ) that exhibit significant softening or hardening, were identified. The effect of the softened HAZ region on failure was evaluated using transverse tensile specimens. Digital image correlation (DIC) is used to image changes in local strains in different HAZ regions in situ. Using a specially developed mirror system, the local strains of the microstructure zones on the top and bottom of the weld are recorded simultaneously. This makes it possible to analyse how the weld seam geometry (e.g., V-seam) influences the strain gradients. In addition, the analysis of the local deformation helps to understand the effects of the softened HAZ on the global strain, the fracture constriction, the fracture position, and the overall fracture behavior. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Welding KW - High-strength steel KW - Alloy concept KW - Cross-weld tensile sample KW - Mechanical properties PY - 2024 AN - OPUS4-59675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengiesser, Thomas T1 - Call for interested people to contribute to series of comprehensive papers on welding and joining of components for sustainable energy systems N2 - Joining and welding technologies are of high importance for the manufacturing of components and parts used in sustainable energy generation, conversion, and transport. In that connection, offshore and on-shore installed wind turbines are of high interest for the generation of electrical energy as well as photo-voltaic systems (solar cells). The electricity can be either directly transported or conversed via power-to-gas e.g., to hydrogen. In that scope, electrolyzer up to MW-range are of interest as well as the conver-sion back to electricity via fuel cells. In addition, hydrogen is a key element of the decarburization of in-dustries as well as the mobility sector encompassing sea, air and land transportation driven by hydrogen or its derivates. Well-known examples cover the direct reduction of iron ore to replace the conventional blast furnace process up to gas turbines or fuel cells for home-end use. All mentioned technologies re-quire reliable components, which are to a high extend dependent on joining and especially welding pro-cessing of materials. Especially, the (petro-) chemical industry has many years of experience with both materials used in hydrogen applications. The challenge is e.g., the transition to mass production of sys-tem components of electrolyzers/fuel cells and for distribution grids. At this point, the scalability of cur-rently applied joining processes often limits the economic efficiency, whereas especially laser welding or additive manufacturing will be of high interest. In that connection, it is very important to provide answers by joint research of universities, institutes, and industrial companies. Very often, solutions are already available and “just” have to be investigated and adapted for the new application, like repair welding of NG pipelines. For that reason, we want to set up a series of comprehensive papers with the aforementioned title. The idea is to get an in-depth but manageable overview of the importance of joining technologies in sustaina-ble energy generation, conversion, and transport encompassing current processes, limitations, and fur-ther perspectives. In that connection, the additive manufacturing is gaining more and more attention. If applicable, current challenges in the adaption or creation of new standards/regulations shall be addressed. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Hydrogen KW - Welding KW - Comprehensive study KW - Component manufatcturing KW - Additive manufacturing PY - 2024 AN - OPUS4-59676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Nietzke, Jonathan A1 - Kannengießer, Thomas T1 - In situ measurement of hydrogen concentration in steel using laser‑induced breakdown spectroscopy (LIBS) N2 - The ISO 3690 standard “Determination of hydrogen content in arc weld metal” requires a thermal activation of the diffusible hydrogen in a piece of weld metal for the subsequent ex situ concentration measurement by carrier gas hot extraction CGHE or thermal desorption spectroscopy (TCD). Laser-induced breakdown spectroscopy (LIBS) offers a time and spatially resolved, almost non-destructive, in situ measurement of hydrogen at surfaces without sample preparation. We measured hydrogen in steels, which were charged either electrochemically or by high-pressure hydrogen gas, and compared the results. Further, the feasibility of quantitative hydrogen line scan measurements with LIBS was demonstrated by measuring hydrogen at water jet cut surfaces. The hydrogen concentrations measured with the help of LIBS were compared with CGHE measurements. It was observed that hydrogen can be reliably measured with LIBS for concentrations larger than 2 wt.-ppm. The maximum hydrogen concentration achieved using electrochemical charging was 85.1 ppm. The results show that LIBS is a promising technique for time- and spatially resolved measurements of hydrogen in steels. T2 - IIW Annual Assembly 2023 CY - Singapore KW - LIBS KW - Hydrogen measurement KW - Welding KW - Stainless steel KW - Diffusible hydrogen PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593664 DO - https://doi.org/10.1007/s40194-023-01677-2 SP - 1 EP - 9 PB - Springer AN - OPUS4-59366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böllinghaus, Thomas A1 - Cross, Carl T1 - Obituary: Prof. Dr.-Ing. Hans Hoffmeister N2 - On November 3, 2023, our dear colleague, Prof. Dr.-Ing. Hans Hoffmeister, born in 1932 in Kassel, Germany, passed away in Ahrensburg, near Hamburg, Germany. KW - Metals and Alloys KW - Mechanical Engineering KW - Mechanics of Materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594160 DO - https://doi.org/10.1007/s40194-023-01675-4 SP - 1 EP - 2 PB - Springer Science and Business Media LLC AN - OPUS4-59416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzwarth, Marcel A1 - Mayer, Uwe A1 - Baer, Wolfram A1 - Weihe, Stefan T1 - Investigation of the Master Curve Concept for Ferritic Ductile Cast Iron N2 - Within fracture mechanics safety assessment for steels in nuclear technology, the probabilistic master curve (MC) concept according to ASTM E1921 is currently used for quasi-static loading conditions as a supplement to the established deterministic ASME reference curve concept. However, for ductile cast iron (DCI), a systematic review of potential modifications to the assumptions and the procedure according to ASTM E1921 and an associated validation are still lacking. For this reason, the application of the fracture mechanics MC concept to ferritic ductile cast iron is being investigated in a joint research project between MPA Stuttgart and BAM Berlin. According to Hojo et al. (2008) the MC concept is already in use for the brittle fracture safety assessment of ferritic forged steel containers, which would suggest an extension to ductile cast iron containers. In compliance with IAEA SSG-26, the safety assessment of DCI containers for transport as well as storage of radioactive materials is based on the fracture mechanics criterion of general exclusion of crack initiation. Within this context, the focus of the current research project is on the further development of brittle fracture safety assessment methods. Therefore, a methodology shall be established to determine and assess dynamic fracture toughness values of DCI in the ductile-to-brittle transition regime, using only a low number of small fracture mechanics test specimens extracted from a component. For the experimental program, a DCI material of grade GJS-400 (GGG-40) has been produced as it is generally used for transport and storage containers for nuclear material. A basic mechanical-technological material characterization consisting of tensile, Charpy, and Pellini tests has been planned and a comprehensive fracture mechanics test program was compiled covering dynamic testing of DC(T)9, C(T)25, C(T)50, SE(B)10, SE(B)25, and SE(B)140 specimens at various loading rates and temperatures. The specimen testing is divided between the project partners based on specimen geometry. MPA Stuttgart has been tasked with the testing of the C(T), DC(T) and Pellini specimens, while BAM Berlin was assigned the SE(B), Charpy and tensile tests. These tests allow for the determination of the loading rate relevant for brittle fracture via C(T)25 specimens and an assessment of size effects by transferring the relevant loading rate to other specimen geometries and sizes. Numerical analyses of different specimen geometries and test setups are planned to investigate the influence of stress triaxiality and loading rate. Furthermore, the time-dependent course of the Weibull stress is assessed via these numerical analyses. Throughout the experimental program, the microstructure-property relationship will also be investigated based on quantitative metallographic and fractographic analyses like scanning electron microscope images and metallographic sections. With the acquired experimental database fundamental assumptions of the MC concept, like the weakest link model and the Weibull distribution, will be assessed for the application to DCI. In the end, the applicability of the MC concept will be evaluated and if necessary, modifications to the MC concept for DCI will be proposed. This paper will present the preliminary results of the GJS400 material characterization and the related selection of test specimen extraction points. First results of the C(T)25 and SE(B)140 specimen testing will also be discussed supported by first metallographic analyses. T2 - SMiRT27 Conference CY - Yokohama, Japan DA - 03.03.2024 KW - Ductile Cast iron KW - Dynamic Fracture Toughness KW - Safety Assessment KW - Master Curve Concept PY - 2024 SP - 1 EP - 10 AN - OPUS4-59302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wandtke, Karsten ED - Becker, Amadeus ED - Schröpfer, Dirk ED - Kromm, Arne ED - Kannengießer, Thomas ED - Scharf-Wildenhain, R. ED - Hälsig, A. ED - Hensel, J. T1 - Residual Stress Evolution during Slot Milling for Repair Welding and Wire Arc Additive Manufacturing of High-Strength Steel Components N2 - High-strength steels offer potential for weight optimization due to reduced wall thicknesses in modern constructions. Additive manufacturing processes such as Wire Arc Additive Manufacturing (WAAM) enable the resource-efficient production of structures. In the case of defects occurring in weld seams orWAAM components due to unstable process conditions, the economical solution is local gouging or machining and repair welding. It is important to understand the effects of machining steps on the multiaxial stress state in conjunction with the design-related shrinkage restraints. Research into how welding and slot milling of welds andWAAM structures affects residual stresses is still lacking. For this reason, component-related investigations with high-strength steels with yield strengths ≥790 MPa are carried out in our research. In-situ digital image correlation (DIC) and ex-situ X-ray diffraction (XRD) were used to analyze the stresses and strains induced on specimens during and after milling. The systematic analyses revealed a significant interaction of the stiffness and microstructure of the specimens with the initial residual stresses induced by welding. Subsequent repair welds can result in significantly higher residual stresses. KW - High strength steels KW - Additive manufacturing KW - Residual stress KW - Repair welding KW - Ditigtal image correlation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593515 DO - https://doi.org/10.3390/met14010082 VL - 14 IS - 1 SP - 1 EP - 11 PB - MDPI CY - Basel AN - OPUS4-59351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzwarth, Marcel A1 - Baer, Wolfram A1 - Mayer, Uwe A1 - Weihe, Stefan T1 - Investigation of the Master Curve Concept for Ferritic Ductile Cast Iron N2 - Within fracture mechanics safety assessment for steels in nuclear technology, the probabilistic master curve (MC) concept according to ASTM E1921 is currently used for quasi-static loading conditions as a supplement to the established deterministic ASME reference curve concept. However, for ferritic ductile cast iron (DCI), a systematic review of potential modifications to the assumptions and the procedure according to ASTM E1921 and an associated validation are still lacking. For this reason, the application of the fracture mechanics MC concept to ferritic ductile cast iron is being investigated in a joint research project between MPA Stuttgart and BAM Berlin. According to IAEA SSG-26, the safety assessment of DCI containers for transport as well as storage of radioactive materials is based on the fracture mechanics criterion of general crack initiation exclusion. Within this context, the focus of the research project is on brittle fracture. The goal is the establishment of a methodology to determine and assess dynamic fracture toughness values of DCI in the ductile-to-brittle transition regime, using samples extracted from a component. The experimental program uses a DCI material of grade GJS-400, which is generally used for transport and storage containers of radioactive materials. Firstly, a basic mechanical-technological material characterization will be performed consisting of tensile, Charpy and Pellini tests. Following the material characterization, the loading rate relevant for brittle fracture will be determined using instrumented C(T)25-fracture tests at a temperature of -40°C. To be able to transfer the relevant loading rate to other specimen geometries or sizes, the time-dependent course of the Weibull stress is assessed via numerical analyses. With this information an extensive experimental program consisting of DC(T)9, C(T)25, C(T)50, SE(B)10, SE(B)25 and SE(B)140 specimens is performed. These experimental results will be further supported by numerical and fractographic analyses. The empirical experimental database developed for DCI materials will be used to assess the applicability of the MC concept for DCI materials under dynamic loading. At the current time manufacturing and precracking of test specimens is ongoing. The authors provide first results concerning the mechanical-technological material characterization, the relevant loading rate for brittle fracture determined via C(T)25 tests, and some early results of other specimen types. These experimental results are also supported by preliminary numerical and statistical analyses. T2 - Conference SMiRT27 CY - Yokohama, Japan DA - 04.03.2024 KW - Dynamic fracture toughness KW - Ductile cast iron KW - ASTM E1921 KW - Master curve KW - Brittle fracture PY - 2024 AN - OPUS4-59859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reichel, Levin A1 - Schroepfer, Dirk A1 - Kannengiesser, Thomas A1 - Kromm, Arne A1 - Becker, Amadeus T1 - Residual stress formation during repeated gouging and repair welding cycles of high-strength steels N2 - The construction of foundation and erection structures for wind power plants requires the use of modern, sustainable and resource-efficient high-strength fine-grained structural steels. Weld defects due to the welding process are unacceptable. To overcome this issue, local thermal gouging followed by re-welding is a common and cost-effective method. The high shrinkage restraint of the gouge by the surrounding structure can cause crack initiation when design and re-weld induced residual stresses are superimposed. This risk is intensified by the progressive degradation of the microstructure and mechanical properties of high-strength steels during the weld repair process. This investigation focuses on high-strength steels S500MLO for offshore applications and S960QL for mobile crane applications. The reduction and development of residual stresses caused by local thermal gouging and re-welding was investigated. Digital Image Correlated (DIC) stress-strain analysis was performed during preheating, welding and cooling. The results of the global DIC analysis and local longitudinal and transverse residual stresses of the weld determined by X-ray diffraction were found to be in good agreement. Furthermore, different stress levels were identified during gouging and welding. Repeated repair cycles led to an increase of longitudinal and transverse residual stresses in the weld metal as well as a hardness increase in the heat affected zone. T2 - European Conference on Residual Stresses - ECRS11 CY - Prague, Czech Republic DA - 03.06.2024 KW - Repair welding KW - Gouging KW - Residual stress KW - Repair cycles KW - High-strength steels PY - 2024 AN - OPUS4-60215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Shabdali, Gundappa Ashwit A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Residual Stress Analysis on a DED-Arc High-strength Steel Component Using the Contour Method N2 - This poster compares the results of the residual stress determination of DED-Arc open hollow cuboid specimens via XRD with the contour method. The results are in very good agreement. T2 - ECRS11 CY - Prague, Czech Republic DA - 03.06.2024 KW - DED-Arc KW - Residual stress KW - Contour method PY - 2024 AN - OPUS4-60221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Wandtke, Karsten A1 - Engelking, Lorenz A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Case Studies 2 – RS in DED-arc AM Components N2 - The presentation shows examples of resdiual stresses to be found typically in DED-arc additively manufactured high strength steel components. T2 - European Conference on Residual Stresses 11 - Tutorial 1: Residual stresses in additive manufacturing CY - Prague, Czech Republic DA - 03.06.2024 KW - Residual stress KW - DED-arc KW - High strength steel PY - 2024 AN - OPUS4-60285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne T1 - Best practice: How to work with a mobile diffractometer N2 - Beginning with a general overview about resdiual stress determination by X-ray diffraction, the presentation is focussing on some does and dont's when working with a portable diffractometer. T2 - European Conference on Residual Stresses 11 - Tutorial 1: Residual stresses in additive manufacturing CY - Prague, Czech Republic DA - 03.06.2024 KW - Residual stress KW - X-ray diffraction PY - 2024 AN - OPUS4-60287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Wandtke, Karsten A1 - Shabdali, Gundappa Ashwit A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Comparison and capabilities of different Methods N2 - X-ray and Neutron diffraction as well as the contour method were used to determine residual stresses in a additively manufactured sample. The results are compared. Capabilites and limitations are shown. T2 - European Conference on Residual Stresses 11 - Tutorial 1: Residual stresses in additive manufacturing CY - Prague, Czech Republic DA - 03.06.2024 KW - Residual stress KW - X-ray diffraction KW - Neutron diffraction KW - Contour method PY - 2024 AN - OPUS4-60286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Heldmann, A. A1 - Hofmann, M. A1 - Polatidis, E. A1 - Čapek, J. A1 - Petry, W. A1 - Serrano-Munoz, Itziar A1 - Bruno, Giovanni T1 - Diffraction and Single-Crystal Elastic Constants of Laser Powder Bed Fused Inconel 718 N2 - Laser powder bed fusion (PBF-LB/M) of metallic alloys is a layer-wise additive manufacturing process that provides significant scope for more efficient designs of components, benefiting performance and weight, leading to efficiency improvements for various sectors of industry. However, to benefit from these design freedoms, knowledge of the high produced induced residual stress and mechanical property anisotropy associated with the unique microstructures is critical. X-ray and neutron diffraction are considered the benchmark for non-destructive characterization of surface and bulk internal residual stress. The latter, characterized by the high penetration power in most engineering alloys, allows for the use of a diffraction angle close to 90° enabling a near cubic sampling volume to be specified. However, the complex microstructures of columnar growth with inherent crystallographic texture typically produced during PBF-LB/M of metallics present significant challenges to the assumptions typically required for time efficient determination of residual stress. These challenges include the selection of an appropriate set of diffraction elastic constants and a representative lattice plane suitable for residual stress analysis. In this contribution, the selection of a suitable lattice plane family for residual stress analysis is explored. Furthermore, the determination of an appropriate set of diffraction and single-crystal elastic constants depending on the underlying microstructure is addressed. In-situ loading experiments have been performed at the Swiss Spallation Neutron Source with the main scope to study the deformation behaviour of laser powder bed fused Inconel 718. Cylindrical tensile bars have been subjected to an increasing mechanical load. At pre-defined steps, neutron diffraction data has been collected. After reaching the yield limit, unloads have been performed to study the accumulation of intergranular strain among various lattice plane families. T2 - 11th European Conference on Residual Stresses CY - Prag, Czech Republic DA - 03.06.2024 KW - Additive Manufacturing KW - Laser Powder Bed fusion KW - Diffraction Elastic Constants KW - Microstructure KW - Electron Backscatter Diffraction PY - 2024 AN - OPUS4-60289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Luzin, V. A1 - Čapek, J. A1 - Polatidis, E. A1 - Bruno, Giovanni T1 - Laser Powder Bed Fusion: Fundamentals of Diffraction-Based Residual Stress Determination N2 - The general term additive manufacturing (AM) encompasses processes that enable the production of parts in a single manufacturing step. Among these, laser powder bed fusion (PBF-LB) is one of the most commonly used to produce metal components. In essence, a laser locally melts powder particles in a powder bed layer-by-layer to incrementally build a part. As a result, this process offers immense manufacturing flexibility and superior geometric design capabilities compared to conventional processes. However, these advantages come at a cost: the localized processing inevitably induces large thermal gradients, resulting in the formation of large thermal stress during manufacturing. In the best case, residual stress remains in the final parts produced as a footprint of this thermal stress. Since residual stress is well known to exacerbate the structural integrity of components, their assessment is important in two respects. First, to optimize process parameter to minimize residual stress magnitudes. Second, to study their effect on the structural integrity of components (e.g., validation of numerical models). Therefore, a reliable experimental assessment of residual stress is an important factor for the successful application of PBF-LB. In this context, diffraction-based techniques allow the non-destructive characterization of the residual stress. In essence, lattice strain is calculated from interplanar distances by application of Braggs law. From the known lattice strain, macroscopic stress can be determined using Hooke’s law. To allow the accurate assessment of the residual stress distribution by such methods, a couple of challenges in regard of the characteristic PBF-LB microstructures need to be overcome. This presentation highlights some of the challenges regarding the accurate assessment of residual stress in PBF-LB on the example of the Nickel-based alloy Inconel 718. The most significant influencing factors are the use of the correct diffraction elastic constants, the choice of the stress-free reference, and the consideration of the crystallographic texture. Further, it is shown that laboratory X-ray diffraction methods characterizing residual stress at the surface are biased by the inherent surface roughness. Overall, the impact of the characteristic microstructure is most significant for the selection of the correct diffraction elastic constants. In view of the localized melting and solidification, no significant gradients of the stress-free reference are observed, even though the cell-like solidification sub-structure is known to be heterogeneous on the micro-scale. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive Manufacturing KW - Residual Stress KW - Electron Backscatter Diffraction KW - Laser Powder Bed Fusion PY - 2024 AN - OPUS4-60294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Martin A1 - Kromm, Arne A1 - Kannengiesser, Thomas A1 - Dittmann, Florian A1 - Varfolomeev, Igor T1 - Influence of the weld geometry on the residual stress reduction using low transformation temperature welding consumables N2 - Low transformation temperature (LTT) welding consumables offer an innovative approach to increase the fatigue strength of welded high-strength steel structures. LTT welding consumables are characterized by a martensitic phase transformation near ambient temperature, which generates compressive residual stresses in the weld and heat affected zone (HAZ). The aim is to achieve a weld geometry, which generate high compressive residual stresses at the fatigue crack critical weld toe. Longitudinal stiffeners were gas metal arc welded using a conventional welding consumable; the base material was a high strength steel S700M. A chromium-nickel alloyed LTT consumable was deposit subsequently just on front sides of the stiffeners. Different welding parameters led to varying cross sections of the weld. The residual stresses were determined using X-ray diffraction (XRD) in the crack critical HAZ. When using only the conventional, the HAZ is characterized by high tensile residual stresses. The additional application of the LTT alloy leads to a significant reduction of the tensile residual stresses. Depending on the weld geometry, even compressive residual stresses can be observed at the weld toe T2 - ECRS 2024 CY - Prague, Czech Republic DA - 03.06.2024 KW - LTT (Low Transformation Temperature) KW - Residual stress reduction KW - Fatigue PY - 2024 AN - OPUS4-60305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erxleben, Kjell A1 - Kaiser, Sebatian A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Challenges in repair welding of in-service h2-pipelines N2 - Hydrogen will be one of the most important energy carriers of tomorrow. For the necessary large-scale and long-distance transportation, a reliable pipeline infrastructure is required. It is meanwhile in the most countries accepted to follow a two-way strategy by (I) repurposing the existing natural gas (NG) grid combined with (II) the installation of new pipelines. For example, in Europe a so-called European Hydrogen Backbone (EHB) is planned for 2040. Currently, 28 countries work together to establish a hydrogen pipeline grid of several thousands of kilometers. In that connection, a wide number of materials are used with different thicknesses, strength levels, chemical composition, surface conditions and so on. Worldwide research projects suggest the general compatibility of the currently applied pipeline steels e.g., in Germany the “SysWestH2” project. Nonetheless, the hydrogen gas grid will require regular inspections, repair, and maintenance. In addition, sometimes pipeline tees are required to connect new grids or pipelines the existing infrastructure. From that point of view, existing concepts from NG-grids must be investigated in terms of the transferability to hydrogen service. An overview on occurring challenges for this hydrogen transition, especially for in-service weld repair procedures is given in this presentation. T2 - AMPP 2024 - The Association for Materials Protection and Performance CY - Genoa, Italy DA - 09.06.2024 KW - In-service KW - Pipeline KW - Repair welding KW - High-pressure KW - Hydrogen PY - 2024 AN - OPUS4-60327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poka, Konstantin A1 - Ali, Sozol A1 - Saeed, Waleed A1 - Merz, Benjamin A1 - Epperlein, Martin A1 - Hilgenberg, Kai T1 - Design and implementation of a machine log for PBF-LB/M on basis of IoT communication architectures and an ETL pipeline N2 - AbstractPowder Bed Fusion with Laser Beam of Metals (PBF-LB/M) has gained more industrial relevance and already demonstrated applications at a small series scale. However, its widespread adoption in various use cases faces challenges due to the absence of interfaces to established Manufacturing Execution Systems (MES) that support customers in the predominantly data-driven quality assurance. Current state-of-the-art PBF-LB/M machines utilize communication architectures, such as OPC Unified Architecture (OPC UA), Message Queuing Telemetry Transport (MQTT) and Representational State Transfer Application Programming Interface (REST API). In the context of the Reference Architecture Model Industry 4.0 (RAMI 4.0) and the Internet of Things (IoT), the assets, particularly the physical PBF-LB/M machines, already have an integration layer implemented to communicate data such as process states or sensor values. Missing is an MES component acting as a communication and information layer. To address this gap, the proposed Extract Transform Load (ETL) pipeline aims to extract relevant data from the fabrication of each build cycle down to the level of scan vectors and additionally to register process signals. The suggested data schema for archiving each build cycle adheres to all terms defined by ISO/TC 261—Additive Manufacturing (AM). In relation to the measurement frequency, all data are reorganized into entities, such as the AM machine, build cycle, part, layer, and scan vector. These scan vectors are stored in a runtime-independent format, including all metadata, to be valid and traceable. The resulting machine log represents a comprehensive documentation of each build cycle, enabling data-driven quality assurance at process level. KW - FAIR data KW - Data-driven quality assurance KW - Laser powder bed fusion PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601256 DO - https://doi.org/10.1007/s40964-024-00660-7 SN - 2363-9512 SP - 1 EP - 12 PB - Springer Science and Business Media LLC AN - OPUS4-60125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Konert, Florian A1 - Lindner, Charlotte A1 - Nietzke, Jonathan A1 - Freitas, Tomás A1 - Drexler, Andreas A1 - Sobol, Oded T1 - Evaluation of hydrogen effect on hardened and annealed 100Cr6 steel N2 - The use of hydrogen demands high safety requirements, since hydrogen can be absorbed by metallic materials and may cause hydrogen embrittlement (HE) under certain conditions. Slow strain rate (SSR) tensile testing is a widespread method to quantify the hydrogen-induced ductility loss of alloys. Here, the hollow specimen technique was used to evaluate the effect of 150 bar hydrogen on the tensile properties of solution annealed and hardened 100Cr6 steel, which is a common material for bearing systems. This technique reduces the required amount of hydrogen and minimizes the duration and costs of the tests performed compared to in-situ tensile tests in autoclaves. T2 - EPRI Workshop on Hydrogen Embrittlement 2024 CY - Oxford, UK DA - 23.06.2024 KW - Hydrogen KW - Hydrogen Embrittlement KW - Hollow Specimen Technique KW - 100Cr6 PY - 2024 AN - OPUS4-60476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Drexler, Andreas A1 - Konert, Florian A1 - Domitner, Josef T1 - Hydrogen Solubility in Steels – What is the Role of Microstructure? N2 - Hydrogen gas plays a key role in the European energy transition strategy. When transmitting and storing compressed hydrogen gas, safety is one of the most important conditions. With increasing hydrogen pressure and temperature, more hydrogen is absorbed by the steel components, such as pipelines or valves, and may lead to embrittlement. Although, a deep understanding of microstructure on the hydrogen solubility in steels is missing. Classical Sieverts’ law is only valid at high temperatures and low gas pressures. For that purpose, new theory is presented, which explains the role of microstructure on hydrogen solubility. Hydrogen trapping at microstructural defects is a thermally activated mechanism and causes an increase of the hydrogen solubility with decreasing temperatures. This mechanism has to be considered in cryogenic applications, such liquid or compressed hydrogen storage. T2 - EPRI Workshop on Hydrogen Embrittlement 2024 CY - Oxford, UK DA - 23.06.2024 KW - Hydrogen KW - Sieverts’ law KW - Hydrogen solubility in steels KW - Hydrogen trapping PY - 2024 AN - OPUS4-60477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nietzke, Jonathan A1 - Krzysch, Zephanja A1 - Konert, Florian A1 - Freitas, Tomás A1 - Sobol, Oded T1 - Influence of strain rate on the effect of hydrogen in pre-charged 316L stainless steel: A comparison of conventional and hollow specimen testing N2 - The growing demand for hydrogen requires an expansion of testing capabilities to assess the performance of metallic materials under hydrogen exposure. Considering only gaseous atmospheres, there is a variety of in-situ and ex-situ methods used to investigate the material behavior while or after exposed to hydrogen, respectively. Among these methods, a more conservative one is the in-situ testing at slow strain rates (SSRT) using conventional tensile specimens. While results obtained by a conservative procedure may be more applicable in many cases than those of ex-situ experiments, the tests are quite demanding, leading to limited testing capacities and high costs, especially for very slow strain rates. A possible solution that can enable in-situ testing at relatively low cost is the hollow specimen technique which gained increasing interest in the last decade. The main reasons are the minimal volume of hydrogen required and the elimination of a high-pressure hydrogen autoclave leading to significantly lower costs and enabling more laboratories worldwide to perform these tests. However, interpreting results from hollow specimens, especially when compared to conventional ones, remains a significant challenge. To address this, an experimental study was conducted using conventional and hollow specimens, both uncharged and pre-charged. Pre-charging was achieved using pure hydrogen (5.0, i.e. 99.999 %) at 100 bar and 300 °C for around 21 days. In order to obtain suitable reference specimens, other specimens were stored in argon at 100 bar and 300 °C for the same period of time. The tests were performed at various strain rates, down to 1E-6 1/s. While these ex-situ experiments are not directly comparable to in-situ tests with both types of specimens, they do provide some insights into the differences between the results of hollow and conventional specimens. Therefore, the elongation at fracture and reduction of area (RA) were compared, among other aspects. In addition, fractographical analyses were carried out using SEM images. Elongation at fracture was not significantly affected by hydrogen in conventional specimens, but it was slightly reduced in hollow specimens. RA, on the other hand, was lower for tests with hydrogen in both types of specimens across all strain rates. Moreover, the strain rate did not appear to influence hydrogen embrittlement in conventional specimens whereas in hollow specimens, tests conducted at higher strain rates (1E-4 1/s) showed a greater impact of hydrogen on elongation at fracture than those at lower strain rates (1E-6 1/s), which is contrary to the typical expectation. These findings suggest that the influence of hydrogen differs between conventional and hollow specimens, possibly due to factors such as surface roughness and differing stress states. However, further experiments are needed to fully understand these differences, including in-situ experiments to understand potential differences in hydrogen absorption between the two specimen types. T2 - EPRI Workshop on Hydrogen Embrittlement CY - Oxford, England, United Kingdom DA - 23.06.2024 KW - Stainless steel KW - Hollow specimen KW - Pre-charging KW - Hydrogen PY - 2024 AN - OPUS4-60494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grimault de Freitas, Tomás A1 - Konert, Florian A1 - Nietzke, Jonathan A1 - Krzysch, Zephanja A1 - Böllinghaus, Thomas A1 - Michler, Thorsten A1 - Wackermann, Ken A1 - Oesterlin, Heiner A1 - Tlili, Mohamed A1 - Elsen-Humberg, Stephan A1 - Koenigs, Timo A1 - Ruchti, Peter A1 - Beitelschmidt, Denise A1 - Systermans, Thomas A1 - Sobol, Oded T1 - Comprehensive Standardisation of the Hollow Specimen Technique for Tests in High-Pressure Hydrogen Gas N2 - The hollow specimen technique is a simple and economical method that has the potential to overcome the limitations and complement the current techniques for qualifying metallic materials under highpressure hydrogen gas. In this technique, an axial hole is manufactured in a tensile specimen, which is then filled with hydrogen gas, sealed, and placed in a standard testing machine. This method requires significantly lower amounts of hydrogen, resulting in fewer safety measures and does not require complex equipment or a specialised laboratory, unlike the conventional autoclave technique. Initial studies have demonstrated the feasibility of assessing hydrogen effects in metallic materials using the hollow specimen technique. This led to the establishment of the committee ISO/TC 164/SC 1/WG 9 to standardise the method, however, there are still open questions that currently prevent the technique from being standardised for hydrogen testing. These open questions are being addressed in the H2HohlZug project, which is presented in this contribution. T2 - Oxford - EPRI Hydrogen Embrittlement Workshop CY - Oxford, United Kingdom DA - 23.06.2024 KW - Hollow Specimen Technique KW - High-pressure Gaseous Hydrogen KW - Hydrogen Embrittlement KW - Tensile Testing PY - 2024 AN - OPUS4-60501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Werner, Tiago A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit A1 - Evans, Alexander T1 - Microstructure Based Study on the Low Cycle Fatigue Behavior of Stainless Steel 316L manufactured by Laser Powder Bed Fusion N2 - Due to the advantages of Laser Powder Bed Fusion (PBF-LB), i.e., design freedom and the possibility to manufacture parts with filigree structures, and the considerable amount of knowledge available for 316L in its conventional variant, the mechanical behavior, and related microstructure-property relationships of PBF-LB/316L are increasingly subject of research. However, many aspects regarding the - application-relevant - mechanical behavior at high temperatures are not yet fully understood. Here, we present the results of an experimental study on the LCF behavior of PBF-LB/316L featuring a low defect population, which makes this study more microstructure-focused than most of the studies in the literature. The LCF tests were performed between room temperature (RT) and 600 °C. The mechanical response is characterized by strain-life curves, and hysteresis and cyclic deformation curves. The damage and deformation mechanisms are studied with X-ray computed tomography, and optical and electron microscopy. The PBF-LB/M/316L was heat treated at 450 °C for 4 h, and a hot‑rolled (HR) 316L variant with a fully recrystallized equiaxed microstructure was tested as a reference. Besides, selected investigations were performed after a subsequent heat treatment at 900 °C for 1 h. The PBF-LB/316L exhibits higher cyclic stresses than HR/316L for most of the fatigue life, especially at room temperature. At the smallest strain amplitudes, the fatigue lives of PBF-LB/M/316L are markedly shorter than in HR/316L. The main damage mechanisms are multiple cracking at slip bands (RT) and intergranular cracking (600 °C). Neither the melt pool boundaries nor the gas porosity have a significant influence on the LCF damage mechanism. The cyclic stress-strain deformation behavior of PBF-LB/M/316L features an initial hardening followed by a continuous softening. The additional heat treatment at 900 °C for 1 h led to decreased cyclic stresses, and a longer fatigue life. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - AGIL KW - 316L KW - Microstructure KW - Low Cycle Fatigue KW - Heat Treatment KW - Laser Poeder Bed Fusion PY - 2024 AN - OPUS4-60432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Han, Ying A1 - Kruse, Julius A1 - Radners, Jan A1 - Madia, Mauro A1 - von Hartrott, Philipp T1 - Fatigue Behavior at Elevated Temperature of Alloy EN AW-2618A N2 - The influence of test temperature and frequency on the fatigue life of the alloy EN AW-2618A (2618A) was characterized. The overaged condition (T61 followed by 1000 h/230 °C) was investigated in load-controlled tests with a stress ratio of R = -1 and two test frequencies (0.2 Hz, 20 Hz) at room temperature and at 230°C, respectively. An increase in the test temperature reduces fatigue life, whereby this effect is more pronounced at lower stress amplitudes. Decreasing the test frequency in tests at high temperatures further reduces the service life. T2 - ICAA19 International Conference on Aluminum Alloys CY - Atlanta, GA, USA DA - 23.06.2024 KW - Aluminium alloy KW - EN AW 2618A KW - Fatigue KW - Overaging KW - Damage behavior PY - 2024 AN - OPUS4-60426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Serrano-Munoz, Itziar A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Sprengel, Maximilian A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Bruno, Giovanni T1 - Diffraction based residual stress analysis for laser powder bed fusion alloys N2 - Laser Powder Bed Fusion (PBF-LB/M) is a layer wise metal additive manufacturing (AM) technology, which enables significant advancements of component design, leading to potential efficiency and performance improvements. However, the thermal cycles inherent to the process comprising large localized thermal gradients and repeated melting and solidification cycles leads to the generation of high magnitude residual stresses. These residual stresses can be detrimental both during manufacturing of components and in subsequent application. Therefore, a deep understanding of the influence of process parameters on the residual stresses are crucial for efficient manufacturing and safe application. The experimental characterization of these residual stresses is therefore crucial and can provide a reliable baseline for simulations of both the process and applications. Diffraction-based methods for residual stress analysis using penetrating neutrons and high energy X-rays enable non-destructive spatially resolved characterization of both surface and bulk residual stresses. However, the unique microstructural features inherent to the process can challenge some of our assumptions when using these methods. These challenges include the determination of a stress-free reference, the use of correct elastic constants (both SCEC and DEC) and the influence of surface roughness, texture, and porosity on residual stresses. This presentation will detail recent insights and recommendations for the characterization of residual stresses in a range of PBF-LB/M metallic alloys (Fe, Ni, Al and Ti) T2 - 11th edition of the European Conference on Residual Stress (ECRS11) CY - Prague, Czech Republic DA - 03.06.2024 KW - Residual stress KW - Additive manufacturing KW - Laser Powder Bed Fusion KW - Diffraction PY - 2024 AN - OPUS4-60443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Kelleher, J. A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - RS analysis in laser powder bed fused austenitic stainless steel N2 - The determination of residual stress in additively manufactured materials is a challenge, even after decades from the establishment of the basics of residual stress analysis. This is due to the peculiar microstructure of such materials. In fact, researchers have discovered that conventional methods for the determination of RS in materials do not properly work for AM materials. In this tutorial, the basics of RS analysis will be explained, together with the basics of AM manufacturing techniques. The microstructure of the peculiar materials (AM) dealt with here will be elucidated. Successively, the necessary modifications to the conventional approaches to RS analysis will be explained and case studies will be displayed, for the attendant to touch with hands the peculiarities of the approaches. Finally, a few experimental and theoretical tips will be given on dos and don’ts for a correct determination of RS in AM materials. T2 - 11th edition of the European Conference on Residual Stress (ECRS11) CY - Prague, Czech Republic DA - 03.06.2024 KW - Residual stress KW - Additive manufacturing KW - Diffraction KW - Laser Powder Bed Fusion KW - AGIL KW - 316L PY - 2024 AN - OPUS4-60445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ekici, Nilsah A1 - Sobol, Oded A1 - Andrea Shmueli, Alvarado A1 - Schümann, Heiner A1 - Marinova, Nevena A1 - Blokland, Huib A1 - Kostereva, Alexandra T1 - SHIMMER project: safe hydrogen injection modelling and management for european gas network resilience N2 - To accelerate the transition to a low-carbon economy while exploiting existing infrastructure, hydrogen can be injected to the natural gas network. However, many technical and regulatory gaps should be closed, and adaptations and investments made to ensure that multi-gas networks across Europe will be able to operate in a reliable and safe way while providing a highly controllable gas quality and required energy demand. The SHIMMER project aims to enable a higher integration and safer hydrogen injection management in multi-gas networks by contributing to the knowledge and better understanding of hydrogen projects, their risks, and opportunities. T2 - EGATEC 2024 CY - Hamburg, Germany DA - 18.06.2024 KW - Hydrogen KW - Gas grid KW - Database KW - Low-carbon PY - 2024 AN - OPUS4-60519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Leo, Reinhold A1 - Sobol, Oded A1 - Böllinghaus, Thomas T1 - Duplex Stainless Steels: Compatibility for High-Pressure Hydrogen Applications N2 - The key for a transition into clean energy sources is based on the construction of safe energy infrastructure, such as transportation pipelines for Hydrogen. Duplex Stainless Steels (DSS) are an essential component used nowadays in the construction of transportation pipelines because of their many distinctive qualities. The choice of DSS for a particular hydrogen application mainly depends on its susceptibility level to Hydrogen Embrittlement (HE) or Hydrogen Assisted Cracking (HAC). Since the 20th century, the literature indicates three factors that must be considered: the microstructure of the alloy steel, the hydrogen concentration, and the mechanical load. Several mechanisms have been also proposed to describe the occurring microscale processes behind HE or HAC, and these include metastable phase transformation, Hydrogen Enhanced Localized Plasticity (HELP), and Hydrogen Enhanced Decohesion (HEDE). The following contribution describes the path to ascertain if DSS is suitable for high-pressure gaseous hydrogen applications. The interplay between several critical factors that result in HAC was examined using high-pressure gaseous hydrogen charging, Electron Backscatter Diffraction (EBSD), and hydrogen concentration measurements using Carrier Gas Hot Extraction (CGHE). It was determined whether the strain-induced martensitic transformation of the austenite was present in a DSS 1.4462 (DSS2205) in-service pipe and in samples of freshly charged DSS 1.4462. In comparison to the common electrochemical charging described broadly in the literature, no major direct martensitic phase transformation of the austenite phase under a high-pressure hydrogen environment was observed. As for future experiments, the intention is to analyse the impact of high-pressure gaseous hydrogen on the welded components of this grade, and under mechanical load via the hollow specimen technique. T2 - Oxford - EPRI Workshop on Hydrogen Embrittlement 2024 CY - Oxford, United Kingdom DA - 23.06.2024 KW - High-Pressure Hydrogen KW - Pipelines KW - Duplex Stainless Steels KW - Haydrogen Assisted Cracking KW - Hollow Specimen Technique PY - 2024 AN - OPUS4-60525 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Clute, C. A1 - Balasooriya, Winoj A1 - Cano Murillo, Natalia A1 - Theiler, Géraldine A1 - Kaiser, A. A1 - Fasching, M. A1 - Schwarz, Th. A1 - Hausberger, A. A1 - Pinter, G. A1 - Schloegl, S. T1 - Morphological investigations on silica and carbon-black filled acrylonitrile butadiene rubber for sealings used in high-pressure H2 applications N2 - Effects of NBR formulations on properties for high-pressure gas systems were tested. Functionalized silica enhances typical properties to a comparable range like CB. The balance of additives results in suitable RGD performance. Silica filled NBR shows lower H2 uptake compared to non-plasticized CB filled NBR. Morphology of CB filled NBR is less affected by H2 than silica filled grades. KW - High-pressure hydrogen gas KW - Sealing KW - Acrylonitrile butadiene rubber KW - Filler-rubber-interaction KW - Rapid gas decompression (RGD) PY - 2024 DO - https://doi.org/10.1016/j.ijhydene.2024.04.133 SN - 0360-3199 VL - 67 SP - 540 EP - 552 PB - Elsevier Ltd. AN - OPUS4-60559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel A1 - Mente, Tobias A1 - Falahat, Ala'A . M. Al A1 - Tengattini, Alessandro A1 - Dal Pont, Stefano A1 - Kardjilov, Nikolay T1 - Crystallographic phase transformations and corresponding temperature distributions during gtaw of supermartensitic stainless steel visualized by nbei N2 - We investigated the phase transformations during butt-welding of supermartensitic steel plates with help of Neutron-Bragg-Edge Imaging (NBEI). Gas tungsten arc welding (GTAW) was used with a motorized torch allowing for automated weldments. The austenitization in the heat affected zone (HAZ) could be clearly visualized at λ = 0.39 nm, a wavelength smaller than the Bragg edge wavelengths of both austenite and martensite. The re-transformation into the martensitic phase during cooling was clearly detected. However, we observed an unexpected additional change in transmission at λ = 0.44 nm, a wavelength larger than the wavelength of the Bragg edges of both the martensitic and austenitic phases. We attribute this change to the Deybe-Waller-Factor that describes the temperature dependence of coherent scattering at a crystal lattice. The observed two-dimensional attenuation map corresponds well with a temperature distribution modelling by software macros in ANSYS [3]. Here, the absolute temperature values could be achieved by calibrating the modelled attenuation with help of a thermocouple placed at the steel plate. This allows in return for a direct two-dimensional temperature reading based on the Debye-Waller-relation between neutron attenuation and sample temperature. T2 - WCNR-12 CY - Idaho Falls, Id, USA DA - 02.06.2024 KW - Neutron KW - Radiography KW - Welding PY - 2024 AN - OPUS4-60242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Ávila Calderón, Luis Alexander A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Formation of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. T2 - 4th Symposium on Materials and Additive Manufacturing - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - AISI 316L KW - Additive Manufacturing KW - Computed Tomography KW - Creep KW - Laser Powder Bed Fusion KW - Microstructure KW - PBF-LB/M/316L PY - 2024 AN - OPUS4-60295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Chaudry, Mohsin Ali A1 - Scheuschner, Nils A1 - Blasón Gonzalez, Sergio A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Thermal history transfer from complex components to representative test specimens in laser powder bed fusion N2 - Additively manufactured components are characterized by heterogeneous mechanical properties due to variations of the microstructure, flaws and residual stresses resulting from the inhomogeneous fabrication process. The large number of influencing factors poses a further challenge in understanding the correlation between material properties, process parameters and component geometry. Therefore, the qualification of components based on witness specimens produced within the same job is questionable. This work aims to present a new strategy for the characterization of PBF-LB/M components based on representative specimens. The key assumption is the feasibility of a transfer of the thermal history from a component to a specimen. It is assumed that similar material properties are determined for components and specimens produced adopting a similar thermal history. After the definition of a region of interest in the component, a combination of thermal analyses by means of finite elements and in-situ experimental determination of the thermal history through infrared thermography is used to produce test coupons with a similar thermal history. The effectiveness of the procedure is demonstrated on a pressure vessel for applications in the chemical industry. KW - Additive manufacturing KW - Heat accumulation KW - Thermal history KW - In situ monitoring KW - Process simulation KW - Representative specimens PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602651 DO - https://doi.org/10.1007/s40964-024-00689-8 SN - 2363-9512 SN - 2363-9520 SP - 1 EP - 16 PB - Springer CY - Cham, Switzerland AN - OPUS4-60265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schob, Daniela A1 - Tabin, Jakub A1 - Kowalko, Jakub A1 - Roszak, Robert A1 - Ziolkowski, Grzegorz A1 - Ziegenhorn, Matthias A1 - Hilgenberg, Kai T1 - Comparative Analysis FFF vs. cold rolled 316L Samples N2 - This study provides insights into the properties of 316L stainless steel produced by additive manufacturing using fused filament fabrication (FFF). One key finding is particularly noteworthy: in significant contrast to cold-rolled 316L, FFF316L develops a pronounced martensite phase after fabrication. The comprehensive comparative analysis shows that FFF316L not only retains the ferrite volume content, but that this is also significantly influenced by the build-up direction. Despite the sintering process, which typically involves densification of the material, a pore volume fraction of 8.45 % remains, which influences the mechanical properties. Although FFF316L has lower elastic modulus and tensile strength values compared to cold-rolled 316L, its ductility is still competitive. The study further reveals that deformation-induced martensite forms at the intersections of the deformation twins and ferrite islands form at the grain boundaries during the compression and sintering phases. These findings highlight the challenges associated with FFF316L in specific application fields and signal the need to continue to carefully evaluate and improve the development of manufacturing technologies. T2 - 4th Symposium on Materials and Additive Manufacturing - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - Additive manufacturing KW - Fused Filament Fabrication KW - Computed Tomography KW - 316L Stainless Steel KW - Deformation-Induced Martensite PY - 2024 AN - OPUS4-60302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther T1 - Towards component safety in laser powder bed fusion of metals N2 - The thermal history during additive manufacturing of complex components differs significantly from the thermal history of geometrically primitive test specimens. This can result in differences in properties that can lead to different material behavior. In this talk, the concept of representative test specimens is introduced, which enables the transfer of thermal histories from complex geometries to simple geometries, which can lead to better comparability of material properties. T2 - Additive Alliance CY - Hamburg, Germany DA - 05.03.2024 KW - Additive manufacturing KW - Heat accumulation KW - Laboratory specimens KW - In situ monitoring KW - Representative specimens KW - Thermal history PY - 2024 AN - OPUS4-60263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Chaudry, Mohsin Ali A1 - Scheuschner, Nils A1 - Blasón Gonzalez, Sergio A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Development of representative test specimens by thermal history transfer in laser powder bed fusion N2 - The use of components manufactured by laser powder bed fusion (PBF LB/M) and subjected to fatigue loading is still hampered by the uncertainty about the homogeneity of the process results. Numerous influencing factors including the component’s geometry contribute to the risk of process instability and resulting inhomogeneity of properties. This drastically limits the comparability of different built parts and requires expensive full component testing. The thermal history as the spatiotemporal temperature distribution has been identified as a major cause for flaw formation. Therefore, it can be hypothesized that a similar thermal history between components and test specimens enhances their comparability. Following this assumption, a strategy is developed to transfer the intrinsic preheating temperature as a measure of comparability of thermal histories from a region of interest of a complex component to a simple test specimen. This transfer concept has been successfully proved by the use of FEM-based macroscale thermal simulations, validated by calibrated infrared thermography. An adoption of the specimen manufacturing process by the adjustment of the inter layer times was established to manufacture specimens which are representatives of a specific region of a large-scale component in terms of the thermal history similarity criterion. The concept is schematically illustrated in Figure 1 and was demonstrated using a pressure vessel geometry from the chemical industry. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive manufacturing KW - Thermal history KW - Laboratory specimens KW - In situ monitoring KW - Representative specimens PY - 2024 AN - OPUS4-60260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer A1 - Chaudhuri, Somsubrho A1 - Pittner, Andreas A1 - Winterkorn, Rene A1 - Palumbo, Davide A1 - de Finis, Rosa A1 - Galietti, Umberto T1 - Thermographic Investigation of the Anisotropic Behaviour of Additively Manufactured AISI 316 Steel using DED-arc N2 - Additive manufacturing is one of the most promising techniques for industrial production and maintenance, but the specifics of the layered structure must be considered. The Direct Energy Deposition-Arc process enables relatively high deposition rates, which is favourable for larger components. For this study, specimens with different orientations were prepared from one AISI316 steel block – parallel and orthogonal to the deposition plane. Quasistatic tensile loading tests were carried out, monitored by an infrared camera. The obtained surface temperature maps revealed structural differences between both orientations. The consideration of surface temperature transients yields more details about the behaviour of the material under tensile loading than the conventional stress-strain-curve. These preliminary investigations were supplemented by thermographic fatigue trials. Although the anisotropy was also observed during fatigue loading the fatigue behaviour in general was the same, at least for both inspected specimens. The presented results demonstrate the abilities and the potential of thermographic techniques for tensile tests. T2 - 17th Quantitative Infrared Thermography Conference CY - Zagreb, Croatia DA - 01.07.2024 KW - Thermoelastic effect KW - Thermoplastic effect KW - Thermal stress analysis PY - 2024 AN - OPUS4-60574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diller, Johannes A1 - Siebert, Ludwig A1 - Winkler, Michael A1 - Siebert, Dorina A1 - Blankenhagen, Jakob A1 - Wenzler, David A1 - Radlbeck, Christina A1 - Mensinger, Martin T1 - An integrated approach for detecting and classifying pores and surface topology for fatigue assessment 316L manufactured by powder bed fusion of metals using a laser beam using μ$$ \mu $$CT and machine learning algorithms N2 - AbstractThis research aims to detect and analyze critical internal and surface defects in metal components manufactured by powder bed fusion of metals using a laser beam (PBF‐LB/M). The aim is to assess their impact on the fatigue behavior. Therefore, a combination of methods, including image processing of micro‐computed tomography (CT) scans, fatigue testing, and machine learning, was applied. A workflow was established to contribute to the nondestructive assessment of component quality and mechanical properties. Additionally, this study illustrates the application of machine learning to address a classification problem, specifically the categorization of pores into gas pores and lack of fusion pores. Although it was shown that internal defects exhibited a reduced impact on fatigue behavior compared with surface defects, it was noted that surface defects exert a higher influence on fatigue behavior. A machine learning algorithm was developed to predict the fatigue life using surface defect features as input parameters. KW - Fatigue KW - Machine learning KW - Micro-computed tomography KW - Powder bed fusion of metals using a laser beam KW - Quality assurance PY - 2024 DO - https://doi.org/10.1111/ffe.14375 SN - 8756-758X SP - 1 EP - 16 PB - John Wiley & Sons Ltd. AN - OPUS4-60593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin A1 - Poka, Konstantin A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Polte, Julian T1 - Advanced camera calibration for lens distortion correction in hybrid manufacturing processes: An exemplary application in laser powder bed fusion (PBF-LB/M) N2 - Hybrid additive manufacturing is becoming increasingly important in the field of additive manufacturing. Hybrid approaches combine at least two different manufacturing processes. The focus of this work is the build-up of geometries onto conventionally manufactured parts using Powder Bed Fusion with Laser Beam of Metals (PBF-LB/M). The hybrid build-up requires a precise position detection system inside the PBF-LB/M machines to determine the exact position of the existing component. For this purpose, high-resolution camera systems can be utilized. However, the use of a camera system is associated with several challenges. The captured images are subject to various distortions of the optical path. Due to these distortions, it is not possible to use the images for measurements and, therefore, it is not possible to calculate the positions of objects. In this study a homography matrix is calculated to correct keystone distortion in the images. Different calibration patterns have been tested for the calculation of the homography matrix. The influence of the number of calibration points on the precision of position detection of objects is determined. Furthermore, the influence of an additional camera calibration by using ChArUco boards is evaluated. The result is a camera calibration workflow with associated calibration pattern for a precise position detection of parts inside PBF-LB/M machines allowing a hybrid build-up with minimum physical offset between base component and build-up. T2 - euspen’s 24th International Conference & Exhibition CY - Dublin, Ireland DA - 10.06.2024 KW - Additive manufacturing KW - Hybrid build-up KW - Position detection KW - Camera calibration PY - 2024 SP - 1 EP - 4 AN - OPUS4-60599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Benjamin, Merz A1 - Poka, Konstantin A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Polte, Julian T1 - Advanced camera calibration for lens distortion correction in hybrid additive manufacturing processes N2 - Hybrid additive manufacturing is becoming increasingly important in the field of additive manufacturing. Hybrid approaches combine at least two different manufacturing processes. The focus of this work is the build-up of geometries onto conventionally manufactured parts using laser-based powder bed fusion of metals (PBF-LB/M). The hybrid build-up requires a precise position detection system inside the PBF-LB/M machines to determine the exact position of the existing component. For this purpose, high-resolution camera systems can be utilized. However, the use of a camera system is associated with several challenges. The captured images are subject to various distortions of the optical path. Due to these distortions, it is not possible to use the images for measurements and, therefore, it is not possible to calculate the positions of objects. In this study a homography matrix is calculated to correct keystone distortion in the images. Different calibration patterns have been tested for the calculation of the homography matrix. The influence of the number of calibration points on the precision of position detection of objects is determined. Furthermore, the influence of an additional camera calibration by using ChArUco boards is evaluated. The result is a camera calibration workflow with associated calibration pattern for a precise position detection of parts inside PBF-LB/M machines allowing a hybrid build-up with minimum physical offset between base component and build-up. T2 - euspen’s 24th International Conference & Exhibition CY - Dublin, Ireland DA - 10.06.2024 KW - Aditive Manufacturing KW - Hybrid build-up KW - Position detection KW - Camera calibration PY - 2024 AN - OPUS4-60600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brunner-Schwer, Christian A1 - Üstündağ, Ömer A1 - Bakir, Nasim A1 - Akyel, Fatma T1 - How innovative welding technology can speed up the wind tower manufacturing process eightfold N2 - In the wind industry, a great deal of welding is required for the manufacture of foundation structures, floating platforms and towers. The poster illustrates how this welding process can be realised much more efficiently with the help of electromagnetic weld pool backing. T2 - Wind Europe Annual Event 2024 CY - Bilbao, Spain DA - 20.03.2024 KW - Schweißen KW - Laserschweißen KW - Windeneergie PY - 2024 AN - OPUS4-60604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René A1 - Fabry, Çağtay A1 - Rethmeier, Michael A1 - Ulbricht, Alexander A1 - Bruno, Giovanni T1 - Additive Manufacturing of High Strength Al-Mg-Si Alloys with DED-Arc N2 - Direct energy deposition additive manufacturing technologies that utilize an electric arc have great potential for generating large volume metal components. However, selecting process parameters that yield the desired near net shape design and requested mechanical component behavior is not a trivial task due to the complex relationship between all process parameters and material characteristics. This presentation exemplifies the application of a newly developed solid welding wire doped with TiB to enhance grain refinement in the deposited metal for additive manufacturing based on DED-Arc of high-strength precipitation hardening AlMgSi-aluminum alloys. It is worth noting that the solid wire is the result of our preliminary metallurgical studies on grain refinement in aluminum weld metal. Consequently, research focuses on the correlation between process parameters and component quality to understand the underlying mechanisms. This is crucial for evaluating a robust process parameter space that yields component quality in line with corresponding standards which are mainly taken from welding technology. Specifically, we examine component quality by analyzing pore size and distribution, as well as grain morphology. To enhance the mechanical properties of the deposited metal, a post-weld heat treatment was conducted, comprising of solution treatment, quenching, and artificial aging. The study also evaluates the effects of various heat treatment strategies on the final mechanical properties of the material. To demonstrate the applicability of 3D metal printing of high-strength aluminium alloys, a more complex demonstrator was created. It has been shown that DED-Arc can produce high-volume aluminium parts with the same quality as the corresponding subtractive processing strategy. Additionally, the entire additive manufacturing chain has been digitally integrated, enabling traceability of all relevant process steps, which is essential for reliable subsequent quality assessment. T2 - 4th Symposium on Materials and Additive Manufacturing - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - DED-Arc KW - High-stength aluminium alloys KW - Grain refinement KW - Quality assurance PY - 2024 AN - OPUS4-60248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Çağtay A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Winterkorn, René T1 - Towards arc welding reference data: Open Science laboratories at BAM N2 - As industries move for ever faster development and adoption cycles of emerging new technologies in the field of welding, the meticulous and longer-winded approach of the scientific research process can feel harder to integrate. To help bridge this gap and increase the speed, quality, and adoption rate of publicly funded research, the Bundesanstalt für Materialforschung und -prüfung (BAM) continues to work towards enabling scientists with direct access to necessary software tools and - in the future – highest quality welding research reference data to further foster collaborations. On the experimental side, the arc welding group at BAM division 9.3 “welding technologies” is continuing to expand and upgrade its capacities of robotic welding systems with integrated state of the art sensor technologies and software solutions. This allows all experiments to be recorded and measured in micro-millimeter accuracy and at sub-millisecond precision, including welding process data, complete spatial geometry and temperature measurements, process video recordings and more. The custom software-based solutions and interfaces allow scaling of the welding systems from large thick plate offshore applications to small additive repair weldments in wind turbine blades to multi-hour continuous weldments in additive manufacturing applications. In addition to the data gathered during the welding process itself, the relevant testing results and materials properties produced at BAM or externally can be integrated seamlessly. This allows detailed traceability of all results back to the actual welding process. Regardless of the scope and application, complete datasets can be made accessible for research or industry partners in the highest resolution based on the open source WelDX (welding data exchange) file format. Figure 1. Welding experiment representation including dynamic process data, cross-section imaging and hardness measurements from a single weldx file. The talk will give an overview of the experimental facilities and workflows as well as current software developments with a focus on research data quality assurance, traceability, and accessibility. Based on the integration into latest research trends and activities of the “welding technologies” division, the path to publishing reference datasets for arc welding process for various applications and materials is outlined and discussed. T2 - 4th Symposium on Materials and Additive Manufacturing - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - Additive Manufacturing KW - Arc welding KW - DED-arc KW - Research data KW - Reference data PY - 2024 AN - OPUS4-60249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Campari, Alessandro A1 - Konert, Florian A1 - Sobol, Oded A1 - Alvaro, Antonio T1 - A comparison of vintage and modern X65 pipeline steel using hollow specimen technique for in-situ hydrogen testing N2 - The transition toward a hydrogen-based economy requires a widespread transport and distribution network, and repurposed natural gas pipelines are a viable option. An assessment of the hydrogen-induced degradation of pipeline steels is needed to inject H2 gas into the existing infrastructure safely. The conservative and standardized method consists of in-situ tensile tests in an autoclave filled with high-pressure hydrogen gas. A proposed alternative method involves using a hollow specimen as containment volume and applying the gas pressure in the inner cavity. This technique has lower costs and shorter test preparation time but is not standardized yet. This study aims to evaluate and compare the tensile properties of API 5L X65 pipeline steel in two states: vintage and modern. The influence of the surface roughness is investigated through parallel tests with drilled and reamed specimens. Hydrogen tests are compared with reference tests in an inert environment. A significant hydrogen-induced decrease in tensile properties is observed, and no significant difference between vintage and modern X65 can be drawn. The reduction in tensile properties is more significant in specimens with higher inner surface roughness. The evaluation of surface conditions appears crucial when assessing the HE susceptibility of hydrogen transport and storage equipment. KW - Hydrogen embrittlement KW - Hollow specimen technique KW - Pipeline steel KW - SSRT PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-603013 DO - https://doi.org/10.1016/j.engfailanal.2024.108530 VL - 163 SP - 1 EP - 15 PB - Elsevier Ltd. AN - OPUS4-60301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical Investigations of Porosity Mitigation in High-Power Laser Beam Welding with an External Magnetic Field N2 - The application of an external magnetic field has been found to significantly mitigate the porosity ratio in laser beam welded joints of AlMg3 aluminum alloy. To investigate the suppression mechanism, a 3D transient multi-physics coupled numerical model of laser beam welding (LBW), including laser propagation, laser-material interaction, and magnetohydrodynamic effects, has been developed to calculate the keyhole dynamics and weld pool behaviors during the welding process. The induced time-averaged Lorenz force is directed downward. Under the effects of the external magnetic field, the fluid flow pattern and the weld pool profile are both affected. The keyhole geometry reconstruction algorithm is proposed to calculate the keyhole diameter and its fluctuation, which is used to evaluate the keyhole stability. The results indicate that the oscillating magnetic field does not affect keyhole stability obviously in the LBW of aluminum alloy. Moreover, an electromagnetic expulsive force is induced on the bubble because of the time-averaged downward Lorentz force. This electromagnetic expulsive force can accelerate the bubble escape speed considerably. An analytical model is developed for investigating the bubble escape window, which shows that the bubble escape window is expanded by 45% under the effect of the external magnetic field. The calculated results based on the developed model agree well with the experimental results. T2 - 77th IIW Annual Assembly and International Conference CY - Rhodes, Greece DA - 07.07.2024 KW - Numerical simulation KW - Deep penetration laser beam welding; Keyhole stability KW - Porosity defects KW - Magnetic field PY - 2024 AN - OPUS4-60667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liepold, Philipp A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Investigation of Solidification cracking susceptibility via Modified Varestraint Transvarestraint testing of high-strength filler material N2 - The Modified Varestraint Transvarestraint test is a local variant of the globally used Varestraint test. With these tests, measuring solidification cracking susceptibility as a function of welding parameters is possible. A wide range of welding parameters for four high-strength steel filler wires, including three solid wires and one-flux cored metal wire, were tested. All wires do show a very low solidification cracking susceptibility, regardless of the paramaters. On a low level, it could be shown that solidification cracking susceptibility increases with heat input and welding speed. T2 - IIW Annual Assembly CY - Rhodos, Greece DA - 07.07.2024 KW - MVT KW - Varestraint KW - Transvarestraint KW - Solidification cracking PY - 2024 AN - OPUS4-60684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liepold, Philipp A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Investigation of restraint intensity influence on solidification cracking of high-strength filler materials in fillet welds via CTS testing N2 - Testing of highly restraint high-strength fillet welds with regards to solidification cracking susceptibility. The Controlled Thermal Severity test was used to apply a high amount of strain to solidifying welds. Test welds were cut and observed under an optical light microscope. A clear positive correlation between restraint intensity and measured crack sizes, as well as heat input and measured crack sized could be observed. T2 - IIW Annual Assembly CY - Rhodos, Greece DA - 07.07.2024 KW - CTS KW - Solidification cracking KW - Hot cracking KW - High-strength steel PY - 2024 AN - OPUS4-60682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grimault de Freitas, Tomás A1 - de Araujo Abilio, André A1 - Konert, Florian A1 - Nietzke, Jonathan A1 - Krzysch, Zephanja A1 - Böllinghaus, Thomas A1 - Sobol, Oded T1 - Challenges with metallic materials for the transport and storage of hydrogen N2 - The hydrogen economy is one of the most important solutions to achieve climate neutrality in Europe. It involves the production, storage, transport and use of large quantities of hydrogen in existing and new infrastructures. Components along this supply chain, such as pipelines and storage tanks, are made of various metallic materials, with steel being the most common construction material. The rapid introduction of hydrogen therefore brings with it major challenges, in particular the need for comprehensive qualification of components and materials to ensure the sustainable and safe use of hydrogen technologies. This article provides an overview of the state of the art in the testing of materials and components as well as corresponding future trends and developments for a successful transition to a hydrogen economy. T2 - VGBE - Materials and Quality Assurance 2023 CY - Bergheim, Germany DA - 10.05.2023 KW - Hydrogen Embrittlement KW - Materials Testing KW - Component Testing KW - High-Pressure Gaseous Hydrogen KW - Hollow Specimen Technique PY - 2024 VL - 4 SP - 60 EP - 64 PB - VGBE Energy AN - OPUS4-60686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kaiser, Sebastian A1 - Erxleben, Kjell A1 - Kannengiesser, Thomas A1 - Kromm, Arne T1 - Repair welding of pressurized in-service hydrogen pipelines: A review on current challenges and strategies N2 - As energy carrier of the future, green hydrogen can make a decisive contribution to a sustainable energy supply. In Europe concrete plans for a hydrogen pipeline grid already exist, as the so called “European Hydrogen backbone”. As building a completely new pipeline grid is economically not justifiable, a dual-way strategy of repurposing natural gas (NG) pipelines and newly built pipelines is intended. Long distance pipeline grids require regular maintenance and repairs. In that conection, for natural gas (NG) pipelines in-service welding is state of the art. Concepts such as hot-tapping (drilling into pressurized pipelines) and “stoppling” (sealing off pipeline sections after installing bypasses or pressure relieves) allow the repair of damaged pipeline sections or the installation of new branches without shutting the pipeline down. The EIGA 121/14 guideline already pointed out in 2014 that “a hydrogen hot-tap shall not be considered a routine procedure”. This shows that the determination of the transferability of these repair concepts to hydrogen pipelines is of utmost importance. Due to the degrading effects of hydrogen on mechanical proper-ties, commonly referred to as “hydrogen embrittlement” it is necessary to understand and investigate the occurring effects. In the special case of repair welding on in-service hydrogen pipelines an increased hydro-gen uptake due to a large heat input and microstructural changes in the material needs to be considered. For this reason, this paper gives an overview on existing weld repair concepts and its risks and limitations in terms of hydrogen absorption and possible embrittlement effects when transferred to hydrogen pipelines. The complexity lies in a large variety of materials (low alloyed steels), pipeline diameters and corresponding welded joints. The material compatibility of materials in used (repurposed NG-pipelines) and new condition must be investigated. Particularly for repurposed/used pipelines the effect of a pre-matured/corroded inner surface and sometimes insufficient documentation of the material “history” needs to be considered. An overview on ongoing and completed R&D-projects with respect to repair concepts for hydrogen pipelines and hydrogen effects on pipeline materials is given. T2 - 77th IIW Annual Assembly and International Conference, Meeting of Commission XI "Pressure Vessels and Piping" CY - Ixia, Rhodes, Greece DA - 07.07.2024 KW - Hydrogen KW - Repair welding KW - Pipelines KW - Study PY - 2024 AN - OPUS4-60673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Czeskleba, Denis A1 - Kannengiesser, Thomas T1 - Combined effect of heating rate and restraint condition on stress relief cracking susceptibility during PWHT of thick walled Cr Mo V steel submerged arc welded joints N2 - Contemporary steels creep-resistant steels like the 13CrMoV9-10 are used as thick plates e.g., for applications in hydrocrackers. The large plate thickness requires high efficiency welding processes like submerged arc welding (SAW) and a mandatory post weld heat treatment (PWHT). The PWHT-parameters stem from a combination of empirical knowledge and traditional experiments on free shrinking (FS) welds. In that connection, the formation of so-called stress-relief cracking (SRC) must be anticipated. The SRC susceptibility of a welded component is a complex combination and interaction of com-ponent specific, thermal, and metallurgical factors. Many of which have to date not been conclusively researched. For example, it is well known that SRCs develop during PWHT due to formation and growth of carbides on prior austenite grain boundaries, resulting in a significant hardness increase (secondary hardening) and toughness decrease. This leads to a high SRC susceptibility of the coarse grain heat-affected zone (CGHAZ) of the last weld bead during PWHT. This is intensified in case of high residual stresses from the component-specific, structurally induced stiffness. In combination with multi-layer welding this leads to a multiaxial stress distribution. Nonetheless, the combined effect of PWHT and high-residual stresses on the SRC formation is merely unknown. For that reason, this study presents the effect of different heating rates in conjunction with a certain component stiffness. For that reason, SAW joints of 13CrMoV9-10 steel were investigated under FS and defined external restraint condition. T2 - 77th IIW Annual Assembly and International Conference, Meeting of Commission II-A CY - Ixia, Rhodes, Greece DA - 07.07.2024 KW - Stress relief cracking KW - Submerged arc welding KW - Post weld heat treatment KW - Cr-Mo-V steel PY - 2024 AN - OPUS4-60675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengiesser, Thomas T1 - Update on "Call for interested people to contribute to series of comprehensive papers on welding and joining of components for sustainable energy systems" N2 - Based on the initial call in March 2024, an update time-frame is introduced on the working plan for a comprehensive review paper series on joining and welding technologies for the manufacturing of components and parts used in sustainable energy generation, conversion, and transport with focus on hydrogen and wind energy. T2 - 77th IIW Annual Assembly and International Conference, Meeting of Commission II-A CY - Ixia, Rhodes, Greece DA - 07.07.2024 KW - Review paper KW - Research study KW - Hydrogen KW - Joining KW - Welding PY - 2024 AN - OPUS4-60674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Konert, Florian A1 - Nietzke, Jonathan A1 - Freitas, Tomás A1 - Rhode, Michael A1 - Sobol, Oded A1 - Böllinghaus, Thomas T1 - Investigation of the resistance of X65 pipeline steel and weld to gaseous hydrogen using the hollow specimen technique N2 - The constantly increasing demand for renewable energy sources lead to the necessity of transporting large amounts of hydrogen. Since pipelines enable a cost-effective way for the distribution of gaseous hydrogen, the interaction of hydrogen and the pipeline materials must be carefully investigated as hydrogen can cause a degradation of the mechanical properties under certain conditions. Especially welds, which are assumed to be more susceptible to the degradation enhanced by hydrogen, are of great interest. The aim of this study is to investigate the effect of gaseous hydrogen on the mechanical properties of an X65 pipeline, and the longitudinal submerged arc welding (SAW) welded joint. The tests are conducted using the hollow specimen technique on two types of specimens: one extracted from the base material (BM) and the other extracted as a cross-weld (CW) specimen consisting of base material and weld seam. The specimens are charged in-situ under a pressure of 60 bar and tested using slow strain rate (SSR) tensile tests with a nominal strain rate of 10-5 s-1. The performed tests showed a decrease of the reduction of area (RA) from 72% in inert atmosphere to 52% in hydrogen atmosphere for the CW-specimen and a decrease from 73% in inert atmosphere to 51% for the BM. Metallographic analyses showed the crack initiation between fine grain heat affected zone (FGHAZ) and BM for the specimens tested in hydrogen atmosphere as well as for the reference specimens. This leads to the conclusion that the location of the crack initiation does not change due to the presence of gaseous hydrogen. T2 - 77th IIW Annual Assembly and International Conference 2024 CY - Rhodes, Greece DA - 07.07.2024 KW - Hydrogen KW - Hollow-specimen KW - Pipeline steel KW - SSRT KW - Hydrogen embrittlement PY - 2024 AN - OPUS4-60617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nietzke, Jonathan A1 - Konert, Florian A1 - Poka, Konstantin A1 - Merz, Benjamin A1 - Rhode, Michael A1 - Sobol, Oded A1 - Böllinghaus, Thomas T1 - The relationship between surface condition and the influence of hydrogen on the mechanical properties of additively manufactured 316L N2 - The following contribution presents the analyses of additively manufactured (AM) 316L using hollow specimens at 200 bar hydrogen and a strain rate of 1E-5 s-1. The work includes a comparison of three types of hollow specimens: mechanically extracted from fully additively manufactured cylinders, near-net-shape additively manufactured specimens, i.e. as printed, and specimens made of conventional 316L. AM specimens were manufactured via powder bed fusion with laser beam of metals (PBF-LB/M). For the near-net-shape specimens the inner hole remained without any mechanical processing. The inner holes of the cylindric specimens were manufactured by drilling with subsequent honing. The susceptibility to hydrogen embrittlement was found to be strongly dependent on the surface being in contact with hydrogen. While specimens with a clean surface had a relative reduction of area (RRA) of around 78 %, those with an as-printed surface showed a significantly larger RRA of around 90 %. One possible reason for this are oxide layers formed due to small amounts of oxygen during the AM-process. Further research is required to determine if the lower effect on the mechanical properties is permanently for as printed parts or e.g. time dependent. Additionally, further work with variation in the nominal strain rate is required. T2 - IIW 77th Annual Assembly 2024 CY - Rhodes, Greece DA - 07.07.2024 KW - Austenitic steel 316L KW - Additive manufacturing KW - PBF-LB/M KW - Hydrogen degradation KW - Hydrogen embrittlement KW - Hollow specimen technique PY - 2024 AN - OPUS4-60618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Rethmeier, Michael T1 - Challenges in Modelling Dynamic Heat Sources in High-Power Laser Beam Welding N2 - The amount of absorbed energy in the keyhole as well as its distribution is essential to model the laser beam welding process. The recoil pressure is a key determining factor for the macroscopic flow of the molten metal in the weld pool during high-power laser beam welding. Consequently, a realistic implementation of the laser radiation on the weld metal is crucial to obtain accurate simulation results. The following developments on the laser-material interaction are discussed for the numerical simulation of the laser beam welding process. The first implemented improvements relate to locating the exact reflection points in the ray tracing method in the determination algorithm for the intersection of the reflected rays and the keyhole surface. A second correction refers to the numerical treatment of the Gaussian distribution of the laser beam, whose beam width is defined by a decay of the laser intensity by a factor of 1/e2 thus ignoring around 14 % of the total laser beam energy. In a third step, the laser radiation distribution in vertical direction was approximated according to the beam caustics. Finally, a virtual mesh refinement was adopted in the ray tracing routine. The obtained numerical results were validated with experimental measurements. T2 - IIW Annual Assembly 2024 CY - Rhodes , Greece DA - 07.07.2024 KW - Laser beam welding KW - Numerical modeling KW - Ray tracing KW - Heat source modeling PY - 2024 AN - OPUS4-60634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Piesker, Benjamin A1 - Ávila Calderón, Luis Alexander A1 - Mohr, Gunther A1 - Rehmer, Birgit A1 - Agudo Jácome, Leonardo A1 - Hilgenberg, Kai A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Tensile and Low‐Cycle Fatigue Behavior of Laser Powder Bed Fused Inconel 718 at Room and High Temperature N2 - This study investigates the room‐ and high‐temperature (650 °C) tensile and low‐cycle‐fatigue behavior of Inconel 718 produced by laser powder bed fusion (PBF‐LB/M) with a four‐step heat treatment and compares the results to the conventional wrought material. The microstructure after heat treatment is characterized on different length scales. Compared to the wrought variant, the elastic and yield properties are comparable at both test temperatures while tensile strength, ductility, and strain hardening capacity are lower. The fatigue life of the PBF‐LB/M variant at room temperature is slightly lower than that of the wrought material, while at 650 °C, it is vice versa. The cyclic stress response for both material variants is characterized by cyclic softening, which is more pronounced at the higher test temperature. High strain amplitudes (≥0.7%) at room temperature and especially a high testing temperature result in the formation of multiple secondary cracks at the transitions of regions comprising predominantly elongated grain morphology and columns of stacked grains with ripple patterns in the PBF‐LB/M material. This observation and pronounced crack branching and deflection indicate that the cracks are controlled by sharp micromechanical gradients and local crystallite clusters. KW - Additive manufacturing KW - Fatigue damage KW - Heat treatment KW - Inconel 718 KW - Laser powder bed fusion KW - Low-cycle fatigue KW - Tensile strength PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599316 DO - https://doi.org/10.1002/adem.202302122 SN - 1527-2648 SP - 1 EP - 17 PB - Wiley AN - OPUS4-59931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Ávila Calderón, Luis A. A1 - Rehmer, Birgit A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Effect of heat treatment on the hierarchical microstructure and properties of 316L stainless steel produced by Laser Powder Bed Fusion (PBF-LB/M). N2 - Laser Powder Bed Fusion (PBF-LB/M) of AISI 316L stainless steel has gained popularity due to its exceptional capacity to produce complex geometries and hierarchical microstructures, which can increase the yield strength while maintaining good ductility. Nevertheless, owing to high thermal gradients encountered during the process, the as printed 316L stainless steel often exhibit microstructural heterogeneities and residual stresses, which can limit its performance in demanding environments. Hence, employing heat treatments which balance the reduction of residual stresses while retaining improved static strength may be beneficial in various scenarios and applications. This study investigates the impact of post-processing heat treatments on the microstructure of 316L stainless steel manufactured via PBF-LB/M, along with its correlation with micro-hardness properties. To this end, 6 different heat treatments, i.e., 450 °C for 4h, 700 °C for 1h, 700 °C for 3h, 800 °C for 1h, 800 °C for 3h, and 900 °C for 1h, were applied to different specimens and Vickers hardness measurements (HV1) were performed in all states. At 800 °C, although the cellular structure appears to be retained, there is an observable increase in cellular size. However, while treatments exceeding 900 °C indicate no significant grain growth compared to other conditions, the cellular structure is entirely dissolved, which leads to a reduced Vickers hardness. The effect of the heat treatments on other microstructural features such as grain size and morphology, melt pool boundaries (MPB), crystallographic texture, chemical segregation, dispersoids and phase stability are also discussed in the present work T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive manufacturing KW - Heat treatment KW - Microstructure PY - 2024 AN - OPUS4-60304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Jonathan A1 - Merz, Benjamin A1 - Poka, Konstantin A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Visual surface structure analysis of high-resolution images from visual in-situ process monitoring in laser powder bed fusion N2 - Parameter studies are a common step in selecting process parameters for powder bed fusion of metals with laser beam (PBF-LB/M). Density cubes manufactured with varied process parameters exhibit distinguishable surface structures visible to the human eye. Industrial visual in-situ monitoring systems for PBF-LB/M currently have limited resolution and are incapable of reliably capturing differences in the surface structures. For this work, a 65 MPixel high resolution monochrome camera is integrated in an industrial PBF-LB/M machine together with a high intensity led bar. Post-exposure images are taken to analyze differences in light reflection on the specimen’s surface. The grey level co-occurrence matrix is used to quantify the in-situ measured visual surface structure of nickel-based super alloy IN939 density cubes. The properties of the grey level co-occurrence matrix correlate to the energy input and resulting porosity of specimens. Low energy samples with lack of fusion flaws show an increased contrast in the grey level co-occurrence matrix compared to specimens with an optimal energy input. The potential of high-resolution images as reference data in in-situ process monitoring in PBF-LB/M is discussed. T2 - 77th IIW Annual Assembly and International Conference CY - Rhodos, Greece DA - 06.07.2024 KW - Additive manufacturing KW - Powder bed fusion KW - In-situ monitoring KW - Image processing KW - Lack of fusion PY - 2024 AN - OPUS4-60688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shaanika, Sam A1 - Sobol, Oded A1 - Böllinghaus, Thomas T1 - Compatibility of welded austenitic stainless steel (316L) tube for green hydrogen applications N2 - The increase in the energy demand and the need to comply to net zero carbon regulations, as per the Paris 2015 climate agreement by 2050, has necessitated the urgency to consider hydrogen as alternative energy carrier. Moreover, hydrogen interaction with metals tend to cause degradation of the mechanical properties in terms of the ductility of the materials. More concern is on the weldment and repair of tubes or pipelines of hydrogen transportation and storage systems. In this study, the heat inducted weld tubes of the cold drawn and annealed austenitic stainless steel (316L) were investigated by slow strain rate test. To achieve the most realistic component-related testing, hollow tube specimens have been fabricated from 1/2-inch Swagelok pipes filled with internal gaseous hydrogen or inert air for reference. The hydrogen concentration measurement is undertaken before and after the autoclave high-pressure pre-charging of the specimens using carrier gas hot extraction. SEM analysis was used to carry out fractographic analysis to determine the crack initiation sites, crack size and was compared for the base material and heat affected zone influence in the gaseous hydrogen. The effect of hydrogen on the material compatibility of the welded austenitic stainless steel is assessed and compared to none-welded tubes tested in defined testing parameters that contribute to Hydrogen Assisted Cracking. A better understanding on the impact of weldment on the structural integrity for stainless steel is elucidated for green hydrogen application. T2 - IIW 77th Annual Assembly 2024 CY - Rhodes, Greece DA - 07.07.2024 KW - Austenitic stainless steel KW - Slow strain rate KW - Burst pressure KW - Orbital welding KW - Heat Induction PY - 2024 AN - OPUS4-60698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baensch, Franziska A1 - Baer, Wolfram A1 - Wossidlo, Peter A1 - Habib, Abdel Karim T1 - Damage evolution detection in a pipeline segment under bending by means of acoustic emission N2 - A steel pipeline segment of 2.5 m length was subjected to quasi-static four-point bending load in three steps for studying the initial cracking and damage accumulation based on the Acoustic Emission (AE) technique and by the direct current potential drop (DCPD) technique. For the latter, a new post-test analysis method was established. AE is found more sensitive to crack initiation than DCPD. Formation of mesoscopic and macroscopic cracks as well as their closure and the resulting friction generate weighted peak frequencies below 400 kHz, whereas microscopic cracking produces AE with broad band spectra identifiable by weighted peak frequencies above 400 kHz. Critical states alike the maximum load level and the leak opening were accompanied by peak amplitudes above 85 dBAE. This rather fundamental study provides a data base for possibly developing advanced strategies of detection and alarm systems based on acoustic monitoring of pipelines, or at least, steel structures. KW - Crack KW - Accoustic emission KW - Frequency domain KW - Potential drop technique KW - Fracture PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565171 DO - https://doi.org/10.1016/j.ijpvp.2022.104863 SN - 0308-0161 VL - 201 IS - 104863 SP - 1 EP - 9 PB - Elsevier Science CY - Amsterdam AN - OPUS4-56517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Buzolin, R. H. A1 - Richter, Tim A1 - Pixner, F. A1 - Rhode, Michael A1 - Schroepfer, Dirk A1 - Enzinger, N. T1 - Microstructure characterisation of multi-principal element alloys welds produced by electron beam welding N2 - This work explores the feasibility of producing bead-on-plate welds of a CrCoNi medium entropy alloy and a CrMnFeCoNi high entropy alloy using electron beam welding. The alloys were welded in two states: one in an as-cold-rolled condition and the other in an annealed condition. In addition, the materials are welded with two different parameters. The FCC microstructure of the welds is investigated using scanning electron microscopy assisted by energy-dispersive X-ray spectroscopy and electron-backscattered diffraction. The impact of the weld on the microstructure is discussed. The heat-affected zone is negligible for the annealed condition of both medium and high entropy alloys since there is no driving force for recrystallisation and the exposure time to high temperature is insufficient for grain coarsening. The texture formed in the fusion zone is also discussed and compared to the texture in the base metal and the heat-affected zone. Although the grain growth along the (100) crystallographic direction is preferential in all cases, the crystallographic texture type differs from each weld. Higher hardness values are measured in the medium entropy alloy’s base metal and fusion zone than in the high entropy alloy. KW - Multi-principal element alloy KW - Electron backscattered diffraction KW - Electron beam welding KW - High-entropy alloy KW - Microstructure characterization PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568129 DO - https://doi.org/10.1016/j.matdes.2023.111609 SN - 1873-4197 VL - 225 SP - 1 EP - 14 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-56812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas A1 - Treutler, Kai A1 - Wesling, Volker T1 - In situ measurement of chemical concentrations in the weld during TIG welding of Duplex stainless steels for phase distribution analysis N2 - The combination of high corrosion resistance and good mechanical properties of duplex steels (DSS) is due to their chemical composition and the balanced phase ratio of ferrite (α) and austenite (γ). Many industrial applications require a material joint of DSS. Tungsten inert gas (TIG) welding is relatively easy to use, requires little space and allows automated welding, with very high reproducibility and is therefore excellent for welding DSS. During solidification of these steels, critical phase ratios of α and γ can occur, leading to solidification cracking, susceptibility to corrosion, lower ductility, and critical strength values. Therefore, to obtain the desired material properties, the α/γ distribution must be reliably predicted. This is usually done using the WRC1992 diagram. However, the prediction accuracy of the ferrite content in this diagram is usually not accurate enough and must therefore be optimized. It is therefore necessary to monitor even the smallest changes in the chemical composition of the weld metal, ideally during welding. This is done in these experiments using Laser-induced Breakdown Spectroscopy (LIBS). A major advantage of this technique is the highly accurate time- and spatially-resolved measurement of chemical composition during welding. Previous work has quantified the chemical composition in the weld metal and heat affected zone. In the presented study, the influence of individual elements, such as Nb and Cu, on the resulting weld microstructure is investigated. T2 - IIW Intermediate Meeting 2023 CY - Hachenburg, Germany DA - 27.02.2023 KW - LIBS KW - Duplex Stainless Steel KW - WRC 1992 diagram KW - TIG welding PY - 2023 AN - OPUS4-57079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Rhode, Michael A1 - Mente, Tobias A1 - Czeskleba, Denis A1 - Kannengießer, Thomas T1 - Large scale hydrogen assisted cracking test for thick walled SAW joints for offshore applications N2 - Offshore wind turbines continuously increase in size and weight and demand adequate offshore foundations concepts like monopiles, tripods or jackets. These components are typically submerged arc welded (SAW) high-strength thick steel plates like the S420ML. During welding, the occurrence of delayed hydrogen assisted cracking (HAC) must be anticipated. HAC is a critical combination of the local hydrogen concentration within a susceptible microstructure under certain mechanical load, i.e., the occurring (welding) residual stresses. The welding sequence of the thick-walled plates complicate the residual stress distribution due to the necessary repeated thermal cycling, i.e., welding seam / layer deposition to fill the joint. For that purpose, SAW with two-wire-technique was used to weld a specially designed and prototype-like mock-up of a real component with a thickness of 50 mm, filled more than 20 passes and a seam length of 1,000 mm. Additional welded stiffeners simulated the effect of a high restraint, to stimulate critical HAC conditions. The necessity of a minimum waiting time (MWT) before the NDT can be conducted (to exclude HAC) was critically verified by the application of ultrasonic testing of the welded joint at different time-steps of the NDT of 48 h after welding. The residual stresses were determined by a robot XRD goniometer. Tensile residual stresses up to the yield limit are found both in the weld metal and in the heat-affected zone. Numerical modelling allowed the qualitative estimation of the hydrogen diffusion in the weld. A remarkable HAC occurrence was not identified and proves both, a certain resistance of the weld joint to HAC and the (questionable) duration of the MWT. T2 - IIW Intermediate Meeting of Commission II-A CY - Garching, Germany DA - 06.03.2023 KW - Hydrogen assisted cracking KW - Submerged arc welding KW - Offshore wind turbine KW - High-strength steel KW - Component test PY - 2023 AN - OPUS4-57100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schroeder, Nina A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Influence of microalloying on precipitation behavior and notched impact strength of welded high-strength structural steels N2 - This presentation summarizes the latest results on the microalloying influence on the preciptitation behavior on the mechanical properties of welded high-strength steel with a design yield strength of 690 MPa and above. For that reason, Charpy tests were performed for the pure weld metal and different heat-affected zones. Thermodynamic phase field modeling showed the usefulness of calculations in Thermocalc to predict the preciptiation behavior and (finally) to conclude the mechanistic behavior of the welded joint. T2 - IIW Intermediate meeting of Commission II-A CY - Garching, Germany DA - 06.03.2023 KW - Welding KW - High-strength steel KW - Phase field modeling KW - Preciptiates KW - Microstructure characterization PY - 2023 AN - OPUS4-57107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Tim A1 - Erxleben, Kjell A1 - Rhode, Michael A1 - Schroepfer, Dirk T1 - Local mechanical properties of TIG dissimilar metal welded high entropy alloy with austenitic steel AISI 304 N2 - High entropy alloys (HEA) are a new class of materials that have been investigated since the early 2000s and offer great potential to replace conventional alloys. However, since they sometimes have significant contents of expensive alloying elements such as Co or Ni, their use is only conceivable in highly stressed areas of components. For this purpose, the weldability with conventional alloys such as high-alloy austenitic steels must be investigated. In addition to the resulting microstructure, the mechanical properties are also fundamental for the usability of HEAs in DMWs. For this purpose, TIG welds of CoCrFeMnNi HEA (cold rolled and recrystallized state) with AISI 304 austenitic steel are investigated. These mechanical properties are analyzed in this work by means of tensile tests and local hardness measurement. The local strain behavior of the welded joints is also characterized by means of Digital Image Correlation (DIC). The results of the local hardness measurement show a clear influence of the initial condition of the HEA on the HAZ. Thus, the HEA in the cold-rolled condition shows a clear softening because of recrystallization processes in the HAZ. On the other hand, there is no influence on the hardness of the weld metal, which is approx. 200 HV0.1 in both cases. The tensile tests show a consistent failure of the weld in the weld metal. However, regardless of the HEA condition, strengths in the range of the recrystallized HEA (RM ~ 550–600 MPa) are achieved, although with significantly reduced fracture elongations. T2 - IIW Intermediate Meeting of Commission II-A CY - Garching, Germany DA - 06.03.2023 KW - High-entropy alloy KW - Welding KW - Dissimilar metal weld (DMW) joint KW - Mechanical properties KW - Digital image correlation PY - 2023 AN - OPUS4-57108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Gustus, R. A1 - Treutler, K. A1 - Wesling, V. A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Alloy modification for additive manufactured Ni alloy components—part I: effect on microstructure and hardness of Invar alloy N2 - Alloy 36 (1.3912), also known as “Invar,” is an alloy with 36% nickel. The alloy has a remarkably low thermal expansion coefficient in certain temperature ranges. This peculiarity is called the invar effect, which was discovered in 1896 by the Swiss physicist Charles Édouard Guillaume. Therefore, it is used in applications in which dimensional stability is critical, such as molding tools for composite materials in aerospace, automotive applications, or liquified natural gas (LNG) cargo tanks. Moreover, increasingly complex structures and the optimization of resource efficiency also require additive manufacturing steps for the production or repair of components. Additively manufactured components have a heterogeneous microstructure and anisotropic mechanical properties. In addition, the manufactured components require subsequent machining surface finishing, like finish milling, to achieve their final contour. Nickel iron alloys are difficult to machine. Additionally, inhomogeneous microstructure may lead to unstable cutting forces and conditions. In part I of this investigation, the initial alloy 36 is modified with the elements Ti, Zr, and Hf up to a maximum of 0.33 wt.-%. The influence of the modification elements on the microstructure as well as on the hardness of the AM components is examined. Furthermore, one modification is applied to metal arc welding process and investigated. Part II focuses on the effect of the alloy modifications on machinability as well as on the surface integrity of plasma-transferred-arc-welded (PTA) and finish milled invar components. T2 - 75th IIW Annual Assembly CY - Tokyo, Japan DA - 17.07.2022 KW - Alloy modification KW - Alloy 36 KW - Plasma-transferred arc welding PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571777 DO - https://doi.org/10.1007/s40194-023-01510-w SN - 0043-2288 SP - 1 EP - 9 PB - Springer CY - Heidelberg AN - OPUS4-57177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Kannengießer, Thomas T1 - Rapid solidification during welding of duplex stainless steels – in situ measurement of the chemical concentration by Laser-Induced Breakdown Spectroscopy (LIBS) N2 - Duplex stainless steels (DSS) are frequently used, especially in applications requiring high strength combined with high corrosion resistance in aggressive media. Examples include power plant components and maritime structures. During welding of these steels, local variations in chemical composition can occur. This results in ferritization of the material and negatively affects the mechanical properties of the components. In this work, tungsten inert gas (TIG) welding experiments were performed with DSS. Chemical composition analysis was realized in situ by using Laser Induced Breakdown Spectroscopy (LIBS). The aim of the work is to quantitatively measure the chemical composition in the weld seam of various DSS and to identify possible influences of welding parameters on the microstructure of the material. The chemical concentrations of the main alloying elements Cr, Ni, Mn on the surface of the sample during the welding process and the cooling process were measured. Mn and Ni are austenite stabilizers and their content increases during welding by using certain high alloyed filler material. Spectra were recorded every 1.3 s at a spacing of approximately 2 mm. During the cooling process the location of the measurement was not changed. The LIBS method is proofed to be suitable for the quantitative representation of the chemical compositions during the welding process. T2 - ICASP-6 CY - Le Bischenberg, France DA - 20.06.2022 KW - LIBS KW - In situ measurement KW - Duplex stainless steel KW - TIG welding KW - Evaporation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571308 DO - https://doi.org/10.1088/1757-899X/1274/1/012018 VL - 1274 SP - 1 EP - 8 PB - IOP Publishing CY - Bristol AN - OPUS4-57130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Thomas, Maximilian A1 - Liepold, Philipp A1 - Kannengießer, Thomas T1 - Increasing the Significance of Varestraint Tests through Improved Crack Evaluation N2 - It was found that there is a systematic dependence of the crack growth on the welding parameters as well as on the load. Decreasing welding speeds with simultaneously higher heat input promote crack formation with increasing strain rate. Based on the results, a new crack criterion was finally selected which allows an extended assessment of the material behavior during the MVT-test. The threshold introduced can quantify the dependencies of the crack formation on the welding and testing parameters, which could not be comprehensively described with the conventional evaluation. In principle, the evaluation routine can also be transferred to other Varestraint or externally loaded hot cracking tests. T2 - IIW Intermediate Meeting Comission II-c CY - Garching, Germany DA - 06.03.2023 KW - Solidification cracking KW - Varestraint-Test PY - 2023 AN - OPUS4-57131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liepold, Philipp A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Enhanced crack detection method using convolutional neural networks for Varestraint type tests N2 - A method to extract characteristics of cracks employing semantic segmentation on the basis of pictures taken via microscope, possible through advances in deep learning using a U-Net type model. T2 - IIW Intermediate Meeting CY - Garching, Germany DA - 05.12.2022 KW - CNN KW - MVT KW - AI PY - 2023 AN - OPUS4-57135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Giese, Marcel A1 - Czeskleba, Denis A1 - Nietzke, Jonathan A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Investigation of the influence of PWHT heating rate and global stress conditions on the stress relief cracking mechanism of CrMoV steel SAW joints N2 - This presentation summarizes the latest research results of the influence of the post weld heat treatment (PWHT) rate and the global mechanical stress conditions on the stress relief cracking (SRC) susceptibility of low-alloyed and creep-resistant CrMoV steel submerged arc weld joints. It was found that a certain effect of very low heating rates could be confirmed. In addition, the interlinking of SRC susceptibility increasing effects during the PWHT and the ex-post indentification in metallographic cross-section via microstructure characterization is very complex. T2 - IIW Intermediate meeting of Commission II-A CY - Garching, Germany DA - 06.03.2023 KW - Creep-resistant steel KW - Submerged arc welding KW - Stress relief cracking KW - Heating rate KW - Microstructure characterization PY - 2023 AN - OPUS4-57116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baer, Wolfram ED - Bleicher, C. ED - Kaufmann, H. ED - Pittel, C. T1 - Chunky Graphite - Recognition, Quantification, and Impact on Properties of Spheroidal Graphite Cast Iron N2 - Since there is a continuously growing demand for complex, frequently heavy-sectioned spheroidal graphite cast iron (SGI) castings it is worth paying attention to the chunky graphite (CHG) degeneration which may occur under certain technological circumstances. Although a reference line for preventive actions in terms of general metallurgical and process measures could be drawn to avoid CHG in heavy-sectioned ferritic SGI castings, a broad majority of experts claim the avoidance of CHG in heavy sections cannot yet be rated a hundred percent process safe. A major reason may be seen in the fact that a universal, generally accepted explanation of CHG formation and growth has not yet been established, although several theories have been proposed. Nevertheless, metallurgical aspects are not in the focus of this paper. This paper is about the current state of methods to detect CHG in SGI on the laboratory and component scales. Capabilities and limits of different metallographic, fractographic and non-destructive computer tomographic methods to recognize and quantify CHG are discussed. With respect to the characteristic fili-gree three-dimensional string-like, multi-branched CHG structure, which is non-isometric and non-dispersed, serious implications on the possibility to quantitatively characterize the amount of CHG must be considered. In contrary to the metallurgical aspects, the knowledge about the impact of CHG on the materials and com-ponents properties is still surprisingly limited. Therefore, special emphasis of this paper is on the impact of CHG degeneration on the properties of ferritic SGI. Experimental results are reviewed to illustrate the effect of CHG on mechanical strength and ductility properties as well as fracture mechanics properties in terms of crack resistance and fracture toughness. The present situation is characterized by discussions and uncertainty about the acceptance or rejection of SGI components containing CHG. Addressing this, conclusions from the materials engineering point of view are drawn for quality control, a safe operational strategy in the foundry and component safety. T2 - InCeight Casting Conference 2023 CY - Darmstadt, Germany DA - 06.03.2023 KW - Fracture toughness KW - Chunky graphite KW - Structure KW - Recognition KW - Quantification KW - Ferritic spheroidal graphite cast iron KW - Tensile properties PY - 2023 SN - 978-3-8396-1892-9 SP - 1 EP - 11 PB - Fraunhofer Verlag AN - OPUS4-57120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baer, Wolfram T1 - Chunky Graphite - Recognition, Quantification, and Impact on Properties of Spheroidal Graphite Cast Iron N2 - Since there is a continuously growing demand for complex, frequently heavy-sectioned spheroidal graphite cast iron (SGI) castings it is worth paying attention to the chunky graphite (CHG) degeneration which may occur under certain technological circumstances. Although a reference line for preventive actions in terms of general metallurgical and process measures could be drawn to avoid CHG in heavy-sectioned ferritic SGI castings, a broad majority of experts claim the avoidance of CHG in heavy sections cannot yet be rated a hundred percent process safe. A major reason may be seen in the fact that a universal, generally accepted explanation of CHG formation and growth has not yet been established, although several theories have been proposed. Nevertheless, metallurgical aspects are not in the focus of this paper. This paper is about the current state of methods to detect CHG in SGI on the laboratory and component scales. Capabilities and limits of different metallographic, fractographic and non-destructive computer tomographic methods to recognize and quantify CHG are discussed. With respect to the characteristic fili-gree three-dimensional string-like, multi-branched CHG structure, which is non-isometric and non-dispersed, serious implications on the possibility to quantitatively characterize the amount of CHG must be considered. In contrary to the metallurgical aspects, the knowledge about the impact of CHG on the materials and com-ponents properties is still surprisingly limited. Therefore, special emphasis of this paper is on the impact of CHG degeneration on the properties of ferritic SGI. Experimental results are reviewed to illustrate the effect of CHG on mechanical strength and ductility properties as well as fracture mechanics properties in terms of crack resistance and fracture toughness. The present situation is characterized by discussions and uncertainty about the acceptance or rejection of SGI components containing CHG. Addressing this, conclusions from the materials engineering point of view are drawn for quality control, a safe operational strategy in the foundry and component safety. T2 - InCeight Casting 2023 CY - Darmstadt, Germany DA - 06.03.2023 KW - Chunky graphite KW - Structure KW - Recognition KW - Quantification KW - Tensile properties KW - Fracture toughness KW - Ferritic spheroidal KW - Graphite cast iron PY - 2023 AN - OPUS4-57121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michler, T. A1 - Freitas, Tomas A1 - Oesterlin, H. A1 - Fischer, C. A1 - Wackermann, K. A1 - Ebling, F. T1 - Tensile testing in high pressure gaseous hydrogen using conventional and tubular specimens: Austenitic stainless steels N2 - Eight commercial austenitic stainless steels were tensile tested in reference atmosphere, in gaseous high-pressure hydrogen and in gaseous hydrogen precharged condition using conventional (CS) and tubular specimens (TS). For all configurations, 0.2 yield strength and ultimate tensile strength were comparable. In reference atmosphere, reduction of area of CS was higher compared to TS, whereas in gaseous high pressure hydrogen reduction of area of CS was lower compared to TS. In gaseous hydrogen precharged condition reduction of area of CS and TS were comparable for the severely affected grades. The differences in necking behavior between CS and TS are explained by different competitions between necking and hydrogen assisted crack initiation and growth especially for the tests in high pressure hydrogen gas. KW - Hydrogen KW - Hydrogen Embrittlement KW - Tensile Test KW - Conventional and Tubular Specimen KW - Austenitic Stainless Steel KW - High Pressure Gaseous Hydrogen PY - 2023 DO - https://doi.org/10.1016/j.ijhydene.2023.03.248 SN - 0360-3199 VL - 48 IS - 65 SP - 25609 EP - 25618 PB - Elsevier BV AN - OPUS4-58185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quackatz, Lukas A1 - Griesche, Axel A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Kannengießer, Thomas T1 - Measurement of hydrogen concentration in steel using Laser-induced Breakdown spectroscopy (LIBS) N2 - Currently, the ISO 3690 standard requires a thermal activation of the diffusible hydrogen in weld metal for the subsequent ex situ concentration measurement by TDS. Laser-induced breakdown spectroscopy (LIBS) would offer a time and spatially resolved, almost non-destructive, measurement of hydrogen at surfaces. We could already show that this analysis technique allows for highly accurate in situ measurements of chemical compositions of e.g. Mn, Cr and Ni during welding e.g. in the melt pool, the weld metal or the heat affected zone. For quantitative LIBS measurements of hydrogen in steel, certified reference materials with different hydrogen concentrations were used for calibration. There is a significant problem in welding steels: A critical combination of diffusible hydrogen, hardness microstructure and weld residual stresses can cause cold cracks to form in the weld microstructure. We investigated hydrogen in steels, which was loaded either electrochemically or with high-pressure hydrogen gas. Subsequently, various experiments were conducted to verify the feasibility of hydrogen measurements with LIBS. For example, depth profiles of hydrogen distribution could be obtained. Furthermore, samples were water jet cut and a line scan was made over the cross section to obtain a spatially resolved representation of the hydrogen. Total hydrogen concentrations were determined using carrier gas hot extraction. Our results show that LIBS is a promising technique for time and spatially resolved measurement of hydrogen in steels. T2 - IIW Annual Assembly 2023 CY - Singapore DA - 16.07.2023 KW - LIBS KW - Hydrogen measurement KW - Welding KW - Stainless steel PY - 2023 AN - OPUS4-57989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -