TY - CONF A1 - Hahn, Marc Benjamin A1 - Hallier, Dorothea C. A1 - Smales, Glen Jacob A1 - Seitz, H. T1 - Extending Bio-SAXS measurements of Single-Stranded DNA-Binding Proteins: Radiation Protection of G5P by Cosolutes N2 - Small-angle X-ray scattering (SAXS) can be used for structural de- termination of biological macromolecules and polymers in their na- tive states. To improve the reliability of such experiments, the re- duction of radiation damage occurring from exposure to X-rays is needed.One method, is the use of scavenger molecules that protect macromolecules against radicals produced by radiation exposure.In this study we investigate the feasibility to apply the compatible solute, osmolyte and radiation protector Ectoine (THP(B)) as a scavenger throughout SAXS measurements of single-stranded DNA-binding protein Gene-V Protein (G5P/GVP). Therefore we monitor the radiation induced changes of G5P during bio-SAXS. The resulting microscopic energy-damage relation was determined by particle scattering simu- lations with TOPAS/Geant4. The results are interpreted in terms of radical scavenging as well as post-irradiation effects, related to preferential-exclusion from the protein surface. Thus, Ectoine provides an non-disturbing way to improve structure-determination of proteins via bio-SAXS in future studies. T2 - MultiChem Conference 2023 CY - Prague, Czech Republic DA - 26.04.2023 KW - Bio-SAXS KW - BioSAXS KW - Compatible solute KW - Cosolute KW - DNA KW - Dosimetry KW - Ectoin KW - Ectoine KW - Ectoin KW - G5P KW - GVP KW - Geant4 KW - Geant4-DNA KW - Gene five protein KW - Hydroxyectoine KW - Ionizing radiation damage KW - LEE KW - McSAS3 KW - Microdosimetry KW - Monte-Carlo simulations KW - OH Radical KW - OH radical scavenger KW - Osmolyte KW - Particle scattering simulations KW - Protein KW - Protein unfolding KW - Proteins KW - ROS KW - Radiation damage KW - Radical Scavenger KW - Radical scavenger KW - SAXS KW - Single-stranded DNA-binding proteins KW - Small-angle xray scattering KW - Topas KW - Topas-MC KW - Topas-nBio KW - X-ray scattering KW - ssDNA KW - Median lethal energy deposit PY - 2023 AN - OPUS4-57407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Hallier, Dorothea C. A1 - Smales, Glen Jacob A1 - Seitz, H. T1 - BP150: Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine N2 - Small-angle X-ray scattering (SAXS) can be used for structural determination of biological macromolecules and polymers in their native states (e.g. liquid phase). This means that the structural changes of (bio-)polymers, such as proteins and DNA, can be monitored in situ to understand their sensitivity to changes in chemical environments. In an attempt to improve the reliability of such experiments, the reduction of radiation damage occurring from exposure to X-rays is required. One such method, is to use scavenger molecules to protect macromolecules against radicals produced during radiation exposure, such as reactive oxygen species (ROS). In this study we investigate the feasibility of applying the compatible solute, osmolyte and radiation protector Ectoine (THP(B)), as a scavenger molecule during SAXS measurements of the single-stranded DNA-binding protein Gene-V Protein (G5P/GVP). In this case, we monitor the radiation induced changes of G5P during bio-SAXS measurments and the resulting microscopic energy-damage relation was determined from microdosimetric calculations by Monte-Carlo based particle scattering simulations with TOPAS/Geant4 and a custom target-model. This resulted in a median-lethal energy deposit of pure G5P at 4 mg mL−1 of E1/2 = 7 ± 5 eV, whereas a threefold increase of energy-deposit was needed under the presence of Ectoine to reach the same level of damage. This indicates that Ectoine increases the possible exposure time before radiation-damage to G5P is observed. Furthermore, the dominant type of damage shifted from aggregation in pure solutions towards a fragmentation for solutions containing Ectoine as a cosolute. These results are interpreted in terms of indirect radiation damage by reactive secondary species, as well as post-irradiation effects, related to preferential-exclusion of the cosolute from the protein surface. Hence, Ectoine is shown to provide a non-disturbing way to improve structure-determination of proteins via bio-SAXS in future studies. T2 - DPG Frühjahrstagung CY - Dresden, Germany DA - 26.03.2023 KW - Bio-SAXS KW - BioSAXS KW - Compatible solute KW - Cosolute KW - DNA KW - Dosimetry KW - Ectoin KW - Ectoine KW - G5P KW - GVP KW - Gene five protein KW - Geant4 KW - Geant4-DNA KW - Hydroxyectoine KW - Ionizing radiation damage KW - LEE KW - McSAS3 KW - Microdosimetry KW - Monte-Carlo simulations KW - OH Radical KW - OH radical scavenger KW - Osmolyte KW - Particle scattering simulations KW - Protein KW - Proteins KW - Protein unfolding KW - ROS KW - Radiation damage KW - Radical Scavenger KW - SAXS KW - Single-stranded DNA-binding proteins KW - Small-angle xray scattering KW - Topas KW - Topas-MC KW - Topas-nBio KW - X-ray scattering KW - Radical scavenger KW - ssDNA PY - 2023 AN - OPUS4-57254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Hallier, Dorothea C. A1 - Seitz, H. A1 - Smales, Glen Jacob T1 - Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine N2 - Small-angle X-ray scattering (SAXS) can be used for structural determination of biological macromolecules and polymers in their native states (e.g. liquid phase). This means that the structural changes of (bio-)polymers, such as proteins and DNA, can be monitored in situ to understand their sensitivity to changes in chemical environments. In an attempt to improve the reliability of such experiments, the reduction of radiation damage occurring from exposure to X-rays is required. One such method, is to use scavenger molecules to protect macromolecules against radicals produced during radiation exposure, such as reactive oxygen species (ROS). In this study we investigate the feasibility of applying the compatible solute, osmolyte and radiation protector Ectoine (THP(B)), as a scavenger molecule during SAXS measurements of the single-stranded DNA-binding protein Gene-V Protein (G5P/GVP). In this case, we monitor the radiation induced changes of G5P during bio-SAXS measurments and the resulting microscopic energy-damage relation was determined from microdosimetric calculations by Monte-Carlo based particle scattering simulations with TOPAS/Geant4 and a custom target-model. This resulted in a median-lethal energy deposit of pure G5P at 4 mg mL−1 of E1/2 = 7 ± 5 eV, whereas a threefold increase of energy-deposit was needed under the presence of Ectoine to reach the same level of damage. This indicates that Ectoine increases the possible exposure time before radiation-damage to G5P is observed. Furthermore, the dominant type of damage shifted from aggregation in pure solutions towards a fragmentation for solutions containing Ectoine as a cosolute. These results are interpreted in terms of indirect radiation damage by reactive secondary species, as well as post-irradiation effects, related to preferential-exclusion of the cosolute from the protein surface. Hence, Ectoine is shown to provide a non-disturbing way to improve structure-determination of proteins via bio-SAXS in future studies. T2 - #RSCposter 2023 CY - Online meeting DA - 28.02.2023 KW - Bio-SAXS KW - BioSAXS KW - Cosolute KW - DNA KW - Dosimetry KW - Ectoin KW - Ectoine KW - G5P KW - GVP KW - Geant4 KW - Geant4-DNA KW - Ionizing radiation damage KW - LEE KW - McSAS3 KW - Microdosimetry KW - Monte-Carlo simulations KW - OH Radical KW - OH radical scavenger KW - Particle scattering simulations KW - Protein KW - Protein unfolding KW - Radiation damage KW - Radical Scavenger KW - SAXS KW - Single-stranded DNA-binding proteins KW - Small-angle xray scattering KW - Topas KW - Topas-MC KW - Topas-nBio KW - X-ray scattering KW - ssDNA KW - Osmolyte KW - Hydroxyectoine KW - Compatible solute KW - ROS KW - radical scavenger PY - 2023 UR - https://pubs.rsc.org/en/content/articlehtml/2023/cp/d2cp05053f AN - OPUS4-57064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saloga, Patrick E. J. A1 - Thünemann, Andreas T1 - In-situ SAXS/WAXS investigation of zinc oxide nanotube formation N2 - Zinc oxide nanostructures possess optical properties that are dependent on particle shape and size. Here, we report on the synthesis of elongated zinc oxide tubes via the in-situ aggregation of spherical particles. Using a custom-built, lab-based instrument, x-ray scattering can be investigated over more than three decades in scattering vector q, allowing for a complete investigation from atomic distances up to larger-than-nano structures. For this study, the hydrolytic synthesis of stearate stabilized zinc oxide nanostructures in tetrahydrofuran was performed and the reaction mixture was continuously fed through the SAXS/WAXS apparatus by means of a peristaltic pump. For comparison to nanospheres, oleate-functionalized zinc oxide particles were synthesized in a microwave-assisted fashion, and depending on reaction temperature, sphere radii could be adjusted between 2.6 and 3.8 nm, changing the optical and crystal lattice properties. The evaluation of the in-situ measurements showed that at the beginning of the synthesis of the stearate-stabilized zinc oxide, similar, spherical particles are formed as in the oleate-based synthesis. In contrast, as the reaction progresses, the stearate-capped particles aggregate into elongated rods with radii of a few nanometres, which eventually form the nanotubes. These have radii of 30-50 nm and lengths of several hundred nanometres. Nevertheless, these structures still possess optical properties like the ultra-small zinc oxide spheres, i.e. a bright, yellow fluorescence. Therefore, we assume that the originally formed, ultra-small spheres, are still present within the tube structure, but separated by stearate, and thus determine their fluorescence properties. T2 - SAXS excites CY - Graz, Austria DA - 24.09.2019 KW - SAXS KW - Zinc oxide KW - Nanoparticles PY - 2019 AN - OPUS4-49135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breßler, Ingo T1 - SASfit and McSAS - Analyzing Small-Angle Scattering of Polymers N2 - Small-angle scattering (SAS) offers a reliable route to characterize the nanostructure of large amounts of material with a minimum of tedium, for example, easily extracting size distributions and volume fractions. There are a variety of analysis programs available while the evaluation of SAS measurements has been dominated by the classical curve fitting approach. SASfit represents such a classical curve fitting toolbox: it is one of the mature programs for SAS data analysis and has been available and used for many years. The latest developments will be presented and a scattering function of a mass fractal model of branched polymers in solution is provided as an example for implementing a plug-in. Alternatively to classical curve fitting, part two presents the latest developments of the user-friendly open-source Monte Carlo regression package McSAS. The form-free Monte Carlo nature of McSAS means, it is not necessary to provide further restrictions on the mathematical form of the parameter distribution: without prior knowledge, McSAS is able to extract complex multimodal or odd- shaped parameter distributions from SAS data. The headless mode is presented by an example of operation within interactive programming environments such as a Jupyter notebook. T2 - PolyDays 2019 CY - Berlin, Germany DA - 11.09.2019 KW - Small-angle scattering KW - SAXS KW - Software PY - 2019 AN - OPUS4-48958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saloga, Patrick E. J. A1 - Thünemann, Andreas T1 - Interaction of digestive biopolymers with zinc chloride as a model for zinc-enriched foods and cosmetics N2 - Zinc is an essential trace element and is ingested daily by humans, partly in dissolved form. The first contact is with saliva, in which many ions are dissolved whose solubility product with zinc can be low. This could result in compounds forming, possibly in nanoparticular form, which could have different effects on the organism than pure zinc ions. Available biopolymers, e.g. α-amylase, can in turn stabilise as-formed nanostructures. In this study, we report on the saliva stage of the artificial digestion of zinc chloride as a model substance for zinc ions. To facilitate in situ measurements, the sample is continuously passed through a small-angle x-ray scattering (SAXS) system. This custom-made machine is capable of measuring over a wide q-range and thereby able to resolve structures from around 250 nm down to the crystal structure. It is thus an excellent tool for investigating both the particle size distribution and the atomic structure of the sample. By curve fitting (see Figure 1), we found that shortly after addition of zinc chloride to saliva, small particles with a mean radius of 1.9 ± 0.1 nm and a distribution width of 0.6 ± 0.1 nm formed. These particles are aggregated to compact mass fractals with a fractal aggregate size of 14.7 ± 0.1 nm and a fractal dimension of 2.96 ± 0.02. Approximately 7200 single particles stick together by protein and form mass fractals, whose radii of gyration were found to be 36 ± 1 nm. To determine the compound that was formed, infrared spectroscopy was used in addition to the SAXS measurements, and zinc phosphate was identified as the product. T2 - POLYDAYS 2019 CY - Berlin, Germany DA - 11.09.2019 KW - SAXS KW - Digestion KW - Zinc PY - 2019 AN - OPUS4-48956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saloga, Patrick E. J. A1 - Thünemann, Andreas T1 - What’s for eats? – Zinc phosphate nanoparticle mass fractals form during the artificial digestion of zinc chloride N2 - Zinc is an essential trace element and is ingested daily by humans, partly in dissolved form. The first contact is with saliva, in which many ions are dissolved whose solubility product with zinc can be low. This could result in compounds forming, possibly in nanoparticular form, which could have different effects on the organism than pure zinc ions. In this study, we report on the saliva stage of the artificial digestion of zinc chloride as a model substance for zinc ions. To facilitate in situ measurements, the sample is continuously passed through a small-angle x-ray scattering (SAXS) system. This custom-made machine is capable of measuring over a wide q-range and thereby able to resolve structures from around 250 nm down to the crystal structure. It is thus an excellent tool for investigating both the particle size distribution and the atomic structure of the sample. By curve fitting, we found that shortly after addition of zinc chloride to saliva, small particles with a mean radius of 1.9 ± 0.1 nm and a distribution width of 0.6 ± 0.1 nm formed. These particles are aggregated to compact mass fractals with a fractal aggregate size of 14.7 ± 0.1 nm and a fractal dimension of 2.96 ± 0.02. Approximately 7200 single particles form each mass fractal, whose radius of gyration was found to be 36 ± 1 nm. The growth of these structures continues over the course of several weeks. To determine the compound that was formed, infrared spectroscopy was used in addition to the SAXS measurements, and zinc phosphate was identified as the product. T2 - 6th Nano Today Conference CY - Lisbon, Portugal DA - 16.06.2019 KW - SAXS KW - digestion KW - nanoparticles PY - 2019 AN - OPUS4-48342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saloga, Patrick E. J. A1 - Thünemann, Andreas T1 - Size-selective microwave-assisted synthesis of pure zinc oxide nanoparticles for precise band gap engineering N2 - Zinc oxide (ZnO) nanoparticles find manifold applications, most prominently in photovoltaics, where their unique optical properties are exploited. Particularly important are their band gap energy of 3.37 eV, which can be widely tuned through doping, and a large exciton binding energy of 60 mV. As a wide-bandgap II-VI semiconductor, the optical band gap energy and fluorescence energy become size-dependent when moving to particle radii of a few nanometers. To gain a deeper insight into this issue, we report on a microwave-assisted, size-selective synthesis of pure ZnO nanoparticles. By hydrolysis of the metal precursor in presence of a strong base at temperatures exceeding the solvent’s boiling point, the reaction is dramatically accelerated, and narrowly dispersed, spherical particles are yielded within seconds – instead of hours at lower temperatures. The determination of their size distributions in high resolution using small-angle x-ray scattering (SAXS) allows for a precise mapping of the optical properties (UV/Vis absorption and fluorescence) to particle size. We observed that the mean particle radii increase from 2.6 ± 0.1 nm with increasing synthesis temperature from 125 °C to 200 °C. This is accompanied by a red shift of the optical band gap and the fluorescence energies, the latter of which can be seen in Figure 1. Thus, undoped ZnO nanoparticles with narrow size distributions and pre-defined size as well as optical properties can be obtained through a microwave-assisted synthesis. T2 - 6th Nano Today Conference CY - Lisbon, Portugal DA - 16.06.2019 KW - SAXS KW - Zinc oxide nanoparticles KW - Microwave synthesis PY - 2019 AN - OPUS4-48340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandl, F. A1 - Lederle, F. A1 - Härter, C. A1 - Thünemann, Andreas A1 - Beuermann, S. T1 - From gaseous vinylidene fluoride to electroactive poly(vinylidene fluoride) – Inducing β-phase by formation of block copolymers and composite materials N2 - Polymeric core-shell particles were synthesized in a semi-batch emulsion polymerization process. The shell of the particles consist of PVDF with a high amount of beta-phase. Small-angle X-ray scattering (SAXS) was used to quantify the size of the cores of the particles and the thickness of the shell. T2 - Macromolecular Colloquium Freiburg CY - Freiburg, Germany DA - 20.02.2019 KW - Small-angle x-ray scattering KW - SAXS KW - Nanoparticle KW - Polymer PY - 2019 AN - OPUS4-47467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Thünemann, Andreas T1 - THE MAUS: A GI-/ULTRA-/W/SAXS Instrument of the future N2 - The Multi-scale Analyzer for Ultrafine Structures or the “MAUS” for short, is a SAXS instrument that combines a multitude of features that make it both unique, and one of the most adaptable instruments around. T2 - SAS2018 CY - Traverse City, MI, USA DA - 07.10.2018 KW - SAXS KW - MAUS KW - Small-angle scattering KW - DAWN KW - Grazing incidence PY - 2018 AN - OPUS4-46523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hollamby, M. J. A1 - Holmes, A. T. A1 - Blackburn, E. A1 - Danks, A. A1 - Jellyman, E. A1 - Pauw, Brian Richard A1 - Rogers, S. A1 - Grillo, I. A1 - Saeki, A. A1 - Nakanishi, T. T1 - Formation and magnetic alignment of a photoconductive organogel formed by an alkyl-C60 hydrophobic amphiphile N2 - The formation and alignment of gel fibres in alkanes (solvents) was investigated. The gel fibres consist of small amphiphilic molecules containing a C60 molecule and a small ligand chain. Under the right conditions, these self-assemble in core-shell micelles, which themselves pack into micron-sized fibre-like structures. These can be aligned using a strong magnetic field, as investigated using SANS with a 17T superconducting magnet at a range of field strengths. T2 - 7th EuCheMS Chemistry Congress CY - Liverpool, UK DA - 26.08.2018 KW - Small-angle scattering KW - Alignment KW - SANS KW - SAXS PY - 2018 AN - OPUS4-46101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radunz, Sebastian A1 - Schavkan, A. A1 - Wahl, S. A1 - Tschiche, Harald Rune A1 - Würth, Christian A1 - Krumrey, M. A1 - Resch-Genger, Ute T1 - Investigation of upconverting nanoparticle growth utilizing in-situ luminescence monitoring in combination with offline small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) N2 - - UCNPs were succesfully synthesized and characterized - Various stages of UCNP growth were tracked using different analytical methods including real time in-situ & time-resolved luminescence spectroscopy, SAXS and TEM measurements - Additional size determination will be performed using inductively coupled plasma - mass spectrometry (ICP-MS) T2 - BAM-PTB-Nanoworkshop CY - PTB, Berlin, Germany DA - 14.05.2018 KW - Rare earth nanoparticles KW - Upconversion KW - TEM KW - SAXS PY - 2018 AN - OPUS4-45884 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saadeh, Qais A1 - Pauw, Brian Richard A1 - Thünemann, Andreas A1 - Günster, Jens T1 - In-situ SAXS techniques N2 - This project studies the orientation of nanoparticles under the influence of external stimuli such as electric fields, magnetic fields and ultra-sonic vibrations. A set of functional sample holders that fit inside the sample chamber of a state-of-the-art Small Angle X-ray Scattering (SAXS) machine, called the “Multi-scale Analyzer for Ultrafine Structures” (MAUS). The MAUS has been custom engineered to serve as a miniaturized Synchrotron, thus enabling standard material to be characterized to a high standard. Our work is needed to detail the fine characterization of reference nano-particles, not only on the nano-scale, but also coupled with external agents. A second aim of this project is to verify a few proof-of-concept designs for the alignment of nano-particles. Where the alignment of nano-particles In-Situ is intended to further develop 3D printing technologies, and SAXS is an ideal choice to study the alignment of an oriented ensemble. For more information about the MAUS; https://www.bam.de/Content/DE/Pressemitteilungen/2018/AnalyticalSciences/2018-01-31-mit-maus-an-die-spitze-der-nano-forschung.html T2 - NanoWorkshop 2018 (Workshop on Reference Nanomaterials. Current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - SAXS KW - Nano-particles alignment KW - Magnetic nano-particles PY - 2018 AN - OPUS4-44912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Sieg, H. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Lampen, A. A1 - Thünemann, Andreas T1 - Creating the silver standard: Development and applications of a silver nanoparticle reference material N2 - The utilization of silver nanoparticles in consumer related products has significantly increased over the last decade, especially due to their antimicrobial properties. Today they are used in a high variety of products ranging from food containers over children toys and textiles. Therefore, research on the toxicological potential of silver nanoparticles becomes increasingly important for a high amount of studies. Unfortunately, the results of these studies are extremely diverse and do not lead to a consistent evaluation. The central problem lies in the use of a wide range of silver nanoparticles, which show a broad size distribution. To overcome this problem we report on the synthesis and application of small silver nanoparticles with a narrow size distribution (R = 3.1 nm, σ = 0.6 nm). The poly(acrylic acid) stabilized particles are thoroughly characterized by small-angle X-ray scattering, dynamic light scattering and UV/Vis spectroscopy. The particles are highly stable and show no aggregation for more than six months. It is foreseen to use these thoroughly characterized nanoparticles as reference material to compare the catalytic and biological properties of functionalized silver nanoparticles. As a first step the particles are used in the first world-wide inter-laboratory comparison of SAXS. Furthermore, the stabilizing ligand PAA can be easily exchanged by biomolecules to modify the surface functionality. Replacements of PAA with glutathione (GSH) and bovine serum albumin (BSA) have been performed as examples. With this flexible system first applications regarding biological application in an artificial digestion procedure have been performed. Thereby the changes in size distribution and aggregation state were monitored by SAXS. Additionally these particles show a high catalytic activity of (436 ± 24) L g-1 s-1 in the reduction of 4- nitrophenol to 4-aminophenol. This activity is two orders of magnitude higher than for other silver particles in the literature. T2 - NanoWorkshop 2018 CY - Berlin, Germany DA - 14.05.2018 KW - Silver nanoparticles KW - SAXS KW - Artificial digestion KW - Catalysis PY - 2018 AN - OPUS4-44911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saloga, Patrick E. J. A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Microwave-assisted high-speed silver nanoparticle synthesis N2 - Ever since increasing a reaction’s yield while shortening the reaction time is the main objective in synthesis optimization. Microwave reactors meet these demands. In literature however their usage is under discussion due to claims of the existence of non-thermal effects resulting from the microwave radiation. Especially for nano-reference-material syntheses it is of crucial importance to be aware of influences on the reaction pathway. Therefore, we compare ultra-small silver nanoparticles with mean radii of 3 nm, synthesized via conventional and microwave heating. We employed a versatile one-pot polyol synthesis of poly(acrylic acid) (PAA) stabilized silver nanoparticles, which display superior catalytic properties. No microwave specific effects in terms of particle size distribution characteristics, as derived by small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS), are revealed. Due to the microwave reactor’s characteristics of a closed system, syntheses can be carried out at temperatures beyond the solvent’s boiling point. Particle formation was accelerated by a factor of 30 by increasing the reaction temperature from 200 °C to 250 °C. The particle growth process follows a cluster coalescence mechanism. A post-synthetic incubation step at 250 °C induces a further growth of the particles while the size distribution broadens. Thus, utilization of microwave reactors enables an enormous decrease of the reaction time as well as the opportunity of tuning the particles’ size. Possibly, decomposition of the stabilizing ligand at elevated temperatures results in reduced yields. A temperature of 250 °C and a corresponding reaction time of 30 s represent a compromise between short reaction times and high yields. T2 - NanoWorkshop 2018 (Workshop on Reference Nanomaterials. Current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2016 KW - SAXS KW - Microwave synthesis KW - Silver nanoparticles PY - 2018 AN - OPUS4-44904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Highly enhanced catalytic activity of silver N2 - Silver nanoparticles are one of the most widespread consumer related nanoparticles worldwide. Since the particles show special optical and antibacterial properties they are used for a wide range of applications from biological investigations over medical applications and catalysis. Especially the outstanding question of applicable alternatives for catalysts in diverse reactions can be addressed with the design of versatile system of small silver nanoparticles. In this study we present the synthesis and application of ultra-small silver nanoparticles with a narrow size distribution (R = 3.1 nm, σ = 0.6 nm). The particles are thoroughly characterized by small angle X-ray scattering, dynamic light scattering and UV/Vis spectroscopy. As a representative test reaction the reduction of 4-nitrophenol to 4-aminophenol was chosen. The particles show a catalytic activity of (436 ± 24) L g-1 s-1, which is two orders of magnitude higher than for other silver particles in the literature. The particles surrounding shell, composed of poly(acrylic acid), provides the particles with a good accessibility for the reactants. Since the catalytic activity strongly depends on the surrounding ligand, the particles shell can also be exchanged by other ligands enabling a tuning of the catalytic activity to a desired value. This shows the high flexibility of this system which can also be applied for other catalytic reactions. T2 - 5th Nano Today Conference CY - Waikoloa Village, HI, USA DA - 06.12.2017 KW - SAXS KW - Catalysis KW - Silver nanoparticles KW - Reduction 4-nitrophenol PY - 2017 AN - OPUS4-43496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Tuning the catalytic activity of silver nanoparticles N2 - The use of silver nanoparticles in consumer related products has significantly increased over the last decade, especially due to their antimicrobial properties. Today they are used in a variety of products, which range from textiles to dietary supplements. Thus, investigations on nanoscale silver become increasingly important in many fields like biomedicine or catalysis. Unfortunately, the results of these studies are extremely diverse and do not lead to a consistent evaluation of the toxicity of silver nanoparticles. The main problem is the use of nonuniform and poorly characterized particles with broad size distributions. To overcome this problem we modified the known polyol process to synthesize ultra-small core-shell silver nanoparticles in a large scale. The particles are highly stable and show no aggregation for more than six months. Small-angle X-ray scattering analysis reveals a narrow size distribution of the silver cores with a mean radius of 3 nm and a distribution width of 0.6 nm. Dynamic light scattering provides a hydrodynamic radius of 10.0 nm and a PDI of 0.09. The stabilizing ligand PAA can be easily exchanged by biomolecules to modify the surface functionality. Replacements of PAA with glutathione and bovine serum albumin have been successfully performed. To demonstrate the broad applicability of our particles we performed catalysis experiments with the reduction of 4-nitrophenol as model reaction. The PAA-stabilized particles show a catalytic activity of (436 ± 24) L g-1 s-1, which is the highest reported in literature for silver nanoparticles. In contrast, GSH and BSA passivate the surface substantially resulting in lower catalytic activities. T2 - Australian Colloid and Interface Symposium 2017 CY - Coffs Harbour, New South Wales, Australia DA - 29.01.2017 KW - SAXS KW - Protein coating KW - Catalysis PY - 2017 AN - OPUS4-39203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krause, B. A1 - Sieg, H. A1 - Kästner, Claudia A1 - Meyer, T. A1 - Reichardt, P. A1 - Lichtenstein, D. A1 - Burel, A. A1 - Boehmert, L. A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Estrela-Lopis, I. A1 - Gauffre, F. A1 - Fessard, V. A1 - Thuenemann, Andreas A1 - Lampen, A. A1 - Luch, A. T1 - Detection of aluminum nanoparticles in biological media and in vitro N2 - Aluminum is the third most abundant element in the earth crust and therefore ubiquitously detectable in the environment. Mostly found in the form of derivatives such as silicates or oxides, it also occurs as metallic aluminum for example as colorant in sweets or in aluminum foil. With regard to potential toxicological effects, the different solubility of metallic aluminum nanoparticles compared to Al2O3 is of high relevance. Formation of ions may facilitate the crossing of blood-tissue barriers. Distribution towards other organs and subsequent re-formation of particulate aluminum due to milieu changes might occur. Therefore, the determination of solubility is required for proper risk assessment. Inductively coupled plasma mass spectrometry (ICP-MS) allows determination of aluminum with a detection limit of about 6 ppb. It could be proven that dissolution and solubility of metallic aluminum is significantly different when compared to Al2O3. Using ICP-MS in the single particle mode, a significant change in the behavior of both aluminum species was detected after undergoing the artificial digestion. Nearly unchanged in the saliva, particles show dissolution and high agglomeration during the gastric state before deagglomerating again in the intestine. Further analysis by time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealed the uptake of both aluminum forms by proliferating and differentiated Caco-2 cells. For both particle forms different ions could be detected. Several aluminum-amino acid complex-derived ions from serine and valine were identified. In the case of Al2O3, Al2O2+, AlOH+, AlH2O+ and Al[(H2O)6]3+ were the main ions found co-localizing within treated cells. T2 - European Winter Conference for Plasma Spectrochemistry 2017 CY - Sankt Anton, Austria DA - 19.02.2017 KW - Aluminum KW - SP-ICP-MS KW - SAXS KW - Artificial digestion KW - Cellular uptake PY - 2017 AN - OPUS4-39201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Tracking silver nanoparticles: ultra-small silver refunctionalizable with fluorescent biopolymers N2 - We report on the synthesis of ultra-small silver nanoparticles and their quantitative characterization by small-angle X-ray scattering. The size distribution was derived by utilizing a Monte-Carlo data evaluation procedure reported by Pauw et al. Mean volume-weighted sizes are 3 nm with a size distribution width of 18 %. The particles should be used as reference materials for comparison of the result of different analytical methods among which are field-flow fractionation (FFF), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA) and electron microscopy (EM). In addition further use of the particles is foreseen for comparison of studies on the toxicology of nanoparticles. Therefore the silver nanoparticles are transfunctionalized with fluorescent marked albumin (BSA-FITC) and also thoroughly characterized. With this it is possible to track silver nanoparticles and their behavior in interaction with cells. T2 - Polydays 2016 CY - Potsdam, Germany DA - 28.09.2016 KW - SAXS KW - Biological application KW - Ligand exchange KW - Toxicity PY - 2016 AN - OPUS4-37651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fuhrmann, A. A1 - Göstl, R. A1 - Wendt, R. A1 - Kötteritzsch, J. A1 - Hager, M. D. A1 - Schubert, U. S. A1 - Brademann-Jock, Kerstin A1 - Thünemann, Andreas A1 - Nöchel, U. A1 - Behl, M. A1 - Hecht, S. T1 - Conditional repair by locally switching the thermal healing ability of dynamic covalent polymers ON and OFF with light N2 - Healable materials are able to repair inflicted damages, herin often applied: dynamic covalent polymer networks. We have shown in this study that light of different colors shift the Diels-Alder and retro Diels-Alder crosslinking and decrosslinking equilibrium. This effect was utilized for self-healing of a polymer film. Small-angle X-ray scattering was used to quantifiy the polymeric mesh size on a nanoscale. T2 - Polydays 2016 CY - Potsdam, Germany DA - 28.09.2016 KW - Polymer KW - Small-angle X-ray scattering KW - SAXS KW - Self-healing PY - 2016 AN - OPUS4-37570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lichtenstein, D. A1 - Böhmert, L. A1 - Sieg, H. A1 - Meyer, T. A1 - Thünemann, Andreas A1 - Estrela-Lopis, I. A1 - Braeuning, A. A1 - Lampen, A. T1 - Core or coating material – What dictates the uptake and translocation of nanoparticles in vitro? N2 - Nanoparticle size and shape are crucial parameters regarding the potential of nanoparticles to penetrate cell membranes and epithelial barriers. Current research in this field additionally focuses on the particle coating material. In order to distinguish between core- and coating-related effects in nanoparticle uptake and translocation behavior, this study investigated two nanoparticles equal in size, coating and charge but different in core material. Silver and iron oxide coated with poly (acrylic acid) (PAS) were extensively characterized by TEM (transmission electron microscopy), SAXS (Small-Angle X-ray Scattering), ZetasizerTM and NanoSightTM. For uptake and transport studies the widely used human intestinal Caco-2 model in a TranswellTM-system with subsequent elemental analysis (AAS) was used. For evaluation and particle visualization transmission electron microscopy (TEM) and Ion Beam Microscopy (IBM) were conducted. Although similar in size, charge and coating material, the behavior of particles in Caco-2 cells was quite different. The internalized amount was comparable, but PAA-coated iron oxide nanoparticles were additionally transported through the cells. By contrast, PAA-coated silver nanoparticles remained in the cells. Our findings suggest that the coating material influenced only the uptake of the nanoparticles whereas the translocation was determined by the core material. In summary, a core-dependent effect on nanoparticle translocation was revealed. Both the uptake and transport of nanoparticles in and through cells should be considered when discussing nanoparticle fate and safety. T2 - Eurotox 2016 CY - Seville, Spain DA - 04.09.2016 KW - Cellular uptake KW - SAXS PY - 2016 AN - OPUS4-37338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sieg, H. A1 - Lehmann, C. A1 - Kästner, Claudia A1 - Krause, B. A1 - Lichtenstein, D. A1 - Böhmert, L. A1 - Burel, A. A1 - Chevance, S. A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Gauffre, F. A1 - Estrela-Lopis, I. A1 - Fessard, V. A1 - Luch, A. A1 - Lampen, A. T1 - Cellular effects of Al-, Ti- and Zn-containing nanomaterials on intestinal cell lines in vitro N2 - Aluminium-, titanium- and zinc-containing chemicals are highly abundant in food, food contact materials and consumer products. Physical and chemical conversion might lead to a certain amount of nanoscaled particles that can be taken up by the gastrointestinal tract. Nanospecific effects such as higher reactivity, increased surface or altered uptake can increase hazardous potential for human health. The aim of this study as part of the european SolNanoTOX project is to characterize toxicological effects of Al-, Zn- and Ti-containing nanomaterials on intestinal cell lines. While toxicological potential of zinc species has been well studied, little is known about the effects of aluminium- and titanium-species. We have performed toxicological experiments on the human intestinal cell line Caco-2 for numerous endpoints: Cellular ATP and glutathione levels, apoptosis, necrosis, vesicular uptake, oxidative stress, growth rate and cell cycle modification. While zinc-containing controls showed toxic responses, our utilized aluminium- (elementary Al, γ-Al2O3) and titanium-species (TiO2, rutile) did not. Nevertheless, we detected some differences between both different aluminium nanoparticle species and aluminium ions with regard to cell viability. We also provide strong evidence for particle-specific uptake of aluminium and titanium in the intestinal cell line Caco-2. In summary, among the different tested endpoints, Al- and Ti-containing nanomaterials did not show any toxicity in intestinal cell lines in vitro. Nevertheless, this absence of effect was not due to an absence of exposure, since particle-specific uptake was reported. Metal particle uptake over a long time might therefore be relevant for risk assessment of aluminium- and titanium-containing food products. T2 - 8th International Nanotoxicology Congress CY - Boston, MA, USA DA - 01.06.2016 KW - Artificial digestion KW - SAXS KW - Cell viability KW - Toxicity PY - 2016 AN - OPUS4-36921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sieg, H. A1 - Kästner, Claudia A1 - Krause, B. A1 - Lichtenstein, D. A1 - Böhmert, L. A1 - Burel, A. A1 - Chevance, S. A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Gauffre, F. A1 - Estrela-Lopis, I. A1 - Fessard, V. A1 - Luch, A. A1 - Lampen, A. T1 - Impact of (artificial) digestion on Al-containing nanomaterials and their physico-chemical characteristics N2 - Aluminium and its chemical derivatives are highly abundant in food, food contact materials and consumer products. Up to now little is known about its derivatization and uptake during digestion and its impact on human health. As part of the SolNanoTOX project, different aluminium species were investigated during an artificial digestion process that mimics the saliva, the stomach and the intestine regarding pH-values, duration time, chemical environment and enzymatic composition. Two different nanomaterials (Al, Al2O3) and a soluble ionic AlCl3 control were digested and investigated by different analytical methods regarding core radius, hydrodynamic diameter, agglomeration and dissolution behavior in biological media. The fate of nanoparticles during typical pH-values of saliva, gastric and intestinal juice was studied with dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and ICP-MS in the single particle mode. After disappearance at pH 2 the nanoparticles were detected again in the intestinal fluid, as measured by DLS. During all artificial digestion stages Al nanoparticles had a constant average SAXS radius. In contrast, the radii of Al2O3 nanoparticles changed concentration-dependently. Highest radii were observed in the stomach fluid while intestinal fluid was found to cause full recovery of the primary particles. Dissolution of digested nanoparticles in cell culture media showed a bimodal size distribution of primary particles and aggregates. In summary, simulation of the gastrointestinal tract, mainly the change of pH settings, has provided evidence that the bioavailability of Al is likely to increase during the passage of the gut after oral uptake of aluminium-containing food products. T2 - 8th International Nanotoxicology Congress CY - Boston, MA, USA DA - 01.06.2016 KW - Artificial digestion KW - SAXS KW - DLS PY - 2016 AN - OPUS4-36919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Artificial Digestion of Colloidal Silver Monitored by Small-Angle X-Ray Scattering N2 - In the last decade the utilization of silver nanoparticles in consumer related products is enhanced. Therefore, many studies focus on investigations regarding their toxicological potential. This includes investigations concerning uptake, distribution and excretion of the particles. So far, little attention was paid to changes of physical and chemical properties in the human body. During processes like digestion, the question arises whether they can pass this barrier in a nanoscale form. In this study we analytically monitored the changes in the size distribution of colloidal silver during an artificial digestion process with the help of small angle x-ray scattering (SAXS). Therefore, we synthesized polyacrylic acid stabilized ultra-small silver nanoparticles with a radius of 3 nm and a size distribution width of 18%. The artificial digestion process mimics the gastro-intestinal passage and simulates the oral, gastric and small intestinal conditions. Additionally, food components like oil, starch, glucose and skimmed milk powder are used to provide a preferably realistic environment. In absence of any food components the low pH initiates aggregation of the particles in the stomach. However, the particles unexpectedly stabilize in a defined cluster form with a mean radius of 12 nm. By the use of the food components oil and starch we observed that the particles are dispersed again. Now we found a bimodal size distribution of primary particles and aggregates. In contrast to that, with skimmed milk powder only a slight aggregation occurs in the stomach. In the gastric tract the particle distribution is stabilized at a mean volume weighted radius of 5 nm. Hence, skimmed milk powder acts as a colloidal stabilizer. For comparison we also used silver nitrate as a control substance. Surprisingly, we observed a formation of nanoparticles already in the saliva. During the digestion process the distribution narrows and finally in the intestine it shows a stable distribution with a mean volume weighted radius of 3 nm and a small fraction of aggregates. These results indicate that the silver nanoparticles can pass the digestion process in a nanoscale form but undergo a transformation in the size distribution. However, even from pure silver nitrate nanoparticle formation can be observed. This sketches a complex mechanism in which not only food components but also silver ions cause changes in nanoparticle size and aggregation. T2 - 6th International Colloids Conference CY - Berlin, Germany DA - 19.06.2016 KW - SAXS KW - Artificial digestion KW - Silver nanoparticles PY - 2016 AN - OPUS4-36888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - Characterization of silver nanoparticles in cell culture medium containing fetal bovine serum N2 - Nanoparticles are being increasingly used in consumer products worldwide, and their toxicological effects are currently being intensely debated. In vitro tests play a significant role in nanoparticle risk assessment, but reliable particle characterization in the cell culture medium with added fetal bovine serum (CCM) used in these tests is not available. As a step toward filling this gap, we report on silver ion release by silver nanoparticles, and changes in the particle radii and in their protein corona when incubated in CCM. Particles of a certified reference material (CRM), p1, and particles of a commercial silver nanoparticle material, p2, were investigated. The colloidal stability of p1 is provided by the surfactants polyethylene glycole-25 glyceryl trioleate and polyethylene glycole-20 sorbitan monolaurate, whereas p2 is stabilized by polyvinylpyrrolidone (PVP). Dialysis of p1 and p2 reveal that their silver ion release rates in CCM are much larger than in water. Particle characterization was performed with asymmetrical flow field-flow fractionation (FFF), small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and electron microscopy. p1 and p2 have similar hydrodynamic radii of 15 nm and 16 nm, respectively. The silver core radii are 9.2 and 10.2 nm. Gel electrophoresis and subsequent peptide identification reveal that albumin is the main corona component of p1 and p2 after incubation in CCM, which consists of Dulbeccos Modified Eagle Medium with 10% fetal bovine serum added. T2 - 6th International Colloids Conference CY - Berlin, Germany DA - 19.06.2016 KW - SAXS KW - Nanoparticle KW - Silver KW - Albumin PY - 2016 AN - OPUS4-36639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kabelitz, Anke A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Radtke, Martin A1 - Bienert, Ralf A1 - Schulz, K. A1 - Kraehnert, R. A1 - Emmerling, Franziska T1 - Time-resolved studies on the formation of maghemite nanoparticles combining fast-XANES and SAXS N2 - Iron oxide nanoparticles find application in different areas like sensing, magnetic storage media, and biomedicine, due to their magnetic properties and environment-friendliness. In the present contribution, we report on the in situ investigation of an iron oxide nanoparticle synthesis by coupled X-ray absorption near-edge structure (XANES) and small-angle X-ray scattering (SAXS). The combination provides simultaneously information about the size of particles (SAXS) and on the oxidation state and the local structure of the iron atoms (XANES). The co-precipitation synthesis was exemplary studied, using a stabilization agent to decelerate the fast precipitation of the iron oxides. This allows to detect intermediates in situ. The measurements were performed using a custom-made acoustic levitator as sample holder. From the data, a mechanism was derived indicating different phases of particle Formation and oxidation state changes. T2 - The European Materials Research Society-Spring Meeting 2016 CY - Lille, France DA - 01.05.2016 KW - Iron oxide nanoparticles KW - SAXS KW - XANES KW - Time-resolved PY - 2016 AN - OPUS4-36351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sieg, H. A1 - Krause, B. A1 - Lichtenstein, D. A1 - Böhmert, L. A1 - Kästner, Claudia A1 - Hansen, Ulf A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Luch, A. A1 - Lampen, A. T1 - Artificial digestion of aluminium-containing nanomaterials and their effects on the gastrointestinal tract in vitro N2 - Although aluminium is one of the most common elements in the biosphere, up to now little is known about its impact on human health. aluminium and its chemical derivatives are highly abundant in food, food contact materials and consumer products. Humans are exposed to aluminium via the gastrointestinal tract (GI tract). Exposition can change substantially due to consumer behavior since aluminium is also a compound of numerous food additives. Recently, aluminium exposition is increasingly considered to cohere with cancer and neurodegenerative disorders. Lately, due to an increasing attentiveness on this topic, limiting values for food additives have been tightened by the EFSA. However, cellular effects of aluminium and especially aluminium-containing nanomaterials, that represent a significant part of chemicals found in food products, are widely unknown and in the focus of our research activities, for example in the bilateral SolNanoTOX project. We established an in vitro simulation system of the GI tract, where nanomaterials undergo the different physiological, chemical and proteinbiochemical conditions of saliva, gastric juice and the intestine. The artificially digested nanomaterials, as well as soluble aluminium chloride as ionic control substance, were subjected to several analytical and biochemical methods to characterize their change of appearance and their cytotoxic effects on intestinal cellular models. We observed the fate of the nanomaterials during typical pH-values of saliva, gastric and intestinal juice with Dynamic light scattering measurements and ICP-MS in the single particle mode. After observable disappearance at pH 2 the particles recovered in the simulated intestinal fluid. The simulation of the GI tract, mainly the change of pH settings, can lead to a certain chemical activation of aluminium that can increase bioavailability in the intestine after oral uptake of aluminium-containing food products. In vitro assays like CTB, MTT and cellular impedance measurements showed that there were no acute cytotoxic effects measurable after a period up to 48h after incubation, comparable to undigested particles. In contrast, high amounts of aluminium ions showed synergistic effects on cell viability compared to non-digested aluminium ions. Although toxicological potential of Al ions to healthy tissue appears to be low, increased hazardous potential cannot be ruled out to pre-damaged tissue and can have a relevance in risk assessment for special consumer groups with for example chronical intestinal inflammation or dietary eating behavior combined with high exposure to Al-containing food products. T2 - 82nd Annual Meeting of the German Society for Experimental and Clinical Pharmacology and Toxicology CY - Berlin, Germany DA - 29.02.2016 KW - Nanoparticles KW - Digestion KW - SAXS KW - Cytotoxicity PY - 2016 AN - OPUS4-36026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -