TY - CONF A1 - Kiefer, P. A1 - Balzer, R. A1 - Dietrich, U. A1 - Behrens, H. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Deubener, J. T1 - Viscosity of water bearing glasses in the glass transition range – Phosphates vs. silicates and borates N2 - Water has a strong impact on the viscosity and the transition temperature of oxide glasses. It acts as a fluxing agent, reducing viscosity particularly in the glass transition range, and by that flattening the viscosity-temperature curve and decreasing the fragility of hydrous glass melts. This general behavior is found for silicate and borate as well as in borosilicate compositions. However, there is still a lack of data with respect to hydrous phosphate glasses. Here, we study the influence of structural water on the viscosity of Li2O-MgO-(Al2O3-)P2O5 glasses. The glasses were synthesized in an internally heated pressure vessel (IHPV) at a pressure of 0.5 GPa. The selected pressure allows for the synthesis of glass specimens with water contents of several wt.%. The viscosity measurements were carried out in the glass transition range, i.e. log η ≈ 10-13 (η in Pa s), using a sphere penetration viscometer. The measured data agree with glass transition temperatures measured by differential thermo analysis. First results further suggest that the fragility of the analyzed phosphates decreases with increasing water content. T2 - 91. Glastechnische Tagung CY - Weimar, Germany DA - 28.05.2017 KW - Water-bearing glasses KW - Viscosity PY - 2017 AN - OPUS4-40812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Bauer, Ute A1 - Kiefer, P. A1 - Balzer, R. A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Sub-Tg relaxation in hydrous soda-lime-silicate and sodium-borosilicate glasses N2 - Water plays an important role for the depolymerization of silicate glasses which becomes noticeable by a distinct decrease of glass transformation temperature, Tg. Thus, it has a considerable influence on aging and fatigue as well as on sub-critical crack growth in glasses. In this connection also sub-Tg relaxation processes play a major role, but they are poorly investigated in glasses with high contents of structural bonded water. Therefore, soda-lime-silicate and sodium-borosilicate glasses with water contents up to 5 wt.% H2O were investigated by differential thermal analysis and sphere penetration viscometry, as well as internal friction measurements. The latter was applied to study network related relaxation mechanisms (α-relaxation) in the range of glass transition, as well as faster relaxation modes occurring at lower temperatures (β-, γ- relaxation). Total water content and concentrations of H2O molecules (CH2O) and OH groups (COH) in the glasses were determined by infrared spectroscopy. For low water contents two sub-Tg internal friction peaks were observed and assigned to the low-temperature motion of alkali ions (γ-relaxation) and cooperative movements of dissimilar mobile species under participation of OH at higher temperature (βOH relaxation). For large water contents, where significant amounts of molecular water are evident, a low temperature shoulder appears on the β-relaxation peak. This emerging relaxation mode (βH2O relaxation) was assigned to the motions of H2O molecules. T2 - 91. Glastechnische Tagung CY - Weimar, Germany DA - 28.05.2017 KW - Water-bearing glasses KW - Mechanical loss spectroscopy KW - Relaxation PY - 2017 AN - OPUS4-40810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bauer, Ute A1 - Behrens, H. A1 - Reinsch, Stefan A1 - Morin, E. I. A1 - Stebbins, J. F. T1 - Structural investigation of hydrous sodium borosilicate glasses N2 - The structural properties of a borosilicate glass with nominal 16 mol% Na2O, 10 mol% B2O3 and 74mol% SiO2 and water contents between 0 and 8wt% H2O (0–22 mol% H2O)were investigated with IR, Raman and 11BMAS NMR spectroscopy. In addition to the pronounced OH stretching vibration band of weakly H-bonded species at 3580 cm−1 the MIR spectra show a triplet at 2900, 2350 and 1750 cm−1, similar as observed in water-bearing silicate glasses. These bands are assigned to OH groups and water molecules which are strongly H-bonded, to non-bridging oxygen. Water species contents determined from absorption bands in the NIR at 5200 cm−1 (molecular H2O), 4700 cm−1 (B\\OH), and 4500 cm−1 (Si\\OH) indicate that hydroxyl groups dominate up to ~6 wt% total H2O. Based on the absorption coefficients known from literature for silicate and borate glasses the B\\OH/Si\\OH ratio is estimated to be ≈0.8. As indicated by density, Raman and NMR data the incorporation ofwater has strong structural impacts in particular at low water contents up to 3 wt% H2O. While the nominally dry glasses still contain a significant fraction (12%) of three-fold coordinated boron, almost all boron is four-fold coordinated in hydrous glasses. The increase of band components in the Raman spectra near 900 cm−1 relative to the region N 1050 cm−1 gives evidence for depolymerization of the network upon hydration. Fitting of the spectra with Gaussians implies that silica tetrahedra with two non-bridging oxygen (Q2) are preferentially formed by reactionwithwater on expense of tetrahedra linked to four tetrahedra (Q4). KW - Glass structure KW - Borosilicate glasses KW - Water-bearing glasses KW - Spectroscopy PY - 2017 U6 - https://doi.org/10.1016/j.jnoncrysol.2017.03.023 SN - 0022-3093 SN - 1873-4812 VL - 465 SP - 39 EP - 48 PB - Elsevier B. V. AN - OPUS4-40805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Deubener, J. A1 - Roessler, C. A1 - Bauer, Ute A1 - Behrens, H. T1 - Glass transition and viscosity of hydrous soda-lime-borate glasses N2 - Boron oxide glasses usually show low glass transition temperature Tg due to the three-fold oxygen coordination of boron. Adding of alkali and alkaline earth oxides to the glass composition will not decrease but increase Tg due to a change in boron coordination from trigonal to tetrahedral, known as the boron anomaly. Only for higher fractions of alkali oxides, non-bridging oxygens (NBO) are progressively formed in competition with tetrahedrally coordinated boron, which leads to a decrease in viscosity. ln contrast to this well-known behavior of alkali oxides (R2O), there is little known about adding H2O to borate glasses. The present work therefore aims in shedding light on the rheological properties of hydrous soda lime borate glasses with particular focus on the role of water. For doing so, we determined Tg as a function of Na2O and H2O content using differential thermal analysis (DTA) backed up by micropenetration viscosity measurements. Results show that water decreases Tg for all glasses and water concentrations under study (< 8 wt.% total water). Obviously, water mostly causes the formation of NBO having no significant influence on boron coordination as seen for alkaline. T2 - Crystallization 2015 CY - Shanghai, China DA - 07.04.2016 KW - Borate glasses KW - Thermal analyses KW - Viscosity KW - Water-bearing glasses PY - 2016 AN - OPUS4-38318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinsch, Stefan A1 - Rössler, C. A1 - Bauer, Ute A1 - Müller, Ralf A1 - Deubener, J. A1 - Behrens, H. T1 - Water, the other network modifier in borate glasses N2 - In the present study we have investigated whether the effect of water on properties of borate glasses resembles that of alkali oxide. Soda-lime-borate glasses with nominal compositions of x Na2O, 10 CaO, (90-x) B2O3 (x = 5, 15 and 25 mol%) were doped with up to 8 wt.% H2O by processing glass powder + distilled water in platinum capsules in an internally heated gas pressure vessel at 1523 K and 500 MPa. The water content of hydrous glasses was determined by Karl-Fischer titration and near-infrared spectroscopy. The glass transition temperature T-g. was derived from DTA and micropenetration experiments for which the effect of water loss at the surface of the hydrous glasses was studied. Heating glass samples at 10 K min(-1) in the DTA resulted in T-g values which are close to T-12 isokom temperatures confirming the equivalence of enthalpy relaxation and viscous relaxation for borate glasses. For all three glass series it is shown that T-g strongly decreases whereas the liquid fragility strongly increases upon the addition of water. These findings reveal that H2O primarily causes breaking of B-O-B bonds rather than supporting 4-fold coordinated boron as it is well-known for alkali oxides in this concentration range. (C) 2015 Elsevier B.V. All rights reserved. KW - Wasserhaltige Gläser KW - Viskosität KW - Boratgläser KW - Thermische Analyse KW - Viscosity KW - Borate glasses KW - Thermal analysis KW - Water-bearing glasses PY - 2016 U6 - https://doi.org/10.1016/j.jnoncrysol.2015.10.010 SN - 0022-3093 VL - 432 SP - 208 EP - 217 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-35123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bauer, Ute A1 - Behrens, H. A1 - Fechtelkord, M. A1 - Reinsch, Stefan A1 - Deubener, J. T1 - Water- and boron speciation in hydrous soda-lime-borate glasses N2 - The structural investigation of hydrated borate glasses provides new insights on the influence of water on boron speciation using spectroscopic methods. In the present study three soda–lime–borate glasses (NCBx with x = 5, 15 and 25 corresponding to xNa2O, 10CaO, 90 - xB2O3 in mol%) were prepared with water content up to 8 wt.%. The water speciation in the glasses was derived by near-infrared (NIR) spectroscopy while boron speciation was investigated by 11B MAS NMR (Magic Angle Spinning Nuclear Magnetic Resonance). For the three glasses effective molar absorption coefficients were determined experimentally for the bands at 5200 cm- 1 and 4600 cm- 1, corresponding to combination modes of H2O molecules and OH-groups, respectively. In contrast to silicate glasses, in which at most ~ 2 wt.% H2O are dissociated to OH-groups, the amount of dissociated H2O may even exceed 5 wt.% in borate glasses. The fraction of tetrahedral to total boron (N4 = BIV / BIV + BIII) is predominantly controlled by the ratio of Na2O + CaO / B2O3, but only weakly affected by the water content of the glasses. When increasing the H2O content from 0 to 8 wt.%, N4 increases from 25% to 26% for NCB5 and from 42% to 47% for NCB25 glasses. KW - Glass structure KW - Water-bearing glasses KW - High pressure KW - Spectroscopy KW - Glasstruktur KW - Wasserhaltige Gläser KW - Hoher Druck KW - Spektroskopie PY - 2015 U6 - https://doi.org/10.1016/j.jnoncrysol.2015.05.004 SN - 0022-3093 VL - 423-424 SP - 58 EP - 67 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-33804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -