TY - JOUR A1 - Gerrits, Ruben A1 - Stepec, Biwen An A1 - Bäßler, Ralph A1 - Becker, Roland A1 - Dimper, Matthias A1 - Feldmann, Ines A1 - Goff, Kira L. A1 - Günster, Jens A1 - Hofmann, Andrea A1 - Hesse, René A1 - Kirstein, Sarah A1 - Klein, Ulrich A1 - Mauch, Tatjana A1 - Neumann-Schaal, Meina A1 - Özcan Sandikcioglu, Özlem A1 - Taylor, Nicole M. A1 - Schumacher, Julia A1 - Shen, Yin A1 - Strehlau, Heike A1 - Weise, Matthias A1 - Wolf, Jacqueline A1 - Yurkov, Andrey A1 - Gieg, Lisa M. A1 - Gorbushina, Anna T1 - A 30-year-old diesel tank: Fungal-dominated biofilms cause local corrosion of galvanised steel N2 - The increased use of biodiesel is expected to lead to more microbial corrosion, fouling and fuel degradation issues. In this context, we have analysed the metal, fuel and microbiology of a fouled diesel tank which had been in service for over 30 years. The fuel itself, a B7 biodiesel blend, was not degraded, and—although no free water phase was visible—contained a water content of ~60 ppm. The microbial community was dominated by the fungus Amorphotheca resinae, which formed thick, patchy biofilms on the tank bottom and walls. The tank sheets, composed of galvanised carbon steel, were locally corroded underneath the biofilms, up to a depth of a third of the sheet thickness. On the biofilm-free surfaces, Zn coatings could still be observed. Taken together, A. resinae was shown to thrive in these water-poor conditions, likely enhancing corrosion through the removal of the protective Zn coatings. KW - Fungal biofilms KW - Biodiesel degradation mechanisms PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655014 DO - https://doi.org/10.1038/s41529-025-00731-2 SN - 2397-2106 VL - 10 IS - 1 SP - 1 EP - 14 PB - Springer Science and Business Media LLC AN - OPUS4-65501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pavlidis, Sotirios A1 - Fischer, Eric W. A1 - Opis-Basilio, Amanda A1 - Bera, Ayan A1 - Guilherme Buzanich, Ana A1 - Álvarez-Sánchez, María A1 - Wittek, Severin A1 - Emmerling, Franziska A1 - Ray, Kallol A1 - Roemelt, Michael A1 - Abbenseth, Josh T1 - Ambiphilic Reactivity and Switchable Methyl Transfer at a T-Shaped Bi(NNN) Complex Enabled by a Redox-Active Pincer Ligand N2 - We report the transition-metal-like reactivity of a geometrically constrained, ambiphilic bismuth(III) trisamide. Planarization of the Bi(III) center unlocks Bi−C bond formation when reacted with mild electrophiles (alkyl iodides and triflates) accompanied by two-electron oxidation of the utilized NNN pincer nligand. The preservation of the bismuth oxidation state is confirmed by single-crystal X-ray diffraction and X-ray absorption spectroscopy and corroborated by theoretical calculations. Sequential reduction of the oxidized ligand framework alters the reactivity of a generated Bi−Me unit, enabling controlled access to methyl cation, radical, and anion equivalents. The full [Bi(Me)(NNN)]+/•/− redox series was comprehensively characterized using NMR and EPR spectroscopy as well as spectro-electrochemistry. This work represents the first example of ligand-assisted, redox-neutral C−X bond splitting at bismuth, establishing a new paradigm for synthetic bismuth chemistry. KW - Pincer ligand KW - XAS KW - Redox PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654948 DO - https://doi.org/10.1021/jacs.5c18955 SN - 0002-7863 VL - 148 IS - 2 SP - 2683 EP - 2692 PB - American Chemical Society (ACS) AN - OPUS4-65494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, Xingyu A1 - Antunes, Margarida M. A1 - Guilherme Buzanich, Ana A1 - Cabanelas, Pedro A1 - Valente, Anabela A. A1 - Pinna, Nicola A1 - Russo, Patrícia A. T1 - Formation, Phase Transition, Surface, and Catalytic Properties of Cubic ZrO 2 Nanocrystals N2 - Pseudocapacitance-type transition metal oxides have been extensively investigated as anodes for lithium-ion batteries (LIBs). Currently, they are also gaining attention for sodium-ion batteries (SIBs) due to their low volume change and safety. However, their performance in sodium storage remains limited, primarily due to the larger Na+ ion radius. Here, for the first time, an iron niobate is reported with a columbite structure as a high-Performance sodium storage anode. The presence of iron triggers the loss of long-rangeorder through disorder of the FeO6 octahedra local structure, subsequentlyallowing reversible sodium storage in an amorphous phase. Simultaneously, the formation of short-range ordered zigzag-chain structures within the NbO6 planes creates a “skeleton” that offers abundant active sites forpseudocapacitive ion storage and enhanced ion diffusion pathways. These characteristics of FeNb2O6 make it an effective intercalation host, offering high capacity along with fast Na+ kinetics, as demonstrated through operando and ex situ characterizations. It leads to an applicable reversible capacity (>300 mAh g−1) with a favorable average voltage of ≈0.6 V and excellent rate capability (180.4 mAh g−1 at a current density of 2 A g−1). This study provides insights into the development of intrinsically active transition metal oxides for Na+-ion intercalation. KW - XAS KW - Sodium-ion Batteries PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654955 DO - https://doi.org/10.1021/acs.chemmater.5c01483 SN - 0897-4756 VL - 37 IS - 21 SP - 8568 EP - 8580 PB - American Chemical Society (ACS) AN - OPUS4-65495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, Yanchen A1 - Guilherme Buzanich, Ana A1 - Alippi, Paola A1 - Montoro, Luciano A. A1 - Lee, Kug‐Seung A1 - Jeon, Taeyeol A1 - Weißer, Kilian A1 - Karlsen, Martin A. A1 - Russo, Patrícia A. A1 - Pinna, Nicola T1 - FeNb 2 O 6 as a High‐Performance Anode for Sodium‐Ion Batteries Enabled by Structural Amorphization Coupled with NbO 6 Local Ordering N2 - Pseudocapacitance-type transition metal oxides have been extensively investigated as anodes for lithium-ion batteries (LIBs). Currently, they are also gaining attention for sodium-ion batteries (SIBs) due to their low volume change and safety. However, their performance in sodium storage remains limited, primarily due to the larger Na+ ion radius. Here, for the first time, an iron niobate is reported with a columbite structure as a high-performance sodium storage anode. The presence of iron triggers the loss of long-range order through disorder of the FeO6 octahedra local structure, subsequently allowing reversible sodium storage in an amorphous phase. Simultaneously, the formation of short-range ordered zigzag-chain structures within the NbO6 planes creates a “skeleton” that offers abundant active sites for pseudocapacitive ion storage and enhanced ion diffusion pathways. These characteristics of FeNb2O6 make it an effective intercalation host, offering high capacity along with fast Na+ kinetics, as demonstrated through operando and ex situ characterizations. It leads to an applicable reversible capacity (>300 mAh g−1) with a favorable average voltage of ≈0.6 V and excellent rate capability (180.4 mAh g−1 at a current density of 2 A g−1). This study provides insights into the development of intrinsically active transition metal oxides for Na+-ion intercalation. KW - SIB KW - XAS KW - Sodium-ion Batteries PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654931 DO - https://doi.org/10.1002/adma.202504100 SN - 0935-9648 VL - 37 IS - 46 SP - 1 EP - 13 PB - Wiley AN - OPUS4-65493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faustino, Leandro A. A1 - de Angelis, Leonardo D. A1 - de Melo, Eduardo C. A1 - Farias, Giliandro A1 - dos Santos, Egon C. A1 - Miranda, Caetano R. A1 - Buzanich, Ana G. A1 - Torresi, Roberto M. A1 - de Oliveira, Paulo F.M. A1 - Córdoba de Torresi, Susana I. T1 - Urea synthesis by Plasmon-Assisted N2 and CO2 co-electrolysis onto heterojunctions decorated with silver nanoparticles N2 - The N2 + CO2 co-electrolysis to urea synthesis has become a promising alternative to the energy intensive traditional processes for urea production. However, there are still challenges in this approach, especially due to the competition with HER (Hydrogen Evolution Reaction) leading to low efficiency. Electrochemistry assisted by localized surface plasmon resonance (LSPR) using metal nanoparticles has been reported to enhance different electrochemical reactions. Here we report an electrochemical LSPR assisted urea synthesis using Ag nanoparticles (NPs) supported on BiVO4/BiFeO3 catalyst mechanochemically synthesized. The electrochemical experiments were performed under dark and upon plasmon excitation at the LSPR region of Ag NPs. Our results demonstrated that exciting in the LSPR range, urea yield rate and Faradic efficiency were considerably improved with reduced overpotential, 19.2 μmol h− 1 g− 1 and FE 24.4% at +0.1 V vs RHE compared to 9.6 μmol h− 1 g− 1 and FE 9.4% at − 0.2 V vs RHE under dark conditions. Further in situ FTIR-RAS experiments for mechanism investigation revealed the presence of N-H and C-N intermediates and the real effect of Ag plasmon excitation on HER and N2 + CO2 co-electrolysis. Theoretical calculations confirm the energy of the species involved in C-N coupling as well the role of the complex catalytic sites, which agrees with XAS measurements. KW - Plasmon-assited KW - XAS KW - Urea KW - Electrocatalysis PY - 2025 DO - https://doi.org/10.1016/j.cej.2025.163072 SN - 1385-8947 VL - 513 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-65492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bustos, Jenna A1 - Shohel, Mohammad A1 - Guilherme Buzanich, Ana A1 - Zakharov, Lev A1 - Buils, Jordi A1 - Segado‐Centellas, Mireia A1 - Bo, Carles A1 - Nyman, May T1 - Technetium and Rhenium Auto‐reduction, Polymerization and Lability towards Group VII Polyoxometalate Chemistry N2 - AbstractGroup VII Tc and Re have long been studied to develop both radiopharmaceuticals and technologies for nuclear materials management. Fundamental research has targeted understanding this periodic table crossroads where polyoxometalates meets metal‐metal bonded complexes. Here we have isolated green hygroscopic and metastable crystals of (ReVI,oct)2(ReVII,tet)2(OH)2(O)12⋅H2O (ReVI,VII‐green, tet=tetrahedral, oct=octahedral), determined by single‐crystal x‐ray diffraction. In addition to color, Re‐L1 X‐ray absorption near‐edge spectroscopy confirms the reduced oxidation state. ReVI,VII‐green provides the first demonstration of Re autoreduction, long‐observed for Mn and Tc. We also isolated and structurally characterized [Tc4O4(H2O)2(ReO4)14]2− (Tc4Re14) polyanion crystals that contain Tc(V) and Re(VII), consistent with greater stability of reduced Tc compared to reduced Re. Small angle X‐ray scattering of both compounds and prior‐reported polyanion [Tc4O4(H2O)2(TcO4)14]4− (Tc20) dissolved in acetonitrile indicated a qualitative lability order of oxo‐linkages of Re‐O−Re Re‐O−Tc Tc‐O−Tc, and lability of Tc20 was also probed by 99Tc nuclear magnetic resonance spectroscopy. Computation provided insight into 99Tc chemical shifts as well as lability. Based on both reducibility and solution phase dynamics of polynuclear compounds investigated here, Re is an imperfect surrogate for Tc, and further expansion of group VII polyoxometalate chemistry seems promising. KW - XANES KW - Polyoxometalate KW - Technetium PY - 2025 DO - https://doi.org/10.1002/chem.202404144 SN - 0947-6539 VL - 31 IS - 21 SP - 1 EP - 7 PB - Wiley-VCH Verl. AN - OPUS4-65491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gugin, Nikita A1 - Schwab, Alexander A1 - Carraro, Francesco A1 - Tavernaro, Isabella A1 - Falkenhagen, Jana A1 - Villajos, Jose A1 - Falcaro, Paolo A1 - Emmerling, Franziska T1 - ZIF-8-based biocomposites via reactive extrusion: towards industrial-scale manufacturing N2 - Mechanochemistry, a sustainable synthetic method that minimizes solvent use, has shown great promise in producing metal–organic framework (MOF)-based biocomposites through ball milling. While ball milling offers fast reaction times, biocompatible conditions, and access to previously unattainable biocomposites, it is a batch-type process typically limited to gram-scale production, which is insufficient to meet commercial capacity. We introduce a scalable approach for the continuous solid-state production of MOF-based biocomposites. Our study commences with model batch reactions to examine the encapsulation of various biomolecules into Zeolitic Imidazolate Framework-8 (ZIF-8) via hand mixing, establishing a foundation for upscaling. Subsequently, the process is scaled up using reactive extrusion, enabling continuous and reproducible kilogram-scale production of bovine serum albumin (BSA)@ZIF-8 with tunable protein loading. Furthermore, we achieve the one-step formation of shaped ZIF-8 extrudates encapsulating clinical therapeutic hyaluronic acid (HA). Upon release of HA from the composite, the molecular weight of HA is preserved, highlighting the industrial potential of reactive extrusion for the cost-effective and reliable manufacturing of biocomposites for drug-delivery applications. KW - Mechanochemistry KW - Extrusion KW - Biocompoites KW - MOFs PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654777 DO - https://doi.org/10.1039/D5TA08276E SN - 2050-7496 SP - 1 EP - 14 PB - Royal Society of Chemistry AN - OPUS4-65477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schusterbauer, Robert A1 - Mrkwitschka, Paul A1 - Sahre, Mario A1 - Corrao, Elena A1 - Zurutuza, Amaia A1 - Doolin, Alexander A1 - Pellegrino, Francesco A1 - Radnik, Jörg A1 - Donskyi, Ievgen S. A1 - Hodoroaba, Vasile-Dan T1 - Correlative Chemical Imaging to Reveal the Nature of Different Commercial Graphene Materials N2 - Proper physicochemical characterization of advanced materials and complex industrial composites remains a significant challenge, particularly for nanomaterials, whose nanoscale dimensions and mostly complex chemistry challenge the analysis. In this work, we employed a correlative analytical approach that integrates atomic force microscopy (AFM), scanning electron microscopy (SEM) coupled with energy‐dispersive X‐ray spectroscopy (EDS), time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS), Auger electron spectroscopy (AES), and Raman spectroscopy. This combination enables detailed chemical and structural characterization with sub‐micrometer spatial resolution. Three commercial graphene‐based materials of varying complexity were selected and investigated to test the analytical performance of this approach. Furthermore, one of the commercial graphene oxide samples was chemically functionalized via amination and fluorination. This allowed us to assess how surface modifications influence both the material properties and the limits of the applied analytical techniques. KW - Analytical methods KW - Commercial products KW - Correlative analysis KW - Graphene KW - Surface imaging PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654765 DO - https://doi.org/10.1002/smtd.202502344 SN - 2366-9608 SP - 1 EP - 10 PB - Wiley VHC-Verlag AN - OPUS4-65476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartczak, Dorota A1 - Sikora, Aneta A1 - Goenaga-Infante, Heidi A1 - Altmann, Korinna A1 - Drexel, Roland A1 - Meier, Florian A1 - Alasonati, Enrica A1 - Lelong, Marc A1 - Cado, Florence A1 - Chivas-Joly, Carine A1 - Fadda, Marta A1 - Sacco, Alessio A1 - Rossi, Andrea Mario A1 - Pröfrock, Daniel A1 - Wippermann, Dominik A1 - Barbero, Francesco A1 - Fenoglio, Ivana A1 - Booth, Andy M. A1 - Sørensen, Lisbet A1 - Igartua, Amaia A1 - Wouters, Charlotte A1 - Mast, Jan A1 - Barbaresi, Marta A1 - Rossi, Francesca A1 - Piergiovanni, Maurizio A1 - Mattarozzi, Monica A1 - Careri, Maria A1 - Caebergs, Thierry A1 - Piette, Anne-Sophie A1 - Parot, Jeremie A1 - Giovannozzi, Andrea Mario T1 - Multiparameter characterisation of a nano-polypropylene representative test material with fractionation, light scattering, high-resolution microscopy, spectroscopy, and spectrometry methods N2 - Reference and quality control materials with comparable physicochemical properties to nanoplastic contaminants present in environmental and food nanoplastics are currently lacking. Here we report a nanoplastic polypropylene material prepared using a top-down approach involving mechanical fragmentation of larger plastics. The material was found to be homogeneous and stable in suspension and has been characterised for average particle size, size distribution range, particle number concentration, polypropylene mass fraction and inorganic impurity Content using a wide range of analytical methods, including AF4, cFFF, PTA, (MA)DLS, MALS, SEM, AFM, TEM, STEM, EDS,Raman, ICP-MS and pyGC-MS. The material was found to have a broad size distribution, ranging from 50 nm to over 200 nm, with the average particle size value dependent on the technique used to determine it. Particle number concentration ranged from 1.7–2.4 × 1010 g−1 , according to PTA. Spectroscopy techniques confirmed that the material was polypropylene, with evidence of aging due to an increased level of oxidation. The measured mass fraction was found to depend on the marker used and ranged between 3 and 5 μg g−1 . Inorganic impurities such as Si, Al, Mg, K, Na, S, Fe, Cl and Ca were also identified at ng g−1 levels. Comparability and complementarity across the measurement methods and techniques is also discussed. KW - Polypropylene KW - Nanoplastics KW - Analytics KW - Reference material KW - Scattering methods PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654680 DO - https://doi.org/10.1039/D5EN00917K SN - 2051-8153 SP - 1 EP - 15 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oksal-Kilinc, Sefine A1 - Altmann, Korinna A1 - Seiwert, Bettina A1 - Reemtsma, Thorsten A1 - Ruess, Liliane T1 - Grinding method and oxidative aging modulate the impact of tire wear microplastics on the reproduction of the nematode C. elegans N2 - Rationale Tire abrasion is one of the largest sources of microplastic in aquatic and terrestrial environments. Despite this fact, research on tire wear microplastic (TWP) and its effects on soil ecosystems is scarce, especially regarding natural weathering processes. This leaves a large knowledge gap on the interactions of TWP with soil biota. Methodology Cryo-milled tire tread (CMTT) and diamond-ground tire tread (DGTT) were artificially weathered through dry ozone treatment and heat exposure. Particles were analyzed via scanning electron microscopy, particle size distribution, and shape characterization. TWP leachate composition was examined using liquid chromatography–mass spectrometry. The impact on the reproduction of the nematode Caenorhabditis elegans, a widely used toxicological model, was tested for leachate concentration, exposure duration and TWP aging status, using offspring per adult as the endpoint. Results The comminution method significantly influenced TWP particle size distribution, with diamond grinding yielding smaller particles and a more structured surface morphology than cryo-milling. Aging with ozone (180 min) and heat (20 min at 100 °C) reduced DGTT particle sizes by 27-58%, but not in CMTT. Additionally, aging increased carboxylic functional groups and led to a brittle structure in both TWP types. Leachate composition varied with comminution method and aging. Benzothiazole, N-Cyclo-N-phenylurea, and aniline were more abundant in pristine and aged CMTT and aged DGTT. Diphenylguanidine had the highest concentration in all leachates. Aged TWP leachates, regardless of comminution, had significant toxic effects on C. elegans. Leachate from pristine CMTT was more toxic than from pristine DGTT. Nematode offspring correlated negatively with ozone exposure duration in aged DGTT. Tests with aged CMTT leachate showed even short-term exposure reduced offspring numbers. Discussion The results underscore the importance of oxidative and mechanical weathering in TWP toxicity and challenge the use of pristine particles in toxicological assays for risk assessment in the natural environment. KW - Microplastics KW - Tire abrasion KW - Environment PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654672 DO - https://doi.org/10.1071/EN25051 SN - 1448-2517 VL - 23 IS - 2 SP - 1 EP - 16 PB - CSIRO Publishing AN - OPUS4-65467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiesner, Yosri A1 - Eisentraut, Paul A1 - Altmann, Korinna T1 - One Year Observation of Microplastic Concentrations in the River Rhine N2 - In recent years, the quantification of microplastics (MP) in aquatic environments has gained increasing attention, particularly regarding their environmental distribution and potential exposure levels. Environmentally relevant exposure data are still essential for a realistic risk assessment of the harmful health potential of microplastics in freshwater systems. This study addresses a large data set of MP concentrations analyzed and processed under statistical aspects and provides mass concentrations as well as associated size fractions of the detected MP. Over a 12 month period, samples were collected at three locations and analyzed across three particle size fractions (100−500 μm, 50−100 μm, and 10−50 μm) using thermalextraction desorption-gas chromatography/mass spectrometry (TED-GC/MS). The most prevalent polymers identified were polyethylene (PE), polypropylene (PP), polystyrene (PS), styrene−butadiene rubber (SBR), and natural rubber (NR). Statistical analyses, including principal component and cluster analysis, revealed size-dependent patterns,minor seasonal variation and spatial variations. These findings are particularly significant for ecotoxicological research and regulatory development, especially regarding tire abrasion a rarely quantified but potentially harmful MP source. The study contributes aluable data for future environmental monitoring and supports EU directives on wastewater and drinking water quality KW - TED-GC/MS KW - Microplastics KW - Environment KW - Monitoring KW - Reference data PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654669 DO - https://doi.org/10.1021/acsestwater.5c00530 SN - 2690-0637 SP - 1 EP - 10 PB - American Chemical Society (ACS) AN - OPUS4-65466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - George, Janine A1 - Ouellet-Plamondon, Claudiane A1 - Reyes, Kristofer T1 - Introduction to the “Accelerate Conference 2023–2024” themed collection N2 - The collection showcases the ways in which automation, machine learning and robotics are transforming experimental materials science and chemistry into continuous, computationally integrated processes. It features innovations regarding autonomous laboratories, Bayesian optimisation, high-throughput experimentation and computation, and AI-driven literature extraction, which simplify and scale up materials discovery. Together, these works outline a modular, responsible framework for accelerating scientific progress through human-guided, data-driven autonomy. KW - Automation KW - Materials Acceleration Platforms KW - Synthesizability KW - Workflows KW - Large Language Models KW - Ontologies KW - Materials Discovery PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654658 DO - https://doi.org/10.1039/d5dd90057c SN - 2635-098X SP - 1 EP - 2 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - The role of Critical Raw Materials in Advanced Materials for the Energy Transition N2 - Based on the UBA report “Advanced materials for energy transition” by Xenia Knigge and Jörg Radnik the role of critical raw materials is discussed. Critical raw materials are needed in main fields of the energy transition, like photovoltaic, fuel cells, wind energy, and batteries. For the optimisation of the use of these materials different scenarios are discussed like (i) decreasing the needed amount of raw materials, (ii) searching for alternatives, (iii) using technologies which do not require critical raw materials, (iv) increasing the recycling rates, and (v) expanding the raw material sources. T2 - IRISS policy dialogue CY - Online meeting DA - 12.01.2026 KW - Solar Cells KW - Fuel cells KW - Batteries KW - Multi-use materials PY - 2026 AN - OPUS4-65451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gladrow, K. A1 - Unkovskiy, A. A1 - Yassine, J. A1 - Gaertner, N. A1 - Topolniak, Ievgeniia A1 - Henning, N. A1 - Schmidt, F. T1 - The effect of nitrogen atmosphere during post-curing on cytotoxicity, polishability, flexural strength, and surface hardness of 3D-printed denture bases: an in vitro study N2 - 3D printing is increasingly utilized in dentistry. Compared to traditional manufacturing methods, 3D printing provides advantages such as faster production times and the ability to create complex structures. Although biocompatible materials are available, many are only suitable for temporary applications. This study examines the impact of nitrogen-aided post-processing on the mechanical properties and cytotoxicity of 3D-printed denture bases, with the hypothesis that this post-processing will enhance material properties and decrease cytotoxicity. Specimens were fabricated from V-print dentbase (Voco GmbH, Cuxhaven, Germany) and post-processed either in nitrogen or air. The specimens were categorized into aged and non-aged groups. For comparison, specimens made from milled material were utilized. Vickers hardness, flexural strength, polishability, cytotoxicity, and degree of conversion were then assessed for all groups. The data were analyzed using a one-way ANOVA and Tukey HSD test for multiple comparisons, with a significance threshold of p < 0.05. Post-curing with nitrogen improved the degree of conversion, surface hardness, and biocompatibility of 3D-printed dental materials, confirming reduced cytotoxicity without impairing mechanical properties. Nitrogen increased polymerization and decreased harmful monomers, making it ideal for clinical applications in contact with the oral mucosa. Optimizing post-processing steps, such as curing in nitrogen, enhances biocompatibility while maintaining strength and hardness, ensuring better patient care in dental applications. KW - Biocompatibility KW - V-Print KW - Cytotoxicity KW - Nitrogen KW - Dentistry PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654504 DO - https://doi.org/10.1007/s10856-026-07006-5 SN - 1573-4838 VL - 37 IS - 1 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-65450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adhami, Forogh A1 - Safavi, Maliheh A1 - Ehsani, Maryam A1 - Ardestani, Sussan K. A1 - Emmerling, Franziska A1 - Simyari, Farzaneh T1 - Synthesis, crystal structure, and cytotoxic activity of novel cyclic systems in [1,2,4]thiadiazolo[2,3-a]pyridine benzamide derivatives and their copper(ii) complexes N2 - Three N-(pyridine-2-ylcarbamothioyl)benzamide derivatives were synthesized by the reaction of potassium thiocyanate, benzoyl chloride, and 2-amino pyridine derivatives in one pot. The obtained derivatives were oxidized using copper(II) chloride. During the oxidation, two hydrogen atoms were removed, cyclization of the derivatives occurred, and finally, three new N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide derivatives were produced. Coordination of these three new derivative ligands to the copper(II) ion resulted in the formation of three new complexes: dichlorobis(N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide)copper(II), dichlorobis(N-(7-methyl-2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2ylidene)benzamide)copper(II), and dichlorobis(N-(5-methyl-2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide)copper(II). All the synthesized products were characterized by IR, 1H NMR, and 13C NMR spectroscopies. Crystal structures of the obtained N-(pyridine-2-ylcarbamothioyl)benzamide derivatives, N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide derivatives, and complexes were determined using X-ray single-crystal diffraction; the positions of atoms, bond lengths, bond angles, and dihedral angles were also determined. In all complexes, the coordination of two large monodentate ligands and two chloride anions to the copper(II) ion resulted in the formation of a stable planar geometry around the central ion. Three N-(pyridine-2-ylcarbamothioyl)benzamide derivatives, three N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide derivatives, and three complexes were evaluated for their cytotoxicity against five human cancer cell lines (breast cancer cell line MDA-MB-231, neuroblastoma cell line SK-N-MC, prostate adenocarcinoma cell line LNCap, nasopharyngeal epidermoid carcinoma cell line KB, and liver cancer cell line HEPG-2) using an in vitro analysis. The N-(pyridine-2-ylcarbamothioyl)benzamide derivatives showed no cytotoxic activity, whereas the N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide derivatives and their complexes showed significant cytotoxicity, especially against MDA-MB-231 and LNCap cell lines. The complexes demonstrated smaller IC50 values than N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide derivatives. KW - Copper complexes PY - 2014 DO - https://doi.org/10.1039/c3dt52905c SN - 1477-9226 VL - 43 IS - 21 SP - 7945 EP - 7957 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Robust Data Generation, Heuristics and Machine Learning for Materials Design N2 - My talk covered, among other things, robust data generation for machine learning. It showed how heuristics can be used within machine learning models and how they might also be extracted from machine learning models. Beyond this, I showed an automated pipeline for training machine learning potentials. T2 - Seminar Gruppe Stephan Roche CY - Barcelona, Spain DA - 22.01.2026 KW - Automation KW - Machine Learning KW - Materials Acceleration Platforms KW - Thermal Conductivity KW - Phonons KW - Bonding Analysis PY - 2026 AN - OPUS4-65428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Robust Data Generation, Heuristics and Machine Learning for Materials Design N2 - My talk covered, among other things, robust data generation for machine learning. It showed how heuristics can be used within machine learning models and how they might also be extracted from machine learning models. Beyond this, I showed an automated pipeline for training machine learning potentials. T2 - Workshop on AI in Sustainable Materials Science CY - Düsseldorf, Germany DA - 27.01.2026 KW - Automation KW - Digitalisation KW - Materials Design KW - Thermal Conductivity KW - Chemical bonding KW - Materials Acceleration Platforms PY - 2026 AN - OPUS4-65427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ruehle, Bastian T1 - MINERVA-OS: The Orchestrator of our SDL for Nano and Advanced Materials Synthesis N2 - We present our SDL "Minerva" and its' Orchestrator "Minerva-OS". We discuss the general architecture of the orchestrator, the problems our orchestration solution solves, associated objectives, and success criteria. We demonstrate how a user would interact with it and give examples of what it has already been used for. We also provide some explanation of the available and planned features, and how workflows/experiments are represented. Lastly, we discuss key technical challenges we faced during development. T2 - Orchestration Alignment Virtual Workshop CY - Online meeting DA - 20.01.2026 KW - Self Driving Labs KW - Materials Acceleration Platforms KW - Workflows KW - Orchestration PY - 2026 AN - OPUS4-65422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Merino, E. A1 - Cere, S. A1 - Özcan Sandikcioglu, Özlem A1 - Dimper, Matthias A1 - Sobrados, I. A1 - Durán, A. A1 - Castro, Y. T1 - Influence of the BF3·O(C2H5)2 on the corrosion resistance of hybrid silica sol-gel coatings deposited on flash-PEO-treated Mg alloy N2 - Achieving highly cross-linked sol-gel coatings to provide effective corrosion protection of Mg alloys remains a challenging task. The aim of this work is to evaluate the effect boron trifluoride diethyl etherate (BF3·O(C2H5)2) as catalyst to epoxy group in a GPTMS/TEOS/SiO2 sol and assesses its effect on the structure and corrosion resistance properties of Flash-PEO coated pre-treated Mg alloy. 29Si MAS NMR and 13C CPMAS-NMR demonstrated that (BF3·O(C2H5)2) efficiently promotes the epoxy polymerization of the GPTMS and the formation of a hybrid silica network. However, the amount of (BF3·O(C2H5)2) should be optimized to minimize the formation of undesirable byproducts such as ethyl ether terminal units. Therefore, GPTMS/TEOS/SiO2 sols containing different amounts of (BF3·O(C2H5)2) were synthesized and deposited onto the Flash-PEO coated Mg alloy, leading to bilayer systems with a total thickness of ⁓8 μm. The corrosion behavior of the bilayer coatings in 3.5 wt% NaCl solution was evaluated by electrochemical impedance spectroscopy (EIS) and Scanning Kelvin probe microscope (SKPFM). The results revealed that the barrier properties of the coatings with enhanced cross-linked structure showed impedance modulus (│Z│f:0.1 Hz) approximately four orders of magnitude higher than the bare magnesium alloy and two orders of magnitude higher than the F-PEO coated sample. A suitable compromise between (BF3·O(C2H5)2) amount and sol-gel film structure is required to obtain a more durable barrier coating capable to extend the protective lifespan of the magnesium alloy. KW - Sol-gel KW - Corrosion KW - AZ31B Mg alloy KW - Chemical structure KW - SKPFM PY - 2026 DO - https://doi.org/10.1016/j.surfcoat.2025.133055 SN - 0257-8972 VL - 522 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-65416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pomorska Gawel, A. A1 - Dąbkowska, M. A1 - Kosior, D. A1 - Batys, P. A1 - Szatanik, A. A1 - Witt, Julia A1 - Özcan Sandikcioglu, Özlem A1 - Michna, A. T1 - Multiscale insights into fibroblast growth factor 23 adsorption on polyelectrolyte layers: From molecular properties to biointerfaces N2 - Fibroblast growth factor 23 (FGF23) is a clinically significant protein hormone regulating phosphate and vitamin D metabolism, with elevated levels linked to chronic kidney disease, cardiovascular disorders, and impaired bone homeostasis. Despite its relevance as both a biomarker and a therapeutic target, its interactions with functional biomaterials remain poorly understood. In this work, we investigate the FGF23 adsorption on polyelectrolyte layers using a combination of theoretical modeling and experimental methods. Theoretical calculations provided insights into the protein's charge distribution and diffusion properties, while experimental measurements quantified its hydrodynamic diameter, electrophoretic mobility, and electrokinetic charge over a broad range of pH values. Microscale thermophoresis revealed quantitative binding affinities of FGF23 to hyaluronic acid, chitosan, and poly(diallyldimethylammonium chloride). Adsorption studies on mica, silica, and polyelectrolyte mono- and bilayers showed that FGF23 binds to both negatively and positively charged substrates, with binding affinities following: hyaluronic acid < poly(diallyldimethylammonium chloride) < chitosan. Desorption occurred more readily from negatively charged surfaces (mica, silica and hyaluronic acid), indicating weaker interactions compared to positively charged layers. These results reveal fundamental aspects of protein –polyelectrolyte interactions and highlight the reversible binding capacity of FGF23 to negatively charged surfaces. Such adsorption behavior provides a physicochemical framework for considering FGF23-polyelectrolyte systems in the design of therapeutic carriers and bioactive materials. However, any direct relevance to wound healing, chronic kidney disease, or cardiovascular disorders remains prospective and requires dedicated biological validation. KW - Molecular dynamics KW - Streaming potential measurements KW - Adsorption KW - Stability KW - Binding affinity PY - 2026 DO - https://doi.org/10.1016/j.ijbiomac.2026.150221 SN - 0141-8130 VL - 341 IS - Part 1 SP - 1 EP - 14 PB - Elsevier B.V. AN - OPUS4-65415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rahner, E. A1 - Thiele, T. A1 - Voss, Heike A1 - Müller, F.A. A1 - Bonse, Jörn A1 - Gräf, S. T1 - Objective, high-throughput regularity quantification of laser-induced periodic surface structures (LIPSS) N2 - The growing demand for precise surface functionalization through laser-generated periodic surface structures highlights the necessity for efficient, reproducible, and objective evaluation methods to evaluate their structural regularity. We introduce ReguΛarity (v.1.2.7), a freely available, Python-based software with a graphical user interface for the automated, quantitative assessment of the regularity of laser-induced periodic surfaces structures (LIPSS), obtained from optical microscopy, SEM, or AFM. The software integrates image segmentation, one- and two-dimensional Fourier analyses, and gradient-based orientation determination to facilitate a comprehensive regularity analysis of grating-like (quasi-)periodic surface patterns with spatial periods Λ. This is achieved through the proposed regularity tuple R, composed of five key parameters: the normalized spread of the spatial period RΛ,2D (from 2D-FT), the normalized variation of the most frequent spatial period RΛ (from 1D-FT), the Gini coefficient G, the Dispersion of the LIPSS Orientation Angle δθ (DLOA), and the mean phase deviation . To demonstrate its applicability, we compare ideal sinusoidal patterns with SEM images obtained from LIPSS on stainless steel (AISI 316L) and aluminum alloy (AlMg5) surfaces, confirming the software’s ability to objectively distinguish between varying levels of structural regularity. ReguΛarity facilitates high-throughput analysis and data-driven process optimization in surface engineering and laser materials processing. KW - Laser-induced periodic surface structures (LIPSS) KW - Image processing KW - Regularity quantification KW - Fourier analysis KW - Structural homogeneity PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654070 DO - https://doi.org/10.1016/j.apsusc.2026.165919 SN - 0169-4332 VL - 726 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-65407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stolar, Tomislav A1 - Bayram, Dilara A1 - May, Anastasia A1 - Sundermann, Remie A1 - Prinz, Carsten A1 - Meyer, Klas A1 - Myxa, Anett A1 - Falkenhagen, Jana A1 - Emmerling, Franziska T1 - Selective mechanochemical conversion of post-consumer polyethylene terephthalate waste into hcp and fcu UiO-66 metal–organic frameworks N2 - Single-use plastics strongly contribute to plastic pollution, and less than 10% of plastic waste is recycled globally. Here, we present a selective mechanochemical protocol for converting post-consumer polyethylene terephthalate (PET) transparent bottles and coloured textile waste into the porous metal–organic framework (MOF) UiO-66 materials. We used time-resolved in situ (TRIS) synchrotron powder X-ray diffraction and Raman spectroscopy to monitor the depolymerization of PET during ball milling. To convert disodium terephthalate to UiO-66, we developed base and base-free synthetic routes that lead to fcu and hcp UiO-66 phases, respectively, including the first ever synthesis of hcp UiO-66 by mechanochemistry. Our results demonstrate the potential of mechanochemistry to selectively access fcu and hcp UiO-66 phases using post-consumer PET waste. KW - Mechanochemistry PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653958 DO - https://doi.org/10.1039/D4MR00126E SN - 2976-8683 SP - 1 EP - 8 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stolar, Tomislav A1 - Alić, Jasna A1 - Casali, Lucia A1 - Gugin, Nikita A1 - Baláž, Matej A1 - Michalchuk, Adam A.L. A1 - Emmerling, Franziska ED - Stolar, Tomislav T1 - Mechanochemistry: Looking back and ahead N2 - Starting with the discovery of fire and the preparation of food in prehistoric times, mechanochemistry is the oldest form of chemistry that humans have controlled. Mechanochemical practices, such as grinding with a mortar and pestle, continued into the Middle Ages until dedicated scientific studies began in the 19th century. Since then,research in mechanochemistry has shown that many chemicalreactions can be performed via mechanical force without or with small amounts of solvent. Besides being time, material, and energy efficient, mechanochemical reactions often yield products that differ from those obtained in solution. Therefore, not only is mechanochemistry greener and more sustainable than conventional solution chemistry, but it also has the added value of providing new reactivity and selectivity. This is especially important today, when chemists need to invent high-performance materials, intermediates, and products with the use of sustainable feedstocks and develop environmental remediation pathways. At the same time, time-resolved in situ monitoring and computational modeling are necessary for addressing fundamental questions about the atomistic, molecular, and electronic nature of mechanochemical reactivity. Integrating digitalization, robotics, and artificial intelligence tools promises to increase the reproducibility and scalability of mechanochemical processes. Further evolution of mechanochemistry is expected to have a transformative effect on the chemical industry. KW - Mechanochemistry PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653962 DO - https://doi.org/10.1016/j.chempr.2025.102880 SN - 2451-9294 SP - 1 EP - 27 PB - Elsevier BV AN - OPUS4-65396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, Andreas A1 - Falkenhagen, Jana A1 - Kricheldorf, Hans R. T1 - Cyclic polyglycolide by means of metal acetylacetonates N2 - Glycolide was polymerized in bulk at 160 °C using various metal acetylacetonates as catalysts. Zirconium acetylacetonate was particularly efficient, enabling rapid polymerization even at 130 °C. The formation of cyclic poly(glycolic acid) (PGA), most likely via a ring-expansion polymerization (REP) mechanism, was proven by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Depending on the polymerization conditions, the formation of even-numbered cycles was favored to varying degrees. Number-average molecular weights (Mn) in the range of 2000–3500 g mol−1 were achieved with dispersities below 2.0. Wide-angle X-ray scattering (WAXS) powder patterns showed that the crystal lattice was the same as that of known linear PGAs, regardless of the Mn values. These patterns enabled a comparison of crystallinities with values derived from DSC measurements. KW - MALDI-TOF MS KW - Polyglycolide KW - Crystallization KW - Small-angle X-ray scattering KW - Cyclization PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653731 DO - https://doi.org/10.1039/d5ra07961f SN - 2046-2069 VL - 16 IS - 2 SP - 1757 EP - 1764 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oskoei, Párástu A1 - Afonso, Rúben A1 - Bastos, Verónica A1 - Nogueira, João A1 - Keller, Lisa-Marie A1 - Andresen, Elina A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Daniel-da-Silva, Ana L. A1 - Oliveira, Helena T1 - Upconversion Nanoparticles with Mesoporous Silica Coatings for Doxorubicin Targeted Delivery to Melanoma Cells N2 - Melanoma is one of the most aggressive skin cancers and requires innovative therapeutic strategies to overcome the limitations of conventional therapies. In this work, upconversion nanoparticles coated with mesoporous silica and functionalized with folic acid (UCNP@mSiO2-FA) were developed as a targeted nanocarrier system for the delivery of doxorubicin (DOX). The UCNPs were synthesized via thermal decomposition, coated with mesoporous silica shells, and functionalized with folic acid (FA) to enable receptor-mediated targeting. DOX was then loaded into the mesoporous silica coating by adsorption, yielding UCNP@mSiO2-FA-DOX. The different UCNPs were characterized for size, composition, colloidal stability, and loading and release of DOX. This comprehensive physicochemical characterization confirmed a high DOX loading efficiency and a slightly increased drug release under acidic conditions, mimicking the tumour microenvironment. In vitro assays using four melanoma cell lines (A375, B16-F10, MNT-1, and SK-MEL-28) revealed an excellent biocompatibility of UCNP@mSiO2-FA and a significantly higher cytotoxicity of UCNP@mSiO2-FA-DOX compared to unloaded UCNPs, in a dose-dependent manner. Cell cycle analysis demonstrated G2/M phase arrest after treatment with UCNP@mSiO2-FA-DOX, confirming its antiproliferative effect. Overall, UCNP@mSiO2-FA-DOX represents a promising nanoplatform for targeted melanoma therapy, combining active tumour targeting and enhanced anticancer efficacy. KW - Fluorescence KW - Synthesis KW - Nano KW - Particle KW - Silica KW - Cell KW - Uptake KW - Drug KW - Characterization KW - DOX KW - Imaging KW - Toxicity KW - Release KW - pH PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653596 DO - https://doi.org/10.3390/molecules31010074 SN - 1420-3049 VL - 31 IS - 1 SP - 1 EP - 18 PB - MDPI AG AN - OPUS4-65359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - May, Anastasia T1 - Pyrazinamide-Pimelic Acid Cocrystals: A Mechanochemical and Thermal Study N2 - Cocrystals represent a promising class of crystalline materials, offering a wide potential for physico-chemical property alteration of chemical compounds, such as their solubility, by cocrystallizing the targeted compound with another solid material. In the present study, we investigated the cocrystal system between the anti-tuberculosis drug pyrazinamide (PZA) and pimelic acid (PA) by thermal characterization and milling conditions of mechanochemical synthesis. Thermal treatment resulted in the formation of a eutectic between the compounds PZA and PA. Furthermore, irreversible separation of the cocrystal occurred upon melting. This finding indicated low stability of the cocrystal and the necessity of mechanochemical synthesis for cocrystal formation. The mechanochemical synthesis parameters were elucidated by investigating the temperature effect while milling and the role of pre-milling the coformer PA using in-situ monitoring techniques. The polymorphism of PA, influenced by temperature and pre-milling, exhibited a substantial impact on the kinetics of cocrystallization. This finding underscores the significance of coformer polymorphism as an additional factor in mechanochemical cocrystallization reactions. T2 - 11th International Conference on Mechanochemistry and Mechanical Alloying CY - Berlin, Germany DA - 14.09.2025 KW - Cocrystal PY - 2025 AN - OPUS4-65353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Corrao, Elena A1 - Gouasmi, Meriem A1 - Sordello, Fabrizio A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Joerg A1 - Maurino, Valter A1 - Pellegrino, Francesco T1 - Tailoring TiO2 Morphology and Surface Chemistry for Optimized Photocatalytic Activity in rGO Hybrids N2 - TiO2–reduced graphene oxide (rGO) hybrids were investigated in this study to elucidate how TiO2 morphology and surface chemistry govern charge-transfer pathways and, ultimately, reaction selectivity. Three anatase TiO2 nanostructures were compared: bipyramids predominantly exposing {101} facets (bipy) and two nanosheet-like samples enriched in {001} facets, either fluorinated (n-sh) or thermally defluorinated and {101}-enriched (n-sh_873K). A constant rGO loading (2 wt.%) was introduced via in situ hydrazine reduction of graphene oxide in the presence of TiO2. Photocatalytic activity was evaluated under Xe-lamp irradiation in two model reactions probing oxidative and reductive pathways: phenol degradation and H2 evolution using formic acid as a scavenger. rGO systematically enhanced phenol degradation for all morphologies, with bipy+rGO showing the highest activity. In contrast, H2 evolution was consistently suppressed upon rGO incorporation across all TiO2 samples, although the bipyramidal morphology remained the most active within each series. These results highlight that facet exposure and surface functionalization dictate the beneficial or detrimental role of rGO depending on the targeted photocatalytic pathway. KW - Photocatalytic activity KW - Reduced graphene oxide KW - TiO2 KW - Surface chemistry KW - 2D materials PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653476 DO - https://doi.org/10.26434/chemrxiv-2026-65917 SP - 1 EP - 12 PB - American Chemical Society (ACS) AN - OPUS4-65347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chakraborty, Gouri A1 - Das, Prasenjit A1 - Bhattacharya, Biswajit A1 - Prinz, Carsten A1 - Emmerling, Franziska A1 - Thomas, Arne T1 - Room-temperature superprotonic conductivity in COOH-functionalized multicomponent covalent organic frameworks N2 - In solid materials, the development of hydrogen bonding (H-bonding) networks within pores is crucial for efficient proton conductance. In this study, a chemically stable carboxylic acid-functionalized, quinoline-linked 2D microporous covalent organic framework (COF) (Qy-COOH) was synthesized using the Doebner multicomponent reaction (MCR) and compared to a similar framework lacking the –COOH functionality (Qy-H), prepared via an MC Domino reaction. The proton conductivity of the –COOH-functionalized MCR-COF was significantly enhanced, reaching 10−2 S cm−1, attributed to strong H-bonding interactions between water molecules and the dangling –COOH groups within the COF pores. In contrast, the analogous Qy-H framework exhibited a much lower proton conductivity of 10−5 S cm−1, while an imine-based COF showed only 10−6 S cm−1. This work represents the first demonstration of a general strategy to achieve efficient proton conduction in a class of layered 2D –COOH-functionalized COFs, offering superprotonic conductivity without requiring additives at room temperature. The MCR-COF design approach provides a promising pathway for developing highly stable and high-performance proton-conducting materials. KW - Multicomponebt KW - COF KW - Proton Conductivity KW - Superprotonic PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653526 DO - https://doi.org/10.1039/D5SC06953J SN - 2041-6520 SP - 1 EP - 9 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ryll, Tom William T1 - In-situ analysis of nucleation processes – case study: calcium sulfate N2 - In this project we investigate nucleation pathways by utilizing synchrotron-XRD and running a case-study on calcium sulfate phases. To accomplish this, we developed a modular automation setup for reactions in solution to run synthesis and control reaction conditions. So far we successfully characterized the recycling process of gypsum and are now investigating the formation of anhydrite. T2 - BESSY@HZB User Meeting CY - Berlin, Germany DA - 02.12.2025 KW - Recycling KW - Gypsum KW - Synchrotron-X-ray-diffraction KW - Raman-spectroscopy KW - Automation PY - 2025 AN - OPUS4-65344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dailey, L. A. A1 - Altmann, Korinna A1 - Ćirković Veličković, Tanja T1 - Exposition und Detektionstechniken: Der Weg zur Harmonisierung N2 - Der Vortrag gibt einen Überblick über Erkenntnisse der WG 1 und WG 3 des CUSP Clusters der Horizon Europe Projekte von Mikroplastik (2020-2025). Die Frage ist wie hoch ist die Exposition und ist das dann eine gesundheitliche Gefahr. Diskutiert werden Mechanismen, die helfen richtig und genau zu messen, z.B. Prozesskontrollen oder Referenzmaterialien. Es wird ein Weg zu mehr Harmonisierung im Bereich der Mikroplastik-Analytik aufgezeigt. T2 - Mikroplastik – Was wissen wir heute? BfR-Forum Verbraucherschutz CY - Berlin, Germany DA - 02.12.2025 KW - Microplastics KW - Reference materials KW - Harmonisation PY - 2025 AN - OPUS4-65330 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dalgic, Mete‐Sungur A1 - Kumar, Sourabh A1 - Weidner, Steffen T1 - Quantitative Analysis of Polymers by MALDI‐TOF Mass Spectrometry: Correlation Between Signal Intensity and Arm Number N2 - The signal intensities of linear and star‐shaped poly(L‐lactides) (PLA) and poly (ethylene oxides) (PEO) were compared to determine the influence of the number of arms on the ionization in matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry. In this study, a variety of blends were prepared and investigated, including binary and ternary combinations of linear and star‐shaped polymers with similar molecular masses. The focus was on examining their intensity ratios. In equimolar binary PLA blends, polymer stars were observed to exhibit higher intensities than their linear counterparts. This result was supported by experiments with equimolar ternary PLA blends, which clearly demonstrated an intensity dependence on the number of polymer arms. It was observed that four‐arm PLA exhibited higher intensities than three‐arm PLA. A similar trend was observed in investigations involving acetylated polymer end groups, suggesting that differences in ionization are primarily influenced by polymer architecture rather than end groups. In order to validate this assumption, the binding energies for [polymer‐K] + adduct ions utilizing the most stable geometry obtained from GOAT (Global Optimizer Algorithm) were calculated, revealing that star‐shaped lower mass oligomers have slightly higher binding energies. KW - MALDI-TOF MS KW - Starlike polymers KW - Quantification KW - Topology PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653401 DO - https://doi.org/10.1002/jms.70023 SN - 1076-5174 VL - 61 IS - 1 SP - 1 EP - 12 PB - John Wiley & Sons Ltd. AN - OPUS4-65340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Putzu, Mara A1 - Wiesner, Yosri A1 - Weimann, Christiane A1 - Hodoroaba, Vasile-Dan A1 - Muniategui Lorenzo, Soledad A1 - Fernández-Gonzáles, Verónica A1 - Booth, Andy M. A1 - Igartua, Amaia A1 - Benismail, Nizar A1 - Coïc, Laureen A1 - Chivas-Joly, Carine A1 - Fenoglio, Ivana A1 - Rossi, Andrea Mario A1 - Giovannozzi, Andrea Mario A1 - Altmann, Korinna T1 - Optimization of tablet processing as a reference material for microplastic detection methods N2 - Reference materials (RMs) are essential and highly demanded tools for the development and validation of methods for microplastic (MP) quantification in complex matrices, to ensure comparable and harmonized approaches aligned with EU commission criteria for monitoring MPs (e.g., Drinking Water Directive and Urban Wastewater Treatment Directive). This study investigates different approaches for optimizing the production of polypropylene (PP) RMs in the form of water-soluble tablets, which were carefully evaluated for their homogeneity and stability according to ISO Guide 30, ISO 33401, and ISO 33405. PP particles (1–100 μm) were produced by cryomilling and embedded in a lactose/PEG matrix, then pressed into tablets (18 µg theoretical PP mass). The production process was optimized by varying (i) the size distribution of the matrix components and (ii) the mixer instrument. The materials obtained were characterized by thermogravimetric analysis to assess the homogeneity distribution of MPs with respect to PP mass in the individual tablets and their stability over a 4-month period. The most promising approach, with a homogenous mass of 19 μg (standard deviation of 4 μg), relative standard deviation of 19%, was further investigated for homogeneity by comparison with thermo-analytical mass determination methods, such as TED-GC/MS (thermal extraction desorption-gas chromatography/mass spectrometry) and Py-GC/MS (pyrolysis-gas chromatography-mass spectrometry), and for number-based characterization using micro-Raman spectroscopy. Material characterization was also examined using laser diffraction, scanning electron microscopy, and ATR-FTIR. Based on the results, the optimized processing protocol yields a PP RM suitable for quality control and method performance studies supporting standardization. KW - Microplastics KW - TED-GC/MS KW - Reference materials KW - Polypropylene PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653290 DO - https://doi.org/10.1007/s00216-025-06271-7 SN - 1618-2642 SP - 1 EP - 14 PB - Springer Science and Business Media LLC AN - OPUS4-65329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haugen, Øyvind P. A1 - Polanco-Garriz, Itziar A1 - Alcolea-Rodriguez, Victor A1 - Portela, Raquel A1 - Bæra, Rita A1 - Sadeghiankaffash, Hamed A1 - Hildebrandt, Jana A1 - Ciornii, Dmitri A1 - Altmann, Korinna A1 - Barbero, Francesco A1 - Fenoglio, Ivana A1 - Reinosa, Julián J. A1 - Fernández, José F. A1 - Katsumiti, Alberto A1 - Camassa, Laura M.A. A1 - Wallin, Håkan A1 - Zienolddiny-Narui, Shan A1 - Afanou, Anani K. T1 - Activation of Toll-like receptor 2 reveals microbial contamination beyond endotoxins on micro- and nanoplastics N2 - Current literature on health hazards associated with micro- and nanoplastics (MNPs) is largely influenced by studies that insufficiently account for potential microbial contamination of their test materials. This may lead to misinterpretation of outcomes, as the test materials may be incorrectly considered pristine MNPs. The present study screened eight MNP test materials for microbial contaminants using Toll-like receptor (TLR) reporter cells for TLR2 and TLR4 and the commonly used Limulus amebocyte lysate (LAL) assay. Our results show that MNPs testing negative for endotoxins, based on the absence of TLR4 activation and negative LAL results, may still contain microbial ligands that selectively activate TLR2. Moreover, five of the eight MNP test materials contained microbial ligands capable of activating TLR2 and/or TLR4. Compared to the LAL assay, TLR4-based screening effectively detected endotoxin contamination. Overall, we found that the TLR reporter cell assay provides broader coverage than the LAL assay in detecting microbial ligands, which appear to be highly prevalent in MNP test materials. KW - Nanoplastics KW - Microplastics KW - Microbial contamination PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653286 DO - https://doi.org/10.1016/j.tiv.2025.106190 SN - 0887-2333 VL - 112 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-65328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Reusable data: putting the “Arr” in FAIR N2 - This talk demonstrates how to apply FAIR principles to data from actual scientific investigations. The reasons and practical benefits of FAIR data are highlighted. Several levels of reusability are discussed, i.e. the “trust me”-level, the “I’ll not need to repeat my measurement”-level, and the “you’ll not need to repeat my measurements”-level. Practical FAIR datafiles are explored and their information content highlighted. T2 - Reusability of Scientific Data for Matter CY - Online meeting DA - 13.11.2025 KW - Methodology KW - Metadata KW - FAIR KW - Reusability KW - X-ray scattering KW - Traceability PY - 2025 AN - OPUS4-65309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Xing, Na A1 - Er, Jasmin A1 - Vidal, Ricardo M. A1 - Khadka, Sandhya A1 - Schusterbauer, Robert A1 - Rosentreter, Maik A1 - Etouki, Ranen A1 - Ahmed, Rameez A1 - Page, Taylor A1 - Nickl, Philip A1 - Bawadkji, Obida A1 - Wiesner, Anja A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Ludwig, Kai A1 - Trimpert, Jakob A1 - Donskyi, Ievgen T1 - Scalable covalently functionalized black phosphorus hybrids for broadspectrum virucidal activity N2 - At the onset of viral outbreaks, broad-spectrum antiviral materials are crucial before specific therapeutics become available. We report scalable, biodegradable black phosphorus (BP) hybrids that provide mutation-resilient virucidal protection. BP sheets, produced via an optimized mechanochemical process, are covalently functionalized with 2-azido-4,6-dichloro- 1,3,5-triazine to form P=N bonds. Fucoidan, a sulfated polysaccharide with intrinsic antiviral activity, and hydrophobic chains are then incorporated to achieve irreversible viral deactivation. The material exhibits strong antiviral inhibition and complete virucidal activity against multiple viruses, including recent severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants. It maintains high biocompatibility, remains effective against viral mutations, and is shelf stable for at least five month. The combination of biodegradability, scalable synthesis, and synergistic antiviral and virucidal mechanisms establishes BP-conjugates as a new class of highly efficient antivirals. They offer a broad spectrum antiviral solutions that could bridge the gap between antiviral medicines and general antiseptics. KW - Black phosphorus KW - Antiviral materials KW - Functionalization KW - Biodegradability KW - Sheets PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652941 DO - https://doi.org/10.48550/arXiv.2510.12854 SN - 2331-8422 SP - 1 EP - 22 PB - Cornell University CY - Ithaca, NY AN - OPUS4-65294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cosimi, Andrea A1 - Stöbener, Daniel D. A1 - Nickl, Philip A1 - Schusterbauer, Robert A1 - Donskyi, Ievgen A1 - Weinhart, Marie T1 - Interfacial nanoengineering of hydrogel surfaces via block copolymer self-assembly N2 - Synthetic polymer hydrogels are valuable matrices for biotransformations, drug delivery, and soft implants. While the bulk properties of hydrogels depend on chemical composition and network structure, the critical role of interfacial features is often underestimated. This work presents a nanoscale modification of the gel−water interface using polymer brushes via a straightforward “grafting-to” strategy, offering an alternative to more cumbersome “grafting-from” approaches. Functional block copolymers with photoreactive anchor blocks are successfully self-assembled and UV-immobilized on hydrogel substrates despite their low solid content (<30 wt %). This versatile technique works on both bulk- and surface-immobilized hydrogels, demonstrated on poly(hydroxypropyl acrylate), poly(N-isopropylacrylamide), and alginate gels, allowing precise control over grafting density. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry revealed a homogeneous bilayered architecture. By “brushing-up”, the hydrogels’ interface can be tailored to enhance protein adsorption, improve cell adhesion, or impair the diffusive uptake of small molecules into the bulk gels. This effective interfacial nanoengineering method is broadly applicable for enhancing hydrogel performance across a wide range of applications. KW - Brushing-up KW - Benzophenone KW - LCTS-type polymer KW - Poly(glycidyl ether) (PGE) KW - Fibroblast adhesion KW - XPS KW - ToF-SIMS PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652966 DO - https://doi.org/10.1021/acsami.4c18632 SN - 1944-8244 VL - 17 IS - 6 SP - 10073 EP - 10086 PB - American Chemical Society (ACS) CY - Washington, DC AN - OPUS4-65296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smerechuk, Anastasiia A1 - Guilherme Buzanich, Ana A1 - Büchner, Bernd A1 - Wurmehl, Sabine A1 - Morrow, Ryan T1 - Synthesis and properties of Sr2La2NiW2O12, a new S = 1 triangular lattice magnet N2 - Magnetic materials featuring triangular arrangements of spins are frequently investigated as platforms hosting magnetic frustration. Hexagonal perovskites with ordered vacancies serve as excellent candidates for two-dimensional triangular magnetism due to the considerable separation of the magnetic planes. In this work, the effects of chemical pressure on the ferromagnetic ground state of Ba2La2NiW2O12 by substitution of Ba2+ with Sr2+ to produce Sr2La2NiW2O12 are investigated. The two materials are characterized using synchrotron-based XRD, XANES and EXAFS in addition to magnetometry in order to correlate their crystal structures and magnetic properties. Both materials form in space group R 3, yet as a result of the enhanced bending of key bond angles due to the effects of chemical pressure, the T C value of the magnetic Ni2+ sublattice is reduced from ∼6 K in Ba2La2NiW2O12 to 4 K in Sr2La2NiW2O12. KW - XRD KW - Magnetic materials KW - EXAFS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652982 DO - https://doi.org/10.1107/S2052520624007091 SN - 2052-5206 VL - 80 IS - 5 SP - 467 EP - 473 PB - International Union of Crystallography (IUCr) AN - OPUS4-65298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quosdorf, Heike T1 - Digital object identifier for additively manufactured parts as software package N2 - A method to uniquely identify samples without printed or handwritten labels is an advantage not just for additively manufactured parts. To kickstart industry use cases, it is also important to provide a ready-made implementation kit. Following an open-science and open-source software approach Germanys Federal Institute for Materials Research and Testing (BAM) seeks to promote digital solutions of ongoing research projects. With this software package a novel method based on microstructural features as identifiers – DOI4AM (digital object identifier for additively manufactured parts) – will be explained alongside its implementation as open-source Python software package. The digital object identifier (DOI) links product data clearly and forgery-proof with real components. Its implementation helps to identify and securely authenticate additively manufactured components during its product life cycle by using characteristic microstructure features - just like a fingerprint. To calculate the DOI fingerprint, a few preprocessing steps need to be performed to detect the uniquely distributed microstructure features that occur during the 3D printing process. A go-through guide shows the preprocessing steps that include CT image capturing, feature segmentation, and data distribution with CSV files. While all steps can be followed along in a Jupyter notebook, the software package includes an application for creating and checking of previously created fingerprints, as well, as a containerized API (application programming interface) service for implementation in existing software platforms or workflows. While data visualization is crucial to understanding the methodology and an essential tool to check for data correctness, an implementation in an industry use case needs to be slim and resource efficient. Therefor the software’s API can be used as an independent service. The project's industry partner proofs its first successful implementation in their digital product passport web solution PASS-X. T2 - AI MSE 2025 CY - Bochum, Germany DA - 18.11.2025 KW - Authentication KW - Unique identification KW - Digital object identifier KW - Additive Manufacturing KW - Non-destructive testing KW - Open Source Software KW - Digital fingerprint KW - X-ray Computed Tomography KW - Open Science PY - 2025 AN - OPUS4-65293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dumit, Verónica I. A1 - Furxhi, Irini A1 - Nymark, Penny A1 - Afantitis, Antreas A1 - Ammar, Ammar A1 - Amorim, Monica J. B. A1 - Antunes, Dalila A1 - Avramova, Svetlana A1 - Battistelli, Chiara L. A1 - Basei, Gianpietro A1 - Bossa, Cecilia A1 - Cimpan, Emil A1 - Cimpan, Mihaela Roxana A1 - Ciornii, Dmitri A1 - Costa, Anna A1 - Delpivo, Camilla A1 - Dusinska, Maria A1 - Fonseca, Ana Sofia A1 - Friedrichs, Steffi A1 - Hodoroaba, Vasile-Dan A1 - Hristozov, Danail A1 - Isigonis, Panagiotis A1 - Jeliazkova, Nina A1 - Kochev, Nikolay A1 - Kranjc, Eva A1 - Maier, Dieter A1 - Melagraki, Georgia A1 - Papadiamantis, Anastasios G. A1 - Puzyn, Tomasz A1 - Rauscher, Hubert A1 - Reilly, Katie A1 - Jiménez, Araceli Sánchez A1 - Scott‐Fordsmand, Janeck J. A1 - Shandilya, Neeraj A1 - Shin, Hyun Kil A1 - Tancheva, Gergana A1 - van Rijn, Jeaphianne P. M. A1 - Willighagen, Egon L. A1 - Wyrzykowska, Ewelina A1 - Bakker, Martine I. A1 - Drobne, Damjana A1 - Exner, Thomas E. A1 - Himly, Martin A1 - Lynch, Iseult T1 - Challenges and Future Directions in Assessing the Quality and Completeness of Advanced Materials Safety Data for Re‐Usability: A Position Paper From the Nanosafety Community N2 - Ensuring data quality, completeness, and interoperability is crucial for progressing safety research, Safe‐and‐Sustainable‐by‐Design approaches, and regulatory approval of nanoscale and advanced materials. While the FAIR (Findable, Accessible, Interoperable, and Re‐usable) principles aim to promote data re‐use, they do not address data quality, essential for data re‐use for advancing sustainable and safe innovation. Effective quality assurance procedures require (meta)data to conform to community‐agreed standards. Nanosafety data offer a key reference point for developing best practices in data management for advanced materials, as their large‐scale generation coincided with the emergence of dedicated data quality criteria and concepts such as FAIR data. This work highlights frameworks, methodologies, and tools that address the challenges associated with the multidisciplinary nature of nanomaterial safety data. Existing approaches to evaluating the reliability, relevance, and completeness of data are considered in light of their potential for integration into harmonized standards and adaptation to advance material requirements. The goal here is to emphasize the importance of automated tools to reduce manual labor in making (meta)data FAIR, enabling trusted data re‐use and fostering safer, more sustainable innovation of advanced materials. Awareness and prioritization of these challenges are critical for building robust data infrastructures. KW - Advanced materials KW - Safety data KW - Re-usability KW - Nanosafety KW - SSbD KW - FAIR KW - Standardisation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652918 DO - https://doi.org/10.1002/adsu.202500567 SN - 2366-7486 SP - 1 EP - 18 PB - Wiley-VCH CY - Weinheim AN - OPUS4-65291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen A1 - Meyer, Andreas T1 - Poly(butylene terephthalate): About condensation, cyclization, degradation and elimination reactions in the solid state, and the role of smooth crystal surfaces N2 - Three commercial poly(butylene terephthalate) (PBT) samples - Pocan B1300 (B13), Pocan B1600 (B16), and Addigy P 1210 (AP121) - served as the starting materials for the annealing experiments, which were conducted with and without the addition of esterification and transesterification catalysts. The catalysts used were Sn(II) 2-ethylhexanoate (SnOct₂), Zr(IV) acetylacetonate, and 4-toluene sulfonic acid (TSA). Temperatures varied between 150 and 210 °C. The PBT samples were characterized using differential scanning calorimetry (DSC), gel permeation chromatography (GPC), small-angle X-ray scattering (SAXS), and matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometry. The MALDI mass spectra of all three samples differed greatly but displayed mass peaks of cycles. Similar results were produced by annealing with SnOct₂ or Zr(acac)₄, which favored the formation of even-numbered cycles within the mass range below m/z 5000, along with slow degradation. TSA favored a more intensive degradation without the formation of cycles or even with the destruction of cycles. PBT chains with two carboxylic (COOH) end groups were the most stable species under all circumstances. The origin of the extremely high melting point of AP121 (241–242 °C) can be explained by the smoothing of crystallite surfaces via transesterification. The results suggest that combining MALDI mass spectrometry and SAXS measurements provides a new way to better understand the solid-state chemistry of PBT and related polyesters. KW - MALDI-TOF MS KW - Polybutylene Terephthalate KW - Crystallization KW - solid state KW - cyclization PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652844 DO - https://doi.org/10.1016/j.polymdegradstab.2025.111862 SN - 0141-3910 VL - 245 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-65284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Habibimarkani, Heydar A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - John, Elisabeth T1 - Probing Surface Changes in Fe–Ni Oxide Nanocatalysts with a ToF-SIMS-Coupled Electrochemistry Setup and Principal Component Analysis N2 - Understanding catalyst surface dynamics under operating conditions is essential for improving electrocatalytic performance. Here, we present a novel approach combining electrochemical treatment with contamination-free transfer to Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), followed by principal component analysis (PCA), to probe surface and interfacial changes in Ni–Fe oxide nanoparticles stabilized by polyvinylpyrrolidone (PVP) during the oxygen evolution reaction (OER). The surface analysis at three distinct treatment stages revealed distinct chemical fingerprints across pristine nanoparticles, after exposure to 1 M KOH electrolyte, and after cyclic voltammetry treatment. The results highlight a progressive transition from ligand-rich to ligand-depleted interfaces, with PVP-related fragments dominant in the early stages and metal- and electrolyte-derived species emerging after activation. Complementary ToF-SIMS analysis of electrolyte deposited on Si wafers after each treatment step confirms the concurrent leaching of PVP and Fe–Ni-based fragments during OER. These findings underscore the dynamic nature of catalyst–electrolyte interfaces and demonstrate a robust strategy for monitoring surface-sensitive chemical changes associated with the nanoparticles, especially during the initial cycles of the OER. KW - Fe-Ni oxide KW - Nanocatalysts KW - ToF-SIMS KW - Electrochemistry KW - PCA (principal component analysis) KW - OER PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652667 DO - https://doi.org/10.1021/acs.analchem.5c03894 SN - 0003-2700 SP - 1 EP - 8 PB - American Chemical Society (ACS) AN - OPUS4-65266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rossi, Andrea A1 - Corrao, Elena A1 - Alladio, Eugenio A1 - Drobne, Damjana A1 - Hodoroaba, Vasile-Dan A1 - Jurkschat, Kerstin A1 - Kononenko, Veno A1 - Madbouly, Loay Akmal A1 - Mrkwitschka, Paul A1 - Yasamin, Nakhli A1 - Novak, Sara A1 - Radnik, Jörg A1 - Saje, Špela A1 - Santalucia, Rosangela A1 - Sordello, Fabrizio A1 - Pellegrino, Francesco T1 - Multivariate optimization and characterization of graphene oxide via design of experiments and chemometric analysis N2 - Controlling the structure and properties of graphene oxide (GO) remains a challenge due to the poor reproducibility of conventional synthetic protocols and limited understanding of parameter-property relationships. In this study, we present an integrated analytical framework that combines Design of Experiments (DoE) with chemometric modelling to systematically assess the effects of eight synthesis variables on GO’s physicochemical and functional features. A Plackett–Burman experimental design enabled efficient screening of synthesis conditions, while comprehensive characterization (spanning UV–Vis spectroscopy, XPS, SEM–EDX, TEM–EDX, and XRD) was coupled with multivariate tools (Principal Component Analysis and Multiple Linear Regression) to identify statistically significant correlations between synthetic inputs and material responses. Notably, we demonstrate that UV–Vis spectra can serve as a robust proxy for oxidation state, offering a rapid and accessible alternative to surface-sensitive methods. The approach yields a predictive analytical toolkit for guiding GO synthesis and highlights a generalizable strategy for the rational design of flat nanomaterials. This work supports reproducible, resource-efficient material development aligned with Safe and Sustainable by Design (SSbD) principles. KW - Graphene oxide KW - 2D-materials KW - Design of Experiment KW - Synthesis KW - Chemometric analysis PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652576 DO - https://doi.org/10.1016/j.flatc.2025.100988 SN - 2452-2627 VL - 55 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-65257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Papaioannou, Savvina Maria T1 - XCT image analysis for characterizing 3D printed thermomagnetic materials in energy harvesting applications N2 - A critical amount of industrial energy input is lost as waste heat, and this amount peaks just above room temperature. The aim of this work is to develop a technology to convert this low-grade waste heat into electricity through a thermomagnetic generator based on Faraday's law of induction. To this end, water-flowable thermomagnetic elements are developed by the industrial partner to be used as heat exchanger components in the demonstrator. The 3D extrusion and post heat treatment process of the developed fine parts may introduce various defects that have an impact on their heat transfer efficiency, magnetic and mechanical properties. Here, the non-destructive characterisation technique of X-ray computed tomography (XCT) is used to evaluate the morphology of the developed components and to identify trends that contribute to the improvement of material performance in the demonstrator. In specific, XCT image analysis enables the 3D visualisation of the developed 3D-printed structures. Using DragonFly software, scalar quantities such as volume, total surface area and void fraction are estimated for each sample. More specifically, image segmentation using Otsu’s thresholding method, combined with morphological operations on the reconstructed 3D XCT volume, contributes to the estimation of the mean filament diameter, mean channel width and distribution of internal porosity along the printing direction. In addition, the repeatability and dimensional accuracy of the printing process are evaluated through slice analysis of each 3D-printed block, both along and perpendicular to the water-flow direction. T2 - Delft Days on Magnetocalorics (DDMC) CY - Delft, Netherlands DA - 20.11.2025 KW - X-ray computed tomography KW - Image analysis KW - Thermomagnetic KW - Heat exchangers PY - 2025 AN - OPUS4-65249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madbouly, Loay Akmal A1 - Sturm, Heinz A1 - Doolin, Alexander A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Chemical Analysis of Commercial Functionalized Graphene Nanoplatelets along the Production Process with Raman Spectroscopy and X-ray Photoelectron Spectroscopy N2 - Commercial applications increasingly rely on functionalized graphene nanoplatelets (GNPs) supplied as powders, aqueous suspensions, and printable inks, yet their process−structure−property relationships across the production chain remain to be fully mapped. Here we apply a correlative Raman spectroscopy (Raman) and X-ray photoelectron spectroscopy (XPS) workflow to nine independent industrial graphene batches spanning three surface chemistries, raw (R), fluorinated (F), and nitrogen-functionalized (N), in all three physical forms which are powders, suspensions, and inks. Raman mapping (with a 532 nm excitation laser) showed that I2D/IG is highest for N samples and lowest for R-ink. A 2D-vs-G correlation places all samples on a trajectory parallel to the pure-doping vector, which can correlate to holes in the graphene lattice. The mean point-defect spacing is LD = 8.4−10.0 nm. High-resolution XPS resolves the accompanying chemical changes: F-powder exhibits distinct C−F (289 eV), C−F2 (292 eV), and C−F3 (293 eV) components and loses roughly half its F content upon dispersion in deionized water or ink formulation; inks of all chemistries show a pronounced O−C=O peak near 289−290 eV originated from the ink compounds. N-functionalized samples showed a prominent C−N (285.5 eV) only for the ink formulated N-functionalized sample. This study establishes a process-aware blueprint linking the functionalization route and formulation step to lattice disorder and surface chemistry, offering transferable quality-control metrics for graphene supply chains in industrial products/applications such as coatings, storage devices, and printed electronics. KW - Functionalized graphene KW - Raman Spectroscopy KW - XPS KW - Chemical analysis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652548 DO - https://doi.org/10.1021/acs.jpcc.5c06820 SN - 1932-7447 VL - 129 IS - 50 SP - 22033 EP - 22040 PB - American Chemical Society (ACS) AN - OPUS4-65254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Amiri, Hesam A1 - Nikookhesal, Aidin A1 - Murugan, Divagar A1 - Scholz, Stefan A1 - Frentzen, Michael A1 - Cao, Yuan A1 - Nickl, Philip A1 - Radnik, Jörg A1 - Stockmann, Jörg M. A1 - Vu, Xuan-Thang A1 - Narayanan, Madaboosi S. A1 - Knoch, Joachim A1 - Ingebrandt, Sven A1 - Adeli, Mohsen A1 - Pachauri, Vivek T1 - High precision correlative analysis of dielectric behavior evolution and anisotropy in graphene oxide thin film as a function of thermal annealing parameters N2 - Graphene oxide (GO) and reduced graphene oxide (rGO) attract keen interest from different science and technology sectors owing to their tunable material characteristics dependent on C/O ratio. Thermal annealing in different gaseous environments serves as an effective approach to manipulate the C/O ratio in graphitic lattice, making it suitable for various electronic, optical and composites applications. Despite regular use of thermal annealing, systematic studies on dielectric properties evolution in GO against different annealing parameters remain elusive. This work reports on a reliable approach that adopts a joint Raman Spectroscopy, Mueller Matrix Spectroscopic Ellipsometry (MMSE) and high-precision electrical impedance spectroscopy (HP-EIS) framework for studying the evolution of dielectric behavior and anisotropies in GO. The experimental platform involved lithography-defined GO patterns connected to metal microelectrodes and glass passivation for protection from gaseous environments during annealing and measurements using Raman, MMSE and HP-EIS. The presented study delineates the effects of annealing parameters such as temperature, heating rate, and gaseous environment on GO permittivity. Novel findings include the discovery of a direct relationship between heating rate and dielectric properties, as well as determination of vertical limitation of MMSE for permittivity distribution characterization in GO, for the first time, to be around 8 nm. KW - Thermal annealing KW - Reduced graphene oxide KW - Thin films KW - 2D materials KW - Spectroscopic ellipsometry PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652428 DO - https://doi.org/10.1016/j.nwnano.2025.100130 SN - 2666-9781 VL - 11 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-65242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Nano and Advanced Materials - Competences at BAM and perspectives N2 - This presentation gives an overview about the competencies and the characterization possibilities of nanoparticles at BAT, based on this the development of the OECD TG 125 at BAM. It further describes research activities at BAM concerning the characterization of nanoparticles and the way to the digital representation of these characterization possibilities. It concludes with the challenges of a digital product passport (DPP) for nanomaterial based products and the need of a digital materials passport (DMP). Finally, the activities of BAM are presented which address the former mentioned challenges from ESRP and DPP. T2 - Austausch Helmholtz Hereon / Digipass & BAM CY - Berlin, Germany DA - 07.07.2025 KW - Nanomaterials KW - ESPR KW - DPP KW - Nano KW - Advanced Materials PY - 2025 AN - OPUS4-64974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Energy conversion of waste heat using thermomagnetic materials N2 - To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. This switches a magnetic flux and, according to Faraday’s law, induces a voltage. We demonstrated that guiding the magnetic flux with a pretzel-type topology of the magnetic circuit improves the performance of thermomagnetic generators by orders of magnitude [1]. From an ideal material’s perspective, several similarities with magnetocaloric materials [2] can be found, like a sharp first-order like magnetostructural transition, low hysteresis and high thermal diffusivity. This makes some magnetocaloric materials good candidates also for thermomagnetic energy harvesting, like e.g. (MnFe)2P-based and La(Fe,Si)13-based compounds. Recently, the EU MSCA initial training network Heat4Energy [2] was started with the aim of making three thermomagnetic energy converters for low grade waste heat (<100°C) to electricity with different power output ranges. While the smallest demonstrator operates with thin film materials, the two larger machines use bulk material, for which different processing and shaping routes are explored. In collaboration with the industrial stakeholders of the project, up-scalability and practical application issues of materials processing will be addressed during the project. After an introduction into the technological background and the ITN project, we will present first results on 3D printing and non-destructive imaging of the thermomagnetic parts. T2 - Advances in Magnetics (AIM) 2025 CY - Bressanone, Italy DA - 10.02.2025 KW - Energy harvesting KW - Thermomagnetic energy conversion KW - Magnetic materials PY - 2025 AN - OPUS4-65201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quosdorf, Heike T1 - Digital object identifier for additively manufactured parts based on 3D microstructural information N2 - Additive manufacturing (AM) is rapidly emerging from prototyping to industrial production [1]. Thus, providing AM parts with a tagging feature that allows unambiguous identification, can be crucial for logistics, certification, and anti-counterfeiting purposes. The digital object identifier (DOI) acts like a fingerprint for the product throughout its entire lifecycle. Several methods are already available, which range from encasing a detector [2] to leveraging the stochastic defects of AM parts [3], printing a quick response (QR) code or a set of voids partially filled with loose powder within the part [3]. A new method is using microstructural features of the AM part without altering their properties. This technology transfer project aims to implement this authentication methode as software solution to act as certificate in the Digital Product Passport (DPP) [5]. T2 - MaterialDigital General Assembly 2025 CY - Berlin, Germany DA - 26.11.2025 KW - Authentication KW - Unique identification KW - Open Science KW - Digital fingerprint KW - Material Digital KW - X-ray Computed Tomography KW - Additive manufacturing PY - 2025 AN - OPUS4-65208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - A unique authenticator for additively manufactured parts derived from their microstructure N2 - In the field of additive manufacturing, the ability to uniquely identify and authenticate parts is crucial for certification, logistics, and anti-counterfeiting efforts. This study introduces a novel methodology that leverages the intrinsic microstructural features of additively manufactured components for their identification, authentication, and traceability. Unlike traditional tagging methods, such as embedding QR codes on the surface [1] or within the volume of parts, this approach requires no alteration to the printing process, as it utilizes naturally occurring microstructural characteristics. The proposed workflow [2] involves the analysis of 3D micro-computed tomography data to identify specific voids that meet predefined identification criteria. This method is demonstrated on a batch of 20 parts manufactured with identical process parameters, proving capable of achieving unambiguous identification and authentication. By establishing a tamper-proof link between the physical part and its digital counterpart, this methodology effectively bridges the physical and digital realms. This not only enhances the traceability of additively manufactured parts but also provides a robust tool for integrating digital materials, parts databases, and product passports with their physical counterparts. T2 - Artificial Intelligence in MSE CY - Bochum, Germany DA - 18.11.2025 KW - Authentication KW - Additive Manufacturing KW - Non-destructive testing PY - 2025 AN - OPUS4-65204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quosdorf, Heike T1 - Digital object identifier for additively manufactured parts based on 3D microstructural information N2 - Additive manufacturing (AM) is rapidly emerging from prototyping to industrial production [1]. Thus, providing AM parts with a tagging feature that allows unambiguous identification, can be crucial for logistics, certification, and anti-counterfeiting purposes. The digital object identifier (DOI) acts like a fingerprint for the product throughout its entire lifecycle. Several methods are already available, which range from encasing a detector [2] to leveraging the stochastic defects of AM parts [3], printing a quick response (QR) code or a set of voids partially filled with loose powder within the part [3]. A new method is using microstructural features of the AM part without altering their properties. This technology transfer project aims to implement this authentication methode as software solution to act as certificate in the Digital Product Passport (DPP) [5]. T2 - QI Digital 2025 CY - Berlin, Germany DA - 08.10.2025 KW - Authentication KW - Unique identification KW - Open Science, Material Digital KW - Digital fingerprint KW - Open Source Software KW - X-ray Computed Tomography KW - Additive manufacturing PY - 2025 AN - OPUS4-65207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - A unique authenticator for additively manufactured parts derived from their microstructure N2 - The international research community is currently devoting extensive resources to the development of digital material data spaces and the associated digital twins and product passports of materials and components. A common weak link in these projects to date has been the connection between physical components / samples and their digital data and documents. This is where the concept of the unique identification comes in. Components produced using additive manufacturing can be marked for unique identification and secure authentication [1,2]. Serial numbers and machine-readable codes can be used to identify the component, and link digital product-related data (i.e., a digital product passport) to the actual components. The most prevailing solution consists of local process manipulation, such as printing a quick response (QR) code [3] or a set of blind holes on the surface or the internal cavity of hollow components. However, local manipulation of components may alter the properties, and external tagging features can be altered or even removed by post-processing treatments. This work provides a new methodology for identification, authentication, and traceability of additively manufactured (AM) components using microstructural features that are unique to each part. X-ray computed tomography (XCT) was employed to image the microstructural features of a batch of AlSi10Mg parts. Based on size and geometry, the most prominent features were selected to create a unique digital authenticator. We implemented a framework in Python using open-access modules that can successfully create a digital object authenticator using the segmented microstructure information from XCT. We show that this method allows to authenticate individual parts from the build job based on its microstructural fingerprint. This is our contribution to enhancing the security and product protection of additively manufactured components. T2 - FEMS EUROMAT CY - Granada, Spain DA - 15.09.2025 KW - Authentication KW - Fingerprint KW - Non-destructive testing PY - 2025 AN - OPUS4-65202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Energy conversion of waste heat using thermomagnetic materials N2 - To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. This switches a magnetic flux and, according to Faraday’s law, induces a voltage. We demonstrated that guiding the magnetic flux with a pretzel-type topology of the magnetic circuit improves the performance of thermomagnetic generators by orders of magnitude [1]. From an ideal material’s perspective, several similarities with magnetocaloric materials [2] can be found, like a sharp first-order like magnetostructural transition, low hysteresis and high thermal diffusivity. This makes some magnetocaloric materials good candidates also for thermomagnetic energy harvesting, like e.g. (MnFe)2P-based and La(Fe,Si)13-based compounds. Recently, the EU MSCA initial training network Heat4Energy [2] was started with the aim of making three thermomagnetic energy converters for low grade waste heat (<100°C) to electricity with different power output ranges. While the smallest demonstrator operates with thin film materials, the two larger machines use bulk material, for which different processing and shaping routes are explored. In collaboration with the industrial stakeholders of the project, up-scalability and practical application issues of materials processing will be addressed during the project. After an introduction into the technological background and the ITN project, we will present first results on 3D printing and non-destructive imaging of the thermomagnetic parts. Furthermore, we will review criticality issues of materials employed in this new technology. T2 - MRS Spring Meeting Seattle CY - Seattle, WA, USA DA - 07.04.2025 KW - Energy harvesting KW - Magnetic materials KW - Thermomagnetic energy conversion PY - 2025 AN - OPUS4-65198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - A unique authenticator for additively manufactured parts derived from their microstructure N2 - Components produced using additive manufacturing can be marked for unique identification and secure authentication [1,2]. Serial numbers and machine-readable codes can be used to identify the component, and link digital product-related data (i.e., a digital product passport) to the actual components. The most prevailing solution consists of local process manipulation, such as printing a quick response (QR) code [3] or a set of blind holes on the surface of the internal cavity of hollow components. However, local manipulation of components may alter the properties, and external tagging features can be altered or even removed by post-processing treatments. This work therefore aims to provide a new methodology for identification, authentication, and traceability of additively manufactured (AM) components using microstructural features that are unique to each part. X-ray computed tomography (XCT) was employed to image the microstructural features of AlSi10Mg parts. Based on size and geometry, the most prominent features were selected to create a unique digital authenticator. We implemented a framework in Python using open-access modules that can successfully create a digital object authenticator using the segmented microstructure information from XCT. The authenticator is stored as a QR code, along with the 3D information of the selected features. T2 - MRS Spring Meeting Seattle CY - Seattle, WA, USA DA - 07.04.2025 KW - Additive Manufacturing KW - Fingerprint KW - Non-destructive testing PY - 2025 AN - OPUS4-65199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Energy conversion of waste heat using thermomagnetic materials N2 - To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. This switches a magnetic flux and, according to Faraday’s law, induces a voltage. We demonstrated that guiding the magnetic flux with a pretzel-type topology of the magnetic circuit improves the performance of thermomagnetic generators by orders of magnitude [1]. From an ideal material’s perspective, several similarities with magnetocaloric materials [2] can be found, like a sharp first-order like magnetostructural transition, low hysteresis and high thermal diffusivity. This makes some magnetocaloric materials good candidates also for thermomagnetic energy harvesting, like e.g. (MnFe)2P-based and La(Fe,Si)13-based compounds. Recently, the EU MSCA initial training network Heat4Energy [2] was started with the aim of making three thermomagnetic energy converters for low grade waste heat (<100°C) to electricity with different power output ranges. While the smallest demonstrator operates with thin film materials, the two larger machines use bulk material, for which different processing and shaping routes are explored. In collaboration with the industrial stakeholders of the project, up-scalability and practical application issues of materials processing will be addressed during the project. After an introduction into the technological background and the ITN project, we will present first results on 3D printing and non-destructive imaging of the thermomagnetic parts. Furthermore, we will review criticality issues of materials employed in this new technology. T2 - MRS Fall Meeting Boston CY - Boston, MA, USA DA - 01.12.2025 KW - Energy harvesting KW - Thermomagnetic energy conversion KW - Magnetic materials PY - 2025 AN - OPUS4-65197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Rieck, Arielle A1 - Low, Jian Liang A1 - Dietzmann, Simon A1 - Radnik, Jörg A1 - Teimouri, Zahra A1 - Higgins, Drew A1 - Hodoroaba, Vasile-Dan A1 - Mehmood, Asad A1 - Fellinger, Tim-Patrick T1 - Understanding the Activity Trade-Off between Tetrapyrrolic Fe-NCs and Co-NCs in the Alkaline Oxygen Reduction Reaction N2 - A water-free ionothermal synthesis of porous magnesium-imprinted nitrogen-doped carbon (Mg–NC) materials is introduced to prepare a platform material to investigate electrocatalytic structure-performance relations. Atomically dispersed Co- and Fe-NCs isomorphic to the pristine Mg-NCs are prepared by ion-exchange reactions. The current Mg-templating strategy enables relatively high pyrolysis product yields of up to 50 wt% and resultant Fe-NC and Co-NC catalysts contain high and comparable active metal loading of up to 2.52 wt% Fe and 2.29 wt% Co, respectively. A combination of X-ray spectroscopies with DFT studies reveals a tetrapyrrolic structure of the coordination sites, originating from a pyrolytic magnesium template ion reaction within the ionothermal synthesis. Two sets of highly active isomorphic tetrapyrrolic Fe-NCs and Co-NCs are utilized to understand the differences in intrinsic electrocatalytic performance of Co-NCs and Fe-NCs towards the alkaline oxygen reduction reaction (ORR). Despite their superior valence electronic properties to facilitate the initial outer-sphere electron transfer to O2, Co-NCs show significantly lower performance than Fe-NC with comparable loading. Although the generally discussed weaker binding of peroxide intermediates to CoN4 sites compared to FeN4 sites is evident, experimental and theoretical investigation reveal that it is the underlying peroxide oxidation activity that suppresses the oxygen reduction activity of M-NCs. The high peroxide oxidation activity of Co-NCs explains their reduced alkaline ORR relative to Fe-NCs, shedding light on the understated significance of controlling peroxide chemistry for the optimizing cathodic performance. KW - Magnesium Imprinting KW - Tetrapyrrolic Sites KW - Metal- and nitrogen-doped carbon (M-N-C) KW - Oxygen Reduction Reaction (ORR) KW - Nitrogen doped Carbon PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651487 DO - https://doi.org/10.26434/chemrxiv-2025-s59s5 SP - 1 EP - 24 AN - OPUS4-65148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Durlo Tambara, Luís Urbano A1 - Nikoonasab, Ali A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Gluth, Gregor T1 - Determination of the oxidation depths of ground granulated blast furnace slag-containing cement pastes using Mn K-edge X-ray absorption near-edge structure spectroscopy N2 - The redox potential of the pore solution of hardened cements containing ground granulated blast furnace slag (GGBFS) affects reinforcement corrosion and immobilization of radioactive waste. Here, Mn K-edge X-ray absorption near-edge structure (XANES) spectroscopy was applied to determine the depth profile of the oxidation state of manganese in hardened GGBFS-containing cement pastes. Manganese was oxidized in the outer regions of some of the pastes, but the depth to which this occurred was not identical with the ‘blue-green/white color change front’, usually interpreted as indicating oxidation of sulfur species. For CEM III/B, the color change of the material was gradual and thus unsuitable for a precise determination of the oxidation depth, while for the alkali-activated slag, a distinct color change front was found, but full oxidation of manganese and sulfur had not occurred in the brighter region. Mn K-edge XANES spectroscopy is thus a more reliable method than the determination of the visual color change front to follow the ingress of the oxidation front. KW - Manganese KW - Oxidation KW - Sulfide KW - Alkali-activated materials KW - Redox conditions PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651469 DO - https://doi.org/10.1111/jace.70445 SN - 0002-7820 SN - 1551-2916 VL - 109 IS - 1 SP - 1 EP - 11 PB - Wiley CY - Oxford AN - OPUS4-65146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmalz, Alina A1 - Eby, Charles Gaston A1 - Moss, Caitlin A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska T1 - Thermally Robust 1D Cu(I) Phosphonate Coordination Polymer Exhibiting Enhanced Proton Conductivity via Humidity‐Driven Pathways N2 - The development of thermally stable solid-state proton conductors (SSPCs) is crucial for advancing energy-conversion devices such as proton-exchange membrane fuel cells (PEMFCs). In this work, we report the solvothermal synthesis and characterization of a novel, 1D Cu(I) coordination polymer, {Cu(ADP)0.5(BPY)}n (BAM-5), based on anthracenediylphosphonate (H2ADP) and 4,40 -bipyridine (BPY). Single-crystal X-ray diffraction revealed that BAM-5 crystallizes in the triclinic space group P1 and shows a 1D ladder structure connected by the H2ADP and organic BPY linkers, which is assembled into a 2D layer via O−H···O hydrogen bonding interactions between uncoordinated oxygen and the O−H of the phosphonate group. Thermogravimetric and dynamic water sorption analysis demonstrated exceptional thermal robustness of BAM-5 until 230°C and notable water affinity. Proton conductivity measurements found increasing proton conductive properties with increasing temperature and relative humidity.The latter is correlated with the material’s water uptake since the structure itself does not contain any permanent lattice water molecules. A maximum proton conductivity of 6.6 × 10−6 S cm−1 was found at 80°C and 98% RH. To the best of our knowledge, no dense, nonporous 1D coordination polymer without lattice or coordinated solvent molecules has shown comparable proton con� ductivity. The high activation energy suggests a combination of both, a Grotthuss-type proton hopping through the hydrogen� bonded framework, and a vehicular process, in which protons are carried along with absorbed water molecules. KW - Coordination polymers KW - Phosphonate ligand KW - Proton conduction KW - X-ray diffraction PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651382 DO - https://doi.org/10.1002/zaac.202500187 SN - 0044-2313 SP - 1 EP - 8 PB - Wiley VHC-Verlag AN - OPUS4-65138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fotheringham, U. T1 - Digitalization of Glass Development N2 - Im Vortrag werden erste Ergebnisse aus dem vom BMFTR im Rahmen der MaterialDigital Initiative geförderten Projekt „GlasAgent“ vorgestellt, welches die Glasentwicklung mittels KI vorantreiben soll. In diesem Projekt werden mehrere Entwicklungszyklen inklusive des Recyclingprozesses durchlaufen und die Ergebnisse genutzt, um Datenbanken und Modelle zu verbessern. Mit diesen verknüpft und basierend auf der semantischen GlasDigital-Ontologie soll zukünftig ein Chatbot die Glasentwicklung schneller, präziser und nachhaltiger gestalten. T2 - PMD Vollversammlung CY - Berlin, Germany DA - 26.11.2025 KW - Glass KW - Workflow KW - Automation KW - MAP KW - Ontology KW - Simulation KW - Database PY - 2025 AN - OPUS4-65039 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Battistella, Beatrice A1 - Revill, Adam A1 - Venzago, Cornel A1 - Hoffmann, Volker A1 - Agudo Jacome, Leonardo A1 - Al-Sabbagh, Dominik A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Depth-Resolved Lithium Isotope Fractionation as a Diagnostic of Interphase Evolution and Degradation in Lithium Ion Batteries N2 - Lithium isotopic fractionation is well-established in dynamic geochemical systems; however, its role in lithium-ion batteries (LIBs) remains uninvestigated. Herein, we report the first depth-resolved demonstration that isotopic separation occurs during Li-ion cell operation whose magnitude depends on the cycling history. Using depth-resolved glow discharge mass spectrometry, we monitored the 7Li/6Li ratio in LiNi0.333Mn0.333Co0.333O2 (NMC111)||graphite coin cell electrodes at defined life-cycle stages. Different charging rates were examined to get mechanistic insight into kinetic and thermodynamic control in the fractionation process. Although pristine electrodes exhibit a uniform isotopic ratio, cycled electrodes show a distinct 7Li enrichment in the positive electrode and a corresponding accumulation of 6Li at the surface of the negative electrode. The degree of isotopic separation varies with the charging rate. Isotopic signatures correlate with capacity fading, indicating lithium isotope mapping as a sensitive diagnostic tool for tracking electrode degradation and the evolution of the electrode–electrolyte interphases in LIBs. KW - Li-ion batteries KW - Lithium isotopes KW - Post-mortem analysis KW - GD-MS KW - Depth profile KW - Mass spectrometry PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651287 DO - https://doi.org/10.26434/chemrxiv-2025-5rvlk SP - 1 EP - 19 AN - OPUS4-65128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schusterbauer, Robert A1 - Schünemann, Pia A1 - Nickl, Philip A1 - Er, Jasmin A1 - Kämmer, Victoria A1 - Junge, Florian A1 - Fazzani, Salim A1 - Mrkwitschka, Paul A1 - Meermann, Björn A1 - Haag, Rainer A1 - Donskyi, Ievgen T1 - Bifunctional Reduced Graphene Oxide Derivatives for PFOA Adsorption N2 - Innovative materials are crucial for removing persistent pollutants per‐ and polyfluorinated alkyl substances (PFAS) from water. Here, a novel bifunctional reduced graphene oxide (TRGO) adsorbent is developed and characterized by advanced surface sensitive methods. Compared to pristine TRGO, the functionalized TRGO shows markedly improved PFAS removal efficiency and demonstrates strong potential for water purification applications. KW - Adsorber KW - PFAS KW - HR-CS-GFMAS PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-651238 DO - https://doi.org/10.1002/ceur.202500240 SN - 2751-4765 SP - 1 EP - 7 PB - Wiley VHC-Verlag AN - OPUS4-65123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kittner, Maria A1 - Bauer, Vanessa A1 - Altmann, Korinna A1 - Kraft, Oliver A1 - Nordmann, Thomas A1 - Kalbe, Ute T1 - Mikroplastik-Austrage aus Kunststoffrasenplatzen ins Grundwasser N2 - Sportplätze aus Kunststoffrasen haben sich im Breitensport etabliert, weshalb ihre Anzahl jährlich zunimmt. Dabei werden Umwelt- und Gesundheitsrisiken, insbesondere durch Mikroplastik-Austräge, kontrovers diskutiert. Um die ungenügende Datenlage zur Menge des Austrages an Mikroplastik zu verbessern, haben sich zwei individuelle Studien mit dieser Forschungsfrage mit Fokus auf den Boden-Grundwasser-Pfad befasst, deren Ergebnisse hier erstmalig gemeinsam vorgestellt werden. Die erste Studie simulierte unter Laborbedingungen Mikroplastik-Emissionen von drei Kunststoffrasen-Szenarien in unterschiedlichen Alterungszuständen und analysierte thermoanalytisch. Die zweite Studie untersuchte Grundwasser-Proben von zwei Realsportplätzen, die 1 m unter dem Grundwasserspiegel entnommen und spektroskopisch untersucht wurden. Dies ermöglicht erstmalig einen Vergleich von Mikroplastik-Austrägen über das Sickerwasser in verschiedenen Bodentiefen. Die Labor-Ergebnisse ergaben je nach Alterungszustand des Kunststoffrasenplatzes Mikroplastik-Emissionen zwischen < 0,1 μg/L und 26,8 μg/L in 30 cm Bodentiefe. Wohingegen in den Grundwasser-Proben der Realsportplätze ab 4 m Bodentiefe keine Kunststoffrasen-Partikel detektiert wurden. Dies deutet darauf hin, dass vermehrt Mikroplastik durch Alterung aus Kunststoffrasen entsteht und im Sickerwasser ausgetragen wird, aber der Boden Mikroplastik- Partikel ≥ 5 μm durch Filtrationseffekte zurückhält, sodass diese im Grundwasser nicht nachweisbar waren. KW - Kunststoffrasen, Alterung, Mikroplastik, Elution, Schadstoffe PY - 2025 DO - https://doi.org/10.37307/j.1868-7741.2025.04.05 SN - 1868-7741 VL - 30 IS - 4 SP - 156 EP - 161 PB - Erich Schmidt Verlag GmbH & Co. KG AN - OPUS4-65098 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Morcillo, Dalia A1 - Oelze, Marcus A1 - Seena Prem, Pranav A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska A1 - Recknagel, Sebastian A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - Lithium isotope fractionation as an early indicator of degradation mechanisms in lithium-ion batteries N2 - Aging in lithium-ion batteries (LIBs) degrades performance and hinders sustainability, demanding advanced diagnostics for early failure prediction. We investigate lithium isotope fractionation (LIF) as an innovative probe of degradation in lithium cobalt oxide (LCO) coin cells aged over 0−700 cycles. High-precision multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) quantified δ7Li variations across cell stages: non-cycled (0 cycles), newly formed (5 cycles), semi-aged (250 cycles), and fully aged (700 cycles). During early cycling (≤ 45 cycles), chemical processes drive 7Li enrichment at the anode (δ7Li vs LSVEC = +12 ‰) through solid electrolyte interphase (SEI) formation, while the cathode depletes in 7Li (δ7Li vs LSVEC = −0.7 ‰). Beyond 45 cycles, electric field-induced migration predominates, promoting 6Li intercalation into the anode and increasing the δ7Li of the cathode by 8.1 ‰. Mass balance verifies isotope conservation, attributing shifts to redistribution and trapping. Complementary electrochemical impedance spectroscopy (EIS) and X-ray absorption spectroscopy and diffraction confirm SEI expansion, cobalt oxidation, lattice shrinkage, and changes in electrode structure, corroborating LIF trends. Notably, a δ7Li inflection at approximately 270 cycles anticipates end-of-life by 70 cycles, surpassing traditional methods in sensitivity. LIF emerges as a predictive indicator of aging mechanisms, informing optimized designs for durable LIBs. KW - Lithium isotope fractionation KW - Lithium-ion batteries KW - Degradation mechanisms KW - LiCoO2 cathodes KW - LCO KW - Isotopic tracing KW - Lithium isotopes PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650945 DO - https://doi.org/10.26434/chemrxiv-2025-16lvq SP - 1 EP - 19 AN - OPUS4-65094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hachet, G. A1 - Wei, S. A1 - Tehranchi, Ali A1 - Dong, X. A1 - Lestang, J. A1 - Zhang, A. A1 - Sun, B. A1 - Zaefferer, S. A1 - Gault, B. A1 - Ponge, D. A1 - Raabe, D. ED - Tehranchi, Ali T1 - Protection of metal interfaces against hydrogen-assisted cracking N2 - Enabling a hydrogen economy requires the development of materials resistant to hydrogen embrittlement (HE). More than 100 years of research have led to several mechanisms and models describing how hydrogen interacts with lattice defects and leads to mechanical property degradation. However, solutions to protect materials from hydrogen are still scarce. Here, we investigate the role of interstitial solutes in protecting critical crystalline defects sensitive to hydrogen. Ab initio calculations show that boron and carbon in solid solutions at grain boundaries can efficiently prevent hydrogen segregation. We then realized this interface protection concept on martensitic steel, a material strongly prone to HE, by doping the most sensitive interfaces with different concentrations of boron and carbon. These segregations, in addition to stress relaxations, critically reduce the hydrogen ingress by half, leading to an unprecedented resistance against HE. This tailored interstitial segregation strategy can be extended to other metallic materials susceptible to hydrogen-induced interfacial failure. KW - Hydrogen embrittlement KW - interstitial PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650881 DO - https://doi.org/10.1038/s41467-025-67310-6 SN - 2041-1723 VL - 16 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-65088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - del Rocío Silva-Calpa, Leydi A1 - de Souza Bernardes, Andrelaine A1 - de Avillez, Roberto Ribeiro A1 - Smales, Glen J. A1 - Camarena, Mariella Alzamora A1 - Ramos Moreira, Carla A1 - Zaitsev, Volodymyr A1 - Archanjo, Braulio Soares A1 - Letichevsky, Sonia T1 - From support to shell: An innovative design of air-stable nano zero-valent iron–nickel catalysts via structural self-assembly N2 - This work presents the design of air-stable core–shell zero-valent iron–nickel nanofilaments supported on silica and zeolite, developed to overcome the oxidation limitations of nano zero-valent iron in environmental catalysis. The nanofilaments feature ∼ 100 nm iron–nickel cores surrounded by ultrafine iron-rich threads embedded with aluminates and silicates, originating from partial support dissolution during synthesis. By varying the iron reduction time, three catalysts were prepared: one on silica reduced for 30 min, and two on zeolite reduced for 30 and 15 min. They were thoroughly characterized using nitrogen physisorption, X-ray diffraction, electron microscopy with elemental analysis, Mössbauer spectroscopy, and small-angle X-ray scattering. The zeolite-supported catalyst reduced for 15 min showed the highest activity for hexavalent chromium reduction (rate constant 8.054 min−1), attributed to a higher fraction of reactive iron–nickel phases formed under shorter reduction. Its tailored core–shell structure improves air stability and surface reactivity, highlighting its potential as a next-generation zero-valent iron nanocatalyst for aqueous remediation KW - nanofilaments KW - Core–shell nanostructures KW - Air-stable nanomaterials KW - Structure-controlled FeNi nanoparticles KW - Hexavalent chromium reduction KW - X-ray scattering KW - MOUSE PY - 2025 DO - https://doi.org/10.1016/j.mtcomm.2025.114142 SN - 2352-4928 VL - 49 SP - 1 EP - 15677 PB - Elsevier Ltd. AN - OPUS4-65087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Berry, Charlotte A. A1 - Reinart, Katre A1 - Smales, Glen J. A1 - Wilkinson, Holly N. A1 - Hardman, Matthew J. A1 - Marchesini, Sofia A1 - Lee, William A1 - Nery, Eveliny Tomás A1 - Moghaddam, Zarrin A1 - Hoxha, Agron A1 - Felipe-Sotelo, Mónica A1 - Gutierrez-Merino, Jorge A1 - Carta, Daniela T1 - Hierarchically porous copper and gallium loaded sol–gel phosphate glasses for enhancement of wound closure N2 - In this work, we have developed hierarchically porous phosphate-based glasses (PPGs) as novel materials capable of promoting wound closure and simultaneously delivering antibacterial effects at the glass-biological tissue interface. PPGs are characterised by extended porosity, which enhances the controlled release of therapeutic ions, whilst facilitating cell infiltration and tissue growth. Two series of PPGs in the systems P2O5–CaO–Na2O–CuO and P2O5–CaO–Na2O–Ga2O3 with (CuO and Ga2O3 0, 1, 5 and 10 mol%) were manufactured using a supramolecular sol–gel synthesis strategy. Significant wound healing promotion (up to 97%) was demonstrated using a human ex vivo wound model. A statistically significant reduction of the bacterial strains Staphylococcus aureus and Escherichia coli was observed in both series of PPGs, particularly those containing copper. All PPGs exhibited good cytocompatibility on keratinocytes (HaCaTs), and analysis of PPG dissolution products over a 7-day period demonstrated controlled release of phosphate anions and Ca, Na, Cu, and Ga cations. These findings indicate that Cu- and Ga-loaded PPGs are promising materials for applications in soft tissue regeneration given their antibacterial capabilities, in vitro biocompatibility with keratinocytes and ex vivo wound healing properties at the biomaterial-human tissue interface. KW - Porous glass KW - Phosphates KW - Wound healing materials KW - Antibacterial KW - X-ray scattering KW - MOUSE PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650867 DO - https://doi.org/10.1039/d5tb01945a SN - 2050-750X VL - 13 IS - 48 SP - 15662 EP - 15677 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ankli, P. P. A1 - Abdelwahab, A. A. A1 - Logachov, A. A1 - Bugiel, R. A1 - Drobne, D. A1 - Novak, S. A1 - Kranjc, E. A1 - Saje, S. A1 - Pellegrino, F. A1 - Alladio, E. A1 - Sordello, F. A1 - Corrao, E. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Mrkwitschka, Paul A1 - Madbouly, Loay Akmaal A1 - Akdemir, Yücel A1 - Gulumian, M. A1 - Wepener, V. A1 - Andraos, C. A1 - Boodhia, K. A1 - Jones, E. A1 - Doolin, A. A1 - Leuchtenberg, K. A1 - Valsami Jones, E. A1 - Rocca, C. A1 - Ibrahim, B. A1 - Singh, D. A1 - Chakraborty, S. A1 - Jurkschat, K. A1 - Johnston, C. A1 - Van Der Zande, M. A1 - Fernandez, D. A1 - Queipo, P. A1 - Clifford, C. A1 - Hardy, B. T1 - Knowledge Infrastructure supporting image-based characterisation of 2D graphene materials N2 - As part of the European Horizon ACCORDs project, advanced methods are being developed for the image-based characterisation of 2D nanomaterials. Given the complexity of this task, robust nd wellorganised data management is critical to ensuring high-quality outcomes. To support this, we have established a knowledge infrastructure that serves as the central repository for protocols, images and experimental data which are stored in a standardised, harmonised manner and in accordance with the FAIR principles – Findable, Accessible, Interoperable and Reusable and open science. This machine-readable framework enables the systematic and computationally automated correlation of image features with experimental descriptors, facilitating accurate material characterisation and transparent reporting which is all integrated in the ACCORDs KI. KW - Graphene-related 2D materials (GR2M) KW - 2D materials KW - Knowledge infrastructure KW - Characterisation PY - 2025 DO - https://doi.org/10.1016/j.toxlet.2025.07.660 SN - 0378-4274 VL - 411 SP - S281 EP - S282 PB - Elsevier B.V. AN - OPUS4-65061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rahner, E. T1 - From nightmare to numbers - A novel software tool for objective regularity analysis of LIPSS N2 - The precise laser-based surface structuring on the micro- and nanoscale allows for the creation of functional properties for innovative applications, e.g., in medicine, optics and biology. Among the various types of surface structures, laser-induced periodic surface structures (LIPSS) are distinguished by their versatility and the comparatively simple manufacturing process. Nevertheless, the fabrication of highly regular LIPSS patterns remains challenging. The systematic investigation of LIPSS formation, as well as of the resulting functional properties demands accurate and objective evaluation of surface morphology, especially regarding periodicity and regularity. Existing quantification methods such as Fast Fourier Transformation (FFT) tend to lack automation and objectivity, especially when dealing with large data sets and multi-scale structures. Although automated approaches, such as those based on the Gini coefficient or the P³S method, have been proposed, their limited availability hinders a broader scientific use. To overcome these limitations, we introduce ReguΛarity, a novel, freely available Python-based software tool featuring a graphical user interface for automated and quantitative assessment of regularity in period and (quasi-)periodic surface patterns including LIPSS. The software processes microscopic images obtained from optical, scanning electron microscopy (SEM), or atomic force microscopy (AFM), combining image segmentation with one- and two-dimensional Fourier analyses (1D-FT, 2D-FT), phase evaluation, and gradient-based orientation determination to facilitate a comprehensive regularity analysis of (quasi-)periodic surface patterns with spatial periods Λ. Regularity is quantified by the newly proposed five-dimensional regularity tuple R comprising the normalized spread of spatial periods from 2D-FT, the normalized local variation of the dominant spatial period from 1D-FT, the Gini coefficient G, the Dispersion of the LIPSS Orientation Angle (DLOA), and the mean phase deviation. The demonstration of the software’s capabilities is achieved by comparing idealized sinusoidal test patterns with SEM micrographs of fs-laser-generated LIPSS on stainless steel (AISI 316L) and aluminum alloy (AlMg5). This comparison highlights ReguΛarity’s objective differentiation between varying levels of structural regularity. The software facilitates high-throughput analysis and data-driven optimization in laser surface engineering processes. T2 - 13th International LIPSS Workshop CY - Enschede, Netherlands DA - 29.10.2025 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Fourier transform KW - Gini coefficient PY - 2025 AN - OPUS4-65047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kalbe, Ute T1 - Assessment of Microplastic and Contaminant Emissions from Artificial Turf Sports Pitches N2 - Due to their advantages over natural gras, artificial turf sports pitches are well established in popular sports and their number is increasing every year. This raises questions about potential pollutant emissions and possible risks to the environment due to its transfer to soil and groundwater. The main sources of emissions are the rubber infill granules and the abrasion of grass fibers. While estimates on the transfer of pollutants to the soil are already available, there is still insufficient data on the discharge of microplastics from artificial turf systems and thus on the assessment of its relevance for the soil. To close this gap, the pollutant emissions of three artificial turf scenarios - past (fossil-based, rubber infill), present (most frequently installed in Germany, rubber infill) and future (turf with recycled grass fibers, no rubber infill) - were compared in different ageing states (unaged, accelerated, and real time aged). Accelerated ageing consisting of UV weathering and mechanical stress was applied to simulate the outdoor weathering of turf systems during their service life span of approx. 15 years. Emissions of microplastics and environmentally relevant pollutants were sampled simultaneously using newly developed, innovative lysimeters. The microplastics contents were determined using Thermal Extraction-Desorption Gas Chromatography/Mass Spectrometry (TED-GC/MS). In addition, the concentrations of PAH and heavy metals were determined. T2 - Jahrestag der Deutschen Bodenkundlichen Gesellschaft CY - Tübingen, Germany DA - 14.09.2025 KW - Artificial Turf KW - Microplastics KW - Contaminants PY - 2025 AN - OPUS4-65022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Interlaboratory comparisons for validated measurements of the surface chemistry of nanomaterials N2 - Interlaboratory comparisons are essential tools for validating new protocols or methods. The properties of advanced materials are largely determined by surface chemistry. Using a VAMAS interlaboratory comparison on the surface functionalization of GR2DM, it is explained what insights can be gained from such a comparison.” T2 - Nanomesure France Journee technique CY - Paris, France DA - 04.11.2025 KW - VAMAS KW - Functionalized graphene KW - X-ray photoelectron spectroscopy PY - 2025 AN - OPUS4-65002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tavernaro, Isabella A1 - Rajotte, Isabelle A1 - Thibeault, Marie-Pier A1 - Sander, Philipp C. A1 - Kodra, Oltion A1 - Lopinski, Gregory A1 - Radnik, Jörg A1 - Johnston, Linda J. A1 - Brinkmann, Andreas A1 - Resch-Genger, Ute T1 - Quantifying surface groups on aminated silica nanoparticles of different size, surface chemistry, and porosity with solution NMR, XPS, optical assays, and potentiometric titration N2 - We assessed the quantification of surface amino functional groups (FGs) for a large set of commercial and custom-made aminated silica nanoparticles (SiO2 NPs) with sizes of 20–100 nm, prepared with different sol–gel routes, different amounts of surface amino FGs, and different porosity with four methods providing different, yet connected measurands in a bilateral study of two laboratories, BAM and NRC, with the overall aim to develop standardizable measurements for surface FG quantification. Special emphasis was dedicated to traceable quantitative magnetic resonance spectroscopy (qNMR) performed with dissolved SiO2 NPs. For the cost efficient and automatable screening of the amount of surface amino FGs done in a first step of this study, the optical fluorescamine assay and a potentiometric titration method were utilized by one partner, i.e., BAM, yielding the amount of primary amino FGs accessible for the reaction with a dye precursor and the total amount of (de)protonatable FGs. These measurements, which give estimates of the minimum and maximum number of surface amino FGs, laid the basis for quantifying the amount of amino silane molecules with chemo-selective qNMR with stepwise fine-tuned workflows, involving centrifugation, drying, weighting, dissolution, measurement, and data evaluation steps jointly performed by BAM and NRC. Data comparability and relative standard deviations (RSDs) obtained by both labs were used as quality measures for method optimization and as prerequisites to identify method-inherent limitations to be later considered for standardized measurement protocols. Additionally, the nitrogen (N) to silicon (Si) ratio in the near-surface region of the SiO2 NPs was determined by both labs using X-ray photoelectron spectroscopy (XPS), a well established surface sensitive analytical method increasingly utilized for microparticles and nano-objects which is currently also in the focus of international standardization activities. Overall, our results underline the importance of multi-method characterization studies for quantifying FGs on NMs involving at least two expert laboratories for effectively identifying sources of uncertainty, validating analytical methods, and deriving NM structure–property relationships. KW - Advanced Materials KW - Amino Groups KW - Calibration KW - Characterization KW - Functional groups KW - Method Comparison KW - Nano Particle KW - Validation KW - XPS KW - Optical Assay KW - Quantification KW - Surface Analysis KW - Reference Materials KW - Synthesis KW - Fluorescence PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-649992 DO - https://doi.org/10.1039/d5na00794a VL - 7 IS - 21 SP - 6888 EP - 6900 PB - Royal Society of Chemistry AN - OPUS4-64999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tehranchi, Ali A1 - Hickel, Tilmann A1 - Neugebauer, J. T1 - Hydrogen enhanced dislocation cross-slip in polycrystalline nickel N2 - Hydrogen embrittlement (HE), degradation of the mechanical properties of metals due to the presence of hydrogen, is a persistent problem that has been attracting the attention of the material science community for about fifteen decades. Extensive experimental observations indicate the presence of nanovoids and the increase of free volume at the grain boundaries in hydrogen contaminated metals. This rate-dependent phenomenon motivates theoretical investigations of the underlying mechanisms. Here, a hydrogen enhanced cross-slip (HECS) mechanism in the close vicinity of the grain boundaries is demonstrated by direct molecular dynamics simulations and theoretical calculations. To this end, the interaction of screw dislocations with a variety of symmetric tilt grain boundaries in H-charged and H-free bicrystalline nickel is examined. The presence of segregated H atoms at the grain boundaries induces a stress field in their vicinity, and thus,- the barrier for cross-slip of screw dislocations considerably decreases. The enhanced cross-slip of dislocations facilitates the formation of jogs on bowedout dislocations. These jogs can form vacancies during the glide process. This mechanism of defect production shows nanoscale evidence of enhanced vacancy formation and subsequent increase in the free volume along the grain boundaries in the presence of H. KW - Hydrogen embrittlement KW - Dislocation KW - Grain boundary KW - Void formation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-649858 DO - https://doi.org/10.1103/7l8f-3fbm SN - 2475-9953 VL - 9 IS - 12 SP - 1 EP - 16 PB - American Physical Society (APS) AN - OPUS4-64985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Parthasarathy, Thiyagaraj A1 - Bhowmik, Aritra A1 - Bhattacharya, Biswajit A1 - Mishra, Manish Kumar A1 - Ghosh, Soumyajit T1 - Reversible twisting-induced crystalline–polycrystalline transformation in cyanoacrylate crystals N2 - Centimeter-long single crystals of cyanoacrylate derivatives exhibit 1D elasticity, 2D plasticity and can be manually twisted and untwisted without any visible fractures, demonstrating exceptional mechanical flexibility and structural resilience. KW - Weak intermolecular interactions KW - Crystals KW - Mechanical flexiblity KW - Micro-focus Raman spectroscopy KW - Single-crystal X-ray diffraction PY - 2025 DO - https://doi.org/10.1039/D5CC05852J SN - 1359-7345 SP - 1 EP - 4 PB - Royal Society of Chemistry (RSC) AN - OPUS4-64962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinekamp, Christian A1 - Palmer, Tahlia M. A1 - Al‐Sabbagh, Dominik A1 - May, Anastasia A1 - Prinz, Carsten A1 - Michalik, Stefan A1 - Michalchuk, Adam A. L. A1 - Emmerling, Franziska T1 - Pre‐Activation as a Route for Tuning the Kinetics of Mechanochemical Transformations N2 - Learning to control reaction kinetics is essential for translating any chemical technology into real‐world application. Based on time‐resolved in situ powder X‐ray diffraction data, we demonstrate the opportunity to tune mechanochemical reaction rates through the pre‐activation of the starting reagents. For three model co‐crystal systems, the pre‐activation of the most stable reagent yields up to a ca 10‐fold increase in the reaction rate, whilst negligible kinetic enhancement is seen when the less stable reagent is pre‐activated. Moreover, we demonstrate how the polymorphic outcome of mechano‐co‐crystallization is also sensitive to pre‐activation of the starting material. Our results suggest that reproducibility of mechanochemical processes requires detailed understanding over the origin and history of reagent powders, whilst providing a new conceptual framework to design and control mechanochemical reactions. KW - Mechanochemistry KW - In situ synthesis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-649409 DO - https://doi.org/10.1002/anie.202516632 SN - 1433-7851 SP - 1 EP - 7 PB - Wiley VHC-Verlag AN - OPUS4-64940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Methodologies implemented to measure key properties of graphene and other 2D materials N2 - The key properties and suitable measurement methods for the characterization of graphene-related 2D materials are presented. A case study will be discussed about the chemical characterisation of functionalised graphene used in inks along the production chain. T2 - European-African Graphene Workshop CY - Parys, South Africa DA - 26.11.2025 KW - X-ray photoelectron spectroscoyp KW - Raman spectroscopy KW - Defects KW - Surface Chemistry PY - 2025 AN - OPUS4-64959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Methodologies implemented to measure key properties of graphene and other 2D materials - EDX N2 - The elemental analysis of solid matter by means of the Energy-Dispersive X-Ray Spectrometry (EDS) is meanwhile posible as a quick (seconds!) and more and more accurate analysis via standardsless (instantaneous) quantification. The sensitivity & quantification accuracy for light elements (C, O,..) has significantly increased in the recent years. The availability via table-top SEMs with incorporated EDS is also enhanced. It is demostrated that key parameters such as oxygen-to-carbon atomic-% ratio and impurities can be realibly measured, with XPS as a reference method. Various EDS spectrometers and analysis conditions are tested and the validity of the EDS quantification of an ionic liquid of well-defined chemical composition is demonstrated. T2 - Advanced Materials Graphene: The implementation of SbD and SSbD CY - Parys, South Africa DA - 26.11.2025 KW - Light elements KW - EDS KW - Quantification KW - Oxygen-to-carbon ratio KW - XPS KW - Graphene-realted 2D materials PY - 2025 AN - OPUS4-64943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gräf, S. T1 - Ion marker implantation as key to understand the formation of femtosecond LIPSS on steel N2 - Ultrashort laser (fs-laser) pulses can be used to generate laser-induced periodic surface structures (LIPSS, ripples) on different types of materials. A variety of potential applications of these grating-like LIPSS have already been demonstrated in the field of surface functionalization. Examples include structural colours (e.g. for optical effects or safety features), beneficial friction and wear reduction, modification of the wetting behaviour of surfaces, and antibacterial or cell adhesion promoting properties for medical implants. Despite decades of research, however, some aspects regarding the formation mechanism are still unclear and the subject of controversial debate. This involves the two main models of coherent electromagnetic scattering and matter reorganization, which are used for explaining aspects of LIPSS formation and phenomenology. One major issue is to quantify the actual amount of material removal during the fs-laser processing due to the lack of an independent depth reference and to visualize the so-called heat-affected zone accompanying intense fs-laser irradiation. In the present study, near-surface implantation of Mn and N ions into different material depth of Mn-free austenitic stainless steel alloy FeCrNiMo18-12-2 was used to create reference layers of a defined thickness containing the respective elements. LIPSS (type low-spatial frequency LIPSS, LSFL) were fabricated on the polished substrate surfaces in an air environment by fs-laser irradiation (λ = 1025 nm, τ = 300 fs, frep = 100 kHz, F = 1.5 J/cm2). The implanted layers subsequently served as a kind of coordinate system to assess the material removal during the formation process via cross-sectional Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectroscopy (EDXS). Using both analysis methods enabled in particular to determine the position of peaks and valleys of the LIPSS topography in relation to the initial surface before fs-laser irradiation. This confirmed the selective ablation in the LIPSS valleys. Moreover, linking changes in the material’s microstructure, e.g., the crystallinity and near surface elemental composition before and after fs-laser treatment, gave additional insights regarding the transient cooling rates, as recently shown for NiTi alloys. T2 - 13th International LIPSS Workshop CY - Enschede, Netherlands DA - 29.10.2015 KW - Energy dispersive X-ray analysis (EDX) KW - Ion implantation KW - Laser-induced periodic surface structures (LIPSS) KW - Steel KW - Transmission electron microscopy (TEM) PY - 2025 AN - OPUS4-64900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eiby, Simon H. J. A1 - Tobler, Dominique J. A1 - Voigt, Laura A1 - van Genuchten, Case M. A1 - Bruns, Stefan A1 - Jensen, Kirsten M. Ø. A1 - Stawski, Tomasz M. A1 - Wirth, Richard A1 - Benning, Liane G. A1 - Stipp, S. L. S. A1 - Dideriksen, Knud T1 - Topotactic Redox-Catalyzed Transformation of Iron Oxides N2 - Fe oxides frequently exist in systems containing both Fe(II) and Fe(III), where their reactivity is enhanced and where interfacial electron transfer from Fe(II) adsorbed to the solids causes the transformation of metastable Fe oxides. Here, we contribute to the understanding of such a transformation using green rust sulfate (GR) synthesized in the presence or absence of Si or Al as the starting material. X-ray diffraction (XRD) and pair distribution function (PDF) analyses showed that (i) rapid oxidation by Cr(VI) caused transformation to Fe oxyhydroxide with short-range ordering, with a pattern identical to that reported for the oxidation of isolated GR hydroxide sheets (i.e., a trilayer of Fe with both edge- and corner-sharing polyhedra) and (ii) goethite formed at the expense of the short-range-ordered Fe oxyhydroxide when residual Fe(II) was present, particularly when Si was absent. This is consistent with the Fe(II)-catalyzed transformation of the short-range-ordered Fe oxyhydroxide. High-resolution transmission electron microscopy (TEM) showed that the two oxidation products coexisted within individual particles and that particle shape and the crystallographic orientation of both products were inherited from the original GR crystals, i.e., they had formed through topotactic transformation. We interpret that the structural reorganization to goethite occurred either in response to distortions caused by polaron movement or as a result of electron transfer reactions occurring at internal surfaces. Once nucleated, goethite growth can be sustained by dissolution–reprecipitation. KW - Iron oxide KW - Electron microscopy KW - Pair distribution funvtion KW - Total scattering PY - 2025 DO - https://doi.org/10.1021/acsearthspacechem.5c00220 SN - 2472-3452 SP - 1 EP - 12 PB - American Chemical Society (ACS) AN - OPUS4-64924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rösler, Alexander A1 - Weidner, Steffen A1 - Klamroth, Tillmann A1 - Müller, Axel HE A1 - Schlaad, Helmut T1 - Kinetics of anionic polymerization of β‐myrcene in hydrocarbon solvents N2 - AbstractThe kinetics of anionic polymerization of β‐myrcene initiated by sec‐butyllithium were examined in saturated and unsaturated hydrocarbon solvents, i.e. cyclohexane, cyclohexene, 4‐vinylcyclohexene and dl‐limonene. Polymerizations usually proceeded in a living manner, i.e. in the absence of termination and chain transfer reactions, in all solvents, to produce well‐defined polymyrcenes with high content (85%) of cis‐1,4 units. However, polymyrcenyllithium chains exhibited limited long‐term stability in 4‐vinylcyclohexene solution, most probably due to chain transfer to solvent. Reaction orders with respect to the concentration of active chains were found to be one‐quarter in cyclohexane increasing to one‐half in unsaturated solvents, indicating that the polymyrcenyllithium chains are present as tetrameric or dimeric associates, respectively. Apparent activation energies were found to be 81 kJ mol−1 in cyclohexane and 77 kJ mol−1 in dl‐limonene solution, which are close to the values obtained by quantum chemical calculations. © 2025 The Author(s). Polymer International published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. KW - Myrcene KW - Anionic polymerization KW - MALDI TOF MS PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-649039 DO - https://doi.org/10.1002/pi.6772 SN - 0959-8103 SP - 1 EP - 8 PB - Wiley AN - OPUS4-64903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bui, Minh A1 - Heinekamp, Christian A1 - Fuhry, Emil A1 - Weidner, Steffen A1 - Radnik, Jörg A1 - Ahrens, Mike A1 - Scheurell, Kerstin A1 - Balasubramanian, Kannan A1 - Emmerling, Franziska A1 - Braun, Thomas T1 - Lewis-acid induced mechanochemical degradation of polyvinylidene fluoride: transformation into valuable products N2 - Polyvinylidene fluoride (–[CH2CF2]n–, PVDF) waste poses significant environmental challenges due to its recalcitrant nature and widespread use. This study addresses the end-of-life management of PVDF by introducing a novel, sustainable mechanochemical approach for its valorisation. We investigated the degradation of PVDF into value-added materials using ball milling with anhydrous AlCl3 to achieve a quantitative mineralisation producing AlF3 and halide-functionalised graphite, along with gaseous products (HCl and CH4). Mechanistic key steps involve Lewis-acid catalysed C–F bond activation, dehydrofluorination and aromatisation. This approach provides an effective solution for PVDF waste management while offering a promising route for the production of high-value materials from polymer waste streams. Our findings contribute to sustainable practices in polymer recycling and resource recovery, respond to pressing environmental concerns associated with fluoropolymer disposal, and demonstrate the potential to convert polymer wastes into useful products. KW - Mechanochemistry KW - Polyvinylidenfluoride KW - Degradation KW - Ball mill PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-649015 DO - https://doi.org/10.1039/d5sc05783c SN - 2041-6520 VL - 16 IS - 40 SP - 18903 EP - 18910 PB - Royal Society of Chemistry (RSC) AN - OPUS4-64901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Risse, Kerstin A1 - Nikiforidis, Constantinos V. A1 - Morris, Imogen A1 - Thünemann, Andreas A1 - Drusch, Stephan T1 - Regulating the heat stability of protein-phospholipid stabilised oil-water emulsions by changing the phospholipid headgroup or fatty acyl chain N2 - Stabilising oil–water emulsions remains a central challenge across food, pharmaceutical and cosmetic applications. β-lactoglobulin (β-LG) and phospholipids (PLs) can act synergistically at oil-water interfaces: PLs adsorb rapidly, while β-LG forms a viscoelastic protein network that enhances long-term stability. However, competitive adsorption between proteins and PLs can disrupt interfacial structure. In addition, for commercial production, emulsions are often exposed to heat treatment during or after manufacture, for instance due to food safety requirements. Yet, the combined effects of PL structure and heat treatment on interfacial organisation and emulsion stability remain poorly understood. Here we show that PL saturation and processing temperature jointly determine interfacial organisation, protein-PL interactions and emulsion stability. Using β-LG-PL emulsions, we combined ζ-potential measurements, small-angle X-ray scattering (SAXS), micro-differential scanning calorimetry (μDSC), X-ray diffraction and confocal laser scanning microscopy (CLSM) to link interfacial composition with functional stability. Below the β-LG denaturation temperature (≤75 °C), saturated PLs promoted partial unfolding of β-LG at the interface without displacement, producing mixed protein-PL networks with enhanced viscoelasticity and stability. Unsaturated PLs displaced β-LG, yielding less elastic interfaces and promoting protein aggregation in the bulk. At ≥75 °C, increased hydrophobicity intensified protein-protein interactions irrespective of PL type. Our findings reveal that saturated PLs shift the β-LG denaturation temperature upward by restricting molecular mobility, without preventing quaternary-level protein-protein interactions. Thermal denaturation, regardless of PL type, promoted interfacial multilayer formation at 90 °C. These results provide a mechanistic framework for tailoring emulsion stability via lipid saturation and processing temperature. KW - Small-angle X-ray scattering KW - SAXS KW - Nanostructure KW - Reference Method KW - Colloid KW - Nanoparticle PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-648956 DO - https://doi.org/10.1016/j.jcis.2025.139530 SN - 0021-9797 VL - 705 SP - 1 EP - 25 PB - Elsevier Inc. AN - OPUS4-64895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Tracking Lithium-Ion Battery Ageing via Lithium Isotope Fractionation N2 - Lithium-ion batteries power portable devices, electric vehicles, and stationary power grids, yet hidden aging reactions still shorten their service life and raise concerns about cost and safety. An analytical proxy is needed to report these reactions and accelerate product development, quality control, and recycling. Here, we demonstrate that subtle shifts in the natural 7Li/6Li ratio accurately record the two decisive stages of cell aging, solid-electrolyte interphase (SEI) formation and field-driven aging, which can be detected using multi-collector ICP-MS. Because Li is easily stripped from digested electrodes or electrolyte in a one-step cation-exchange column, high-purity solutions reach the spectrometer in minutes. A streamlined MC-ICP-MS run yields a δ7LiLSVEC precision of 0.4 ‰, enabling dozens of battery fractions to be analyzed per day. Applying the workflow to LiCoO2 coin cells as models, sampled from pristine to 700 cycles, reveals a clear isotopic narrative. During the first ≈45 cycles, 7Li leaves the LiCoO2 lattice, dissolves into the electrolyte, and is locked in the SEI on graphite, driving cathode δ7Li from +8 to –10 ‰ and raising the anode to +13 ‰ while capacity drops by 10 %. After the interphase matures, the electric field takes over: the lighter 6Li migrates faster to the anode, 7Li accumulates in the contracting Li1-xCoO2 lattice, and the bulk separation factor rises to α≈1.045 by 700 cycles. The δ7Li curve flattens roughly 70 cycles before capacity falls to 80%, providing an early warning of end-of-life. Isotopic gradients scale linearly with impedance growth, SEI thickness, and crack density confirmed by LA-ICP-MS mapping, FIB-SEM, XANES, and EXAFS. Although each data point requires one cell, lithium-isotope fractionation provides direct, element-specific, and structural fatigue insight unavailable from non-destructive tests. The straightforward chemistry and fast MC-ICP-MS routine make the approach practical for targeted aging studies, additive screening, and forensic autopsies, complementing high-throughput electrochemical methods and supporting the design of longer-lived batteries. T2 - SciX 2025 CY - Covington, KY, USA DA - 05.10.2025 KW - Isotope KW - Lithium KW - MC-ICP-MS KW - MICAP-MS KW - Isotope fractionation KW - Battery PY - 2025 AN - OPUS4-64879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - IUC02: Framework for Curation & Distribution of Reference Datasets (On the example of Creep Data of Ni Based superalloys) N2 - A research data management framework to conceptualize & implement a digital infrastructure for the Generation, Distribution, and Utilization of reference datasets of materials is presented. The documentation of the test data is often incomplete. This concerns, e.g., material’s manufacturing process or chemical composition, or test equipment’s description and its calibration status. Our concept addresses this issue by proposing the implementation of a requirements profile. A crucial part of the concept is to reach a community-agreement on the definition of reference data and on the underlying data schema and vocabulary. In this presentation a general workflow overview and the relevance of selected individual subworkflows is presented. T2 - MSE Research Data Forum 2025 CY - Siegburg, Germany DA - 08.07.2025 KW - NFDI MatWerk KW - Referenzdaten KW - Kriechen PY - 2025 AN - OPUS4-64881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - Management of Reference Data of Creep of Ni Based Superalloys Exemplified for CMSX 6 N2 - Research data management (RDM) framework to conceptualize & implement a digital infrastructure for the Generation, Distribution, and Utilization of reference datasets of materials. Documentation of the test data is often incomplete. This concerns, e.g., material’s manufacturing process or chemical composition, or test equipment’s description and its calibration status. Our concept addresses this issue by proposing the implementation of a requirements profile. A crucial part of the concept is to reach a community-agreement on the definition of reference data and on the underlying data schema and vocabulary. T2 - 2. SupERBO Symposium on Superalloys CY - Bochum, Germany DA - 27.02.2025 KW - NFDI MatWerk KW - Referenzdaten KW - Kriechen PY - 2025 AN - OPUS4-64859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Michalchuk, Adam A1 - Bhattacharya, Biswajit A1 - Rodríguez Sánchez, Noelia A1 - Gugin, Nikita T1 - Mechanochemical innovations for sustainable synthesis of framework materials and industrial scaleup N2 - Mechanochemistry has emerged as a powerful approach for sustainable materials synthesis and processing, with significant potential to meet the UN Sustainable Development Goals. This presentation will highlight our recent advancements in understanding, monitoring, and scaling-up mechanochemical synthesis of framework materials, focusing on the balance between fundamental understanding of reaction mechanisms and its practical applications in energy storage and energy transfer materials. A central focus of our work has been the development and application of time-resolved in situ monitoring techniques for mechanochemical processes. Our research on real-time synchrotron X-ray diffraction has enabled unprecedented insights into reaction pathways and kinetics. Recently, we have successfully applied energy-dispersive X-ray diffraction for time-resolved in situ monitoring of reactive extrusion, marking a significant step towards ‘lighting up’ industrial-scale mechanochemistry. Bridging fundamental understanding with practical applications, we have explored the mechanochemical synthesis of functional materials for energy storage and transfer, making process in the mechanochemical synthesis of highly proton-conductive metal phosphonates, demonstrating the potential of mechanochemistry to manufacture advanced materials for energy applications. T2 - 17. international-conference für Materialchemie CY - Edinburgh, United Kingdom DA - 07.07.2025 KW - MOF KW - Synchrotron KW - ZIF PY - 2025 AN - OPUS4-64841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - Management of Reference Data in Materials Science and Engineering Exemplified for Creep Data of a Single-Crystalline Ni-Based Superalloy N2 - Here we present our research data management (RDM) framework to conceptualize & implement a digital infrastructure for the Generation, Distribution, and Utilization of reference datasets of materials. The documentation of the test data is often incomplete. This concerns, e.g., material’s manufacturing process or chemical composition, or test equipment’s description and its calibration status. Our concept addresses this issue by proposing the implementation of a requirements profile. A crucial aspect of our concept is to reach a community-agreement on the definition of reference data and on the underlying data schema and vocabulary. T2 - MaRDA2025 Virtual Annual Meeting CY - Online meeting DA - 18.02.2025 KW - NFDI MatWerk KW - Referenzdaten KW - Kriechen KW - Datenschema PY - 2025 AN - OPUS4-64858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoque, Maroof Arshadul A1 - Sommerfeld, Thomas A1 - Lisec, Jan A1 - Das, Prasenjit A1 - Prinz, Carsten A1 - Heinekamp, Christian A1 - Stolar, Tomislav A1 - Etter, Martin A1 - Rosenberger, David A1 - George, Janine A1 - Bhattacharya, Biswajit A1 - Emmerling, Franziska T1 - Mechanochemically Synthesized Covalent Organic Framework Effectively Captures PFAS Contaminants N2 - Per‐ and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants that pose significant health risks, prompting urgent efforts to develop effective removal methods and adsorbers. Covalent organic frameworks (COFs) are metal‐free adsorbers with high stability and tunable porosity. A highly crystalline COF is synthesised mechanochemically using 1,3,5‐tris(4‐aminophenyl)benzene (TAPB) and 1,3,5‐triformylbenzene (TFB). The formation dynamics are monitored in real time with time‐resolved in situ synchrotron X‐ray diffraction. The TAPB‐TFB COF demonstrates good efficiency in eliminating PFAS from water. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are effectively extracted, and most of the adsorption occurred within the first 10 min. Additionally, X‐ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and DFT calculations are employed to elucidate the molecular interactions between PFAS and the COF framework. The rapid and efficient removal of PFAS makes TAPB‐TFB COF a promising material for water treatment applications. KW - COFs KW - Ball-milling KW - PFAS PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-648712 DO - https://doi.org/10.1002/smll.202509275 SN - 1613-6810 VL - 21 IS - 44 SP - 1 EP - 8 PB - Wiley AN - OPUS4-64871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Michalchuk, Adam A1 - Bhattacharya, Biswajit A1 - Rodríguez Sánchez, Noelia A1 - Gugin, Nikita T1 - Advancing sustainable synthesis through in situ monitoring and industrial scale-up of mechanochemical processes N2 - Mechanochemistry has emerged as a powerful approach for sustainable materials synthesis and processing, with significant potential to meet the UN Sustainable Development Goals. This presentation will highlight our recent advancements in understanding, monitoring, and scaling-up mechanochemical transformations, focusing on the balance between fundamental understanding of reaction mechanisms and its practical applications in energy storage and energy transfer materials. Our research has made significant strides in elucidating the fundamental mechanisms of mechanochemical reactions. We have investigated delayed polymorphism under mechanochemical conditions, revealing new insights into the interplay between mechanical impact, thermal effects, and structural transformations in molecular crystals. By employing variable temperature ball milling, we have demonstrated unprecedented control over polymorphic forms in organic cocrystals, opening new avenues for tailoring material properties. A central focus of our work has been the development and application of time-resolved in situ monitoring techniques for mechanochemical processes. Our research on real-time synchrotron X-ray diffraction has enabled unprecedented insights into reaction pathways and kinetics. Recently, we have successfully applied energy-dispersive X-ray diffraction for time-resolved in situ monitoring of reactive extrusion, marking a significant step towards ‘lighting up’ industrial-scale mechanochemistry. Bridging fundamental understanding with practical applications, we have explored the mechanochemical synthesis of functional materials for energy storage and transfer, making process in the mechanochemical synthesis of highly proton-conductive metal phosphonates, demonstrating the potential of mechanochemistry to manufacture advanced materials for energy applications. Addressing the challenges of industrial scale-up, we have investigated the role of solvent polarity in mechanochemical reactions, providing valuable guidance for optimizing organic syntheses such as the Knoevenagel condensation. This work contributes to our broader efforts to develop more efficient and sustainable chemical manufacturing processes. Looking to the future, we will discuss emerging directions in mechanochemistry, including the development of continuous flow processes and the integration of machine learning approaches for reaction prediction and optimization. As we anticipate the next decade of research, we envision mechanochemistry playing an increasingly crucial role in sustainable chemical manufacturing and materials processing, with far-reaching implications for addressing global energy and environmental challenges. T2 - Mech’cheM 2025: New forces in Mechanochemistry Conference CY - Montpellier, France DA - 04.06.2025 KW - Phosphonates KW - Biocomposites PY - 2025 AN - OPUS4-64845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adamski, Paweł A1 - Zgrzebnicki, Michał A1 - Albrecht, Aleksander A1 - Jurkowski, Artur A1 - Wojciechowska, Agnieszka A1 - Ekiert, Ewa A1 - Sielicki, Krzysztof A1 - Mijowska, Ewa A1 - Smales, Glen J. A1 - Maximenko, Alexey A1 - Moszyński, Dariusz T1 - Ammonia synthesis over γ-Al2O3 supported Co-Mo catalysts N2 - Novel ammonia synthesis catalysts are sought due to energetic transformation and increasing environmental consciousness. Materials containing cobalt and molybdenum are showing state-of-art activities in ammonia synthesis. The application of γ-alumina support was proposed to enhance the properties of Co-Mo nanoparticles. The wet impregnation of the support was conducted under reduced pressure. The active catalysts were obtained by ammonolysis of precursors. The chemical and phase composition, as well as morphology, porosity, and surface composition of precursors and catalysts, were characterized. The Co-Mo nanoparticles phase composition as well as their size and dispersion were determined using X-ray absorption spectroscopy utilizing synchrotron radiation, electron microscopy, and X-ray scattering. The catalytic activity was tested in the ammonia synthesis process under atmospheric pressure. The activity and stability of the supported catalysts were compared with unsupported cobalt molybdenum nitride Co3Mo3N, revealing the superiority of the present approach. KW - Ammonia synthesis KW - Supported catalyst KW - Cobalt molybdenum nitrides KW - Scattering KW - X-ray scattering KW - Gamma-alumina KW - Stability PY - 2025 DO - https://doi.org/10.1016/j.mcat.2025.114907 SN - 2468-8231 VL - 575 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-64827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Michalchuk, Adam A1 - Stolar, Jasna A1 - Falkenhagen, Jana A1 - Bhattacharya, Biswajit A1 - Gugin, Nikita A1 - Casali, Lucia T1 - Mechanochemical pathways to sustainability: from molecular insights to applications N2 - Mechanochemical Innovations for Sustainable Synthesis of Framework Materials and Industrial ScaleUp Mechanochemistry has emerged as a powerful approach for sustainable materials synthesis and processing, with significant potential to meet the UN Sustainable Development Goals. This presentation will highlight our recent advancements in understanding, monitoring, and scaling-up mechanochemical synthesis of framework materials, focusing on the balance between fundamental understanding of reaction mechanisms and its practical applications in energy storage and energy transfer materials. A central focus of our work has been the development and application of time-resolved in situ monitoring techniques for mechanochemical processes. Our research on real-time synchrotron X-ray diffraction has enabled unprecedented insights into reaction pathways and kinetics. Recently, we have successfully applied energy-dispersive X-ray diffraction for time-resolved in situ monitoring of reactive extrusion, marking a significant step towards ‘lighting up’ industrial-scale mechanochemistry. Bridging fundamental understanding with practical applications, we have explored the mechanochemical synthesis of functional materials for energy storage and transfer, making process in the mechanochemical synthesis of highly proton-conductive metal phosphonates, demonstrating the potential of mechanochemistry to manufacture advanced materials for energy applications. T2 - GDCh Universität Marburg CY - Marburg, Germany DA - 10.02.2025 KW - Situ investigation KW - Nanoparticles KW - Metal phosphonates PY - 2025 AN - OPUS4-64844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska A1 - Michalchuk, Adam A1 - Casali, Lucia A1 - May, Anastasia T1 - Real-Time Monitoring and Temperature Control for Optimized Polymorph Engineering N2 - Integrating real-time monitoring with precise temperature control and mechanochemical processing represents a transformative approach to the controlled engineering of polymorphic forms in molecu-lar solids. Combining these methodologies overcomes the limitations of traditional solution-based or purely thermal approaches, enabling access to metastable or otherwise elusive polymorphs under milder and more sustainable conditions. Recent studies have shown that mechanochemical trans-formations proceed through distinct kinetic stages, including prolonged induction periods that can be tuned by adjusting the mechanical energy input[1]. These induction periods are associated with pro-cesses of mechanical activation, such as the accumulation of defects and increased surface energy, which lower the effective energy barriers for polymorphic transitions. Crucially, it is the total accumu-lated mechanical energy, rather than the duration or intensity of milling alone, that dictates the onset of polymorphic conversion, offering a new dimension of kinetic control[2-5]. Variable temperature ball milling reveals that the temperature required to induce polymorphic trans-formations can be significantly lower than under conventional thermal methods. For instance, tran-sitions that typically require high temperatures under equilibrium conditions can be achieved at sub-stantially lower temperatures in the presence of mechanical activation. This has been demonstrated in cocrystal systems such as nicotinamide-pimelic acid and isonicotinamide-glutaric acid, where the transition temperature was lowered by up to 25°C[2,3]. Real-time, in situ powder X-ray diffraction and temperature monitoring are essential for capturing transient phases and elucidating the interplay between thermal and mechanical effects. This confirms that combining mechanical energy with con-trolled temperature not only accelerates transformation kinetics, but also expands the accessible polymorphic landscape [2,3]. Collectively, these advances underscore the potential of real-time monitored, temperature-controlled mechanochemistry as a robust platform for the selective design and manufacturing of polymorphs. This approach provides unprecedented control over solid-state reactivity and opens new avenues for the sustainable and targeted engineering of functional materials and pharmaceuticals. T2 - 13th Bologna´s convention on Crystal Forms - CF@Bo n.13 University of Bologna CY - Bologna, Italy DA - 07.09.2025 KW - Plymorhism KW - Pre-activation PY - 2025 AN - OPUS4-64839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silbernagl, Dorothee A1 - Kömmling, Anja A1 - Zaghdoudi, Maha A1 - Ghasem Zadeh Khorasani, Media A1 - Jaunich, Matthias T1 - Data-driven nanomechanical study of filled fluoroelastomer aged in air and hydrogen atmosphere N2 - Fluoroelastomer (FKM) composites are typically used as sealing materials in challenging non-ambient environments. Depending on the environment, two main aging mechanisms, chemical aging, and physical aging, can be identified. Chemical aging, the degradation of the elastomer, is present for example in thermal-oxidative conditions and can be directly observed as it affects the bulk. Physical aging, relaxation and rearrangement of the elastomers segmental conformation is commonly observed at elevated temperatures and effects predominantly the elastomer interphase. As a highly localized nanoscopic effect it is usually observed indirectly by phenomological approaches and not systematically understood. In this study, as a typical example for chemical aging, filled FKM was aged in air (150°C, 100 days). Physical aging of FKM was realized by exposure to chemically inert H2 (150°C, 50 bar, 100 days), since temperature and gas-induced swelling is known to promote physical aging. The effects of both conditions are directly compared with the initial unaged material. We use atomic force microscopy (AFM) force spectroscopy as a method to resolve nanoscopic heterogeneous FKM. With this method the effect of aging on the spatially distinguishable material phases was directly observed. In thermal oxidative aged FKM the matrix shows a decrease in van der Waals interactions and stiffness, indicating dehydrofluorination and chain scission. In H2 aged FKM, the development of an immobilized amorphous interphase (IAP) was observed, indicating physical aging. By additionally evaluating a larger data set with supervised machine learning, these observations were validated for a larger, statistically representative sample area, allowing conclusions to be drawn about the macroscopic behaviour of the material. KW - Fluoroelastomer KW - Atomic force microscopy KW - Data-driven KW - Hydrogen KW - Ageing mechanism KW - Physical aging KW - Polymer interphase PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-648154 DO - https://doi.org/10.1016/j.polymdegradstab.2025.111715 SN - 0141-3910 VL - 242 SP - 1 EP - 10 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-64815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Namrata, Jaykhedkara A1 - George, Janine T1 - Atomistic interaction at the solid interface between Li6PS5Cl and Li metal N2 - Solid-state batteries offer higher energy density and improved safety than conventional lithium-ion cells with flammable liquid electrolytes, [1] but poor interfacial compatibility at the solid-electrolyte (SE)|electrode interface, especially with lithium metal anodes, remains a major challenge. [2] To gain a deeper understanding of the structural and chemical factors governing the formation and growth of this interface, we selected Li6PS5Cl (SE) and Li metal anode as prototype materials. In this work, we begin by performing ab initio molecular dynamics accelerated by machine-learning potentials in VASP, to obtain lattice parameters and bulk moduli of the bulk Li6PS5Cl and Li metal phases, thereby quantifying lattice-mismatch strain, compressibility differences, and their thermal evolution. We then analyze the atomic structure and coordination environments at the Li6PS5Cl|Li interface, which is carefully constructed for the [100] orientation for both SE and Li, allowing the lowest possible strain (see Fig. 1). Dominant bonding motifs are identified using Crystal Orbital Hamilton Population [3] analysis via LOBSTER.[4] Radial distribution functions of the interface are compared with those of the respective bulk phases in the 200-400 K range to elucidate temperature-driven structural rearrangements. This combined analysis reveals how interfacial bonding evolves with temperature and provides critical insight into chemical and mechanical stability at the interface. Our findings offer a quantitative framework for correlating bulk properties with interfacial structure, thereby informing the design of more robust SEs and engineering strategies to improve interfacial compatibility. T2 - 12th Workshop “Lithium-Sulfur Batteries” CY - Dresden, Germany DA - 17.11.2025 KW - Solid-state batteries KW - Interface chemistry KW - Machine learning-molecuar dynamics PY - 2025 AN - OPUS4-64804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ueltzen, Katharina T1 - Can simple exchange heuristics help us in predicting magnetic properties of solids? N2 - Environmental and scarcity issues of common functional magnetic materials for, e.g., permanent magnets have intensified the search for rare-earth-free alternatives. This challenge is increasingly met by machine learning of magnetic properties of transition-metal compounds. Surprisingly, bond-angle-derived features were not found to be relevant for magnetic structure prediction in previous studies using DFT-computed labels. This contrasts with the Kanamori-Goodenough-Anderson (KGA) rules of superexchange, present in every magnetism textbook. These semiempirical rules predict whether a nearest-neighbor magnetic interaction in insulators is FM or AFM based on the bond angle, orbital symmetry, and orbital occupancy. For some cases, the rules can be simplified further to only consider the bond angle of neighboring magnetic sites (KGA rules of thumb). We review magnetism—bond angle trends within the MAGNDATA database, the largest collection of experimentally determined magnetic structures. Observed trends follow the KGA rules of thumb, and exceptions can be rationalized. In contrast, bond angles in a popular theoretical DFT database show very different trends and do not depend on the magnetic ordering. Building on our analysis, we engineer heuristic-derived features for the machine learning of magnetic structures. We introduce a new, informative label for predicting magnetic structures that can be extended to magnetic sites and structures of arbitrary complexity. We show that features derived from the heuristic are of high importance for this machine learning task. Beyond this, our model enables the prediction of non-collinear magnetic structures. T2 - AI MSE 2025 CY - Bochum, Germany DA - 18.11.2025 KW - Magnetism KW - Machine Learning KW - Materials Design KW - Chemically Complex Materials PY - 2025 AN - OPUS4-64799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naik, Aakash Ashok T1 - Linking quantum chemical bonding analysis descriptors to material property predictions N2 - Examining the bonding between their constituent atoms in crystalline materials has played a vital role in understanding material properties. For instance, low thermal conductivity in materials is typically attributed to its anharmonicity, which has been reported to arise from strong antibonding interactions and local environment distortions. Employing an automated for bonding analysis that we developed, we have generated for ~13000 crystalline compounds such bonding analysis data. To create new descriptors from these data automatically, we extended our package LobsterPy. The curated descriptors span different types, including statistical representations of bonding characteristics for traditional ML algorithms (e.g., random forests), textual descriptions for large language models (LLMs), and structure graphs for graph neural networks (GNNs). These descriptors are then tested by employing them in several state-of-the-art ML algorithms and architectures to predict the mechanical, vibrational, and thermal properties of crystalline materials. Through this work, we are not only able to demonstrate how one can enhance the model’s predictive accuracy by incorporating quantum chemical bonding-based descriptors alongside typical composition and structure-based descriptors, but it also aids in uncovering relationships between bonding and materials properties on a larger scale, which was not possible before. T2 - AI MSE 2025 CY - Bochum, Germany DA - 18.11.2025 KW - Bonding analysis KW - Machine learning KW - Materials Descriptors KW - Force constants PY - 2025 AN - OPUS4-64791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Batatia, Ilyes A1 - Benner, Philipp A1 - Chiang, Yuan A1 - Elena, Alin M. A1 - Kovács, Dávid P. A1 - Riebesell, Janosh A1 - Advincula, Xavier R. A1 - Asta, Mark A1 - Avaylon, Matthew A1 - Baldwin, William J. A1 - Berger, Fabian A1 - Bernstein, Noam A1 - Bhowmik, Arghya A1 - Bigi, Filippo A1 - Blau, Samuel M. A1 - Cărare, Vlad A1 - Ceriotti, Michele A1 - Chong, Sanggyu A1 - Darby, James P. A1 - De, Sandip A1 - Della Pia, Flaviano A1 - Deringer, Volker L. A1 - Elijošius, Rokas A1 - El-Machachi, Zakariya A1 - Fako, Edvin A1 - Falcioni, Fabio A1 - Ferrari, Andrea C. A1 - Gardner, John L. A. A1 - Gawkowski, Mikołaj J. A1 - Genreith-Schriever, Annalena A1 - George, Janine A1 - Goodall, Rhys E. A. A1 - Grandel, Jonas A1 - Grey, Clare P. A1 - Grigorev, Petr A1 - Han, Shuang A1 - Handley, Will A1 - Heenen, Hendrik H. A1 - Hermansson, Kersti A1 - Ho, Cheuk Hin A1 - Hofmann, Stephan A1 - Holm, Christian A1 - Jaafar, Jad A1 - Jakob, Konstantin S. A1 - Jung, Hyunwook A1 - Kapil, Venkat A1 - Kaplan, Aaron D. A1 - Karimitari, Nima A1 - Naik, Aakash A. A1 - Csányi, Gábor T1 - A foundation model for atomistic materials chemistry N2 - Atomistic simulations of matter, especially those that leverage first-principles (ab initio) electronic structure theory, provide a microscopic view of the world, underpinning much of our understanding of chemistry and materials science. Over the last decade or so, machine-learned force fields have transformed atomistic modeling by enabling simulations of ab initio quality over unprecedented time and length scales. However, early machine-learning (ML) force fields have largely been limited by (i) the substantial computational and human effort required to develop and validate potentials for each particular system of interest and (ii) a general lack of transferability from one chemical system to the next. Here, we show that it is possible to create a general-purpose atomistic ML model, trained on a public dataset of moderate size, that is capable of running stable molecular dynamics for a wide range of molecules and materials. We demonstrate the power of the MACE-MP-0 model—and its qualitative and at times quantitative accuracy—on a diverse set of problems in the physical sciences, including properties of solids, liquids, gases, chemical reactions, interfaces, and even the dynamics of a small protein. The model can be applied out of the box as a starting or “foundation” model for any atomistic system of interest and, when desired, can be fine-tuned on just a handful of application-specific data points to reach ab initio accuracy. Establishing that a stable force-field model can cover almost all materials changes atomistic modeling in a fundamental way: experienced users obtain reliable results much faster, and beginners face a lower barrier to entry. Foundation models thus represent a step toward democratizing the revolution in atomic-scale modeling that has been brought about by ML force fields. KW - Materials Design KW - Thermal Conducitivity KW - Nanoparticles KW - Batteries PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647829 DO - https://doi.org/10.1063/5.0297006 SN - 0021-9606 VL - 163 IS - 18 SP - 1 EP - 89 PB - AIP Publishing AN - OPUS4-64782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Quantitative EDS analysis on graphene related 2D materials N2 - The elemental analysis of solid matter by means of the Energy-Dispersive X-Ray Spectrometry (EDS) is meanwhile posible as a quick (seconds!) and more and more accurate analysis via standardsless (instantaneous) quantification. The sensitivity & quantification accuracy for light elements (C, O,..) has significantly increased in the recent years. The availability via table-top SEMs with incorporated EDS is also enhanced. Further, the EDS analysis at an SEM is well-standardized, see ISO/TC 202 Microbeam Analysis & VAMAS/ TWA 37 Quantitative Microstructural Analysis in good liaisonships with ISO/TC 229 Nanotechnologies. It is demostrated that key parameters such as oxygen-to-carbon atomic-% ratio and impurities can be realibly measured, with XPS as a reference method. Various EDS spectrometers and analysis conditions are tested and the validity of the EDS quantification of an ionic liquid of well-defined chemical composition is demonstrated. Next steps are to launch a corresponding VAMAS interlaboratory comparison and to discuss within ISO/TC 229 towards inclusion of EDS as a routine method for the elemental analysis of GR2M into the ISO/TS 23359 Nanotechnologies — Chemical characterization of GR2Ms in powders and suspensions. T2 - Annual Microscopy Community Meeting for the National Research Council in Canada CY - Online meeting DA - 18.11.2025 KW - Graphene-related 2D materials (GR2M) KW - Elemental analysis KW - Light elements KW - SEM/EDS KW - Standardisation PY - 2025 AN - OPUS4-64766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishra, Rajesh K. A1 - Minussi, F.B. A1 - Kumari, Priyanka A1 - Shahi, Rohit R. A1 - Yadav, R.P. A1 - Emmerling, Franziska A1 - Araújo, E.B. T1 - Effect of sintering temperature on structural, microstructural, and dielectric properties of (Co0.2Fe0.2Ni0.2Al0.2Ti0.2)3O4 multi-cations high entropy oxides N2 - The study reports the effect of sintering temperature on structural, microstructural, and dielectric properties of (Co0.2Fe0.2Ni0.2Al0.2Ti0.2)3O4 spinel high-entropy oxides (HEOs) synthesized through the solid-state mechanochemistry method. The sintering of the ceramic powders was accomplished at three different temperatures (1000 ◦C, 1100 ◦C, and 1250 ◦C), followed by air quenching. XRD analysis along with Le-Bail refinement confirms that 1100 ◦C and 1250 ◦C sintered oxides comprised of a single cubic spinel phase (Fd3m), while 1000 ◦C sintered oxide contains constituent oxides and a spinel phase. The phase formation of oxides sintered at 1100 ◦C and 1250 ◦C has also been confirmed by Raman spectroscopic analysis. Microstructural analysis revealed that the aggregated particle size increases with the rise in sintering temperature. With the change in sintering temperature, the dielectric behavior of the ceramic changed extensively. The 1100 ◦C sintered ceramic exhibits high frequency-dependent behavior, whereas the 1250 ◦C sintered ceramic yields low frequency-dependent behavior. The 1250 ◦C sintered HEO exhibits low-loss tangent (tan δ = 0.01) with higher dielectric permittivity (εʹ = 44) at high frequency (1 MHz) compared to the 1100 ◦C sintered ceramic and many other conventional dielectrics. Fractal concept and impedance analysis have been employed to correlate the microstructure-dielectric property relation of (Co0.2Fe0.2Ni0.2Al0.2Ti0.2)3O4 spinel HEOs. The found Hurst exponent values for both different temperature-sintered HEOs are less than 0.5, indicating the anti-persistent behavior. This signifies that the height variations at neighboring pixels are negatively correlated. The present work is of fundamental importance in employing fractal analysis for the first time on spinel HEOs and correlating their properties. It also shows that processing conditions can effectively tailor the dielectric properties of the materials. KW - Multi-cations high entropy oxide KW - Mechanochemistry KW - Spinel structure KW - Fractal and impedance spectroscopic analysis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647584 DO - https://doi.org/10.1016/j.ceramint.2025.09.256 SN - 0272-8842 VL - 51 IS - 27 SP - 55341 EP - 55354 PB - Elsevier Ltd. AN - OPUS4-64758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hallier, Dorothea C. A1 - Radnik, Jörg A1 - Dietrich, Paul M. A1 - Seitz, Harald A1 - Hahn, Marc Benjamin T1 - Radiation damage to amino acids, peptides and DNA-binding proteins: the influence of water directly monitored by X-ray photoelectron spectroscopy N2 - Ionizing radiation damage to biomolecules plays a crucial role in radiotherapy as a cancer treatment. Among these, DNA-binding proteins are of particular interest due to their pivotal roles in shielding DNA and facilitating its repair. Hence, in this study, we present first-ever recorded data of radiation damage to a protein monitored directly with near-ambient pressure (NAP) X-ray photoelectron spectroscopy (XPS) under a water atmosphere. This surface sensitive technique was used to in situ damage and probe gene-V protein (G5P, a model DNA-binding protein) under wet NAP conditions and dry vacuum (UHV) conditions to determine the effect of water on the radiation response. In addition, the X-ray radiation damage to selected pure amino acids and short homopeptides was determined to better understand the variety of damage mechanisms within the complex protein. In dry samples, drastic chemical changes were detected in all biomolecules dominated by fragmentation processes. Here, the breakage of peptide bonds in the peptides and the protein are dominant. Surprisingly, hydration – despite introducing additional indirect damage pathways via water radiolysis – led to a reduction in overall radiation damage. This behaviour was attributed to hydration-dependent changes in reaction rates and respective deexcitation and damaging channels within the molecules and secondary species such as low-energy (LEE), (pre)-hydrated/(pre)-solvated electrons and radical species such as hydroxyl radicals. KW - Radiation damage KW - (Near-ambient pressure) X-ray photoelectron spectroscopy KW - Ultra-high vacuum PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647565 DO - https://doi.org/10.1039/d5cp01887k VL - 27 IS - 48 SP - 1 EP - 22 PB - Royal Society of Chemistry AN - OPUS4-64756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cancella, Erick Paiva A1 - de Paula Guarnieri, Guilherme A1 - de Sousa Amadeu, Nader A1 - Radtke, Martin A1 - Garcia, Rodrigo Henrique A1 - de Azevedo, Eduardo Ribeiro A1 - Cosentino, Ivana Conte A1 - Mascarenhas, Yvonne Primerano A1 - Nery, José Geraldo T1 - Synthesis and physicochemical characterization of a novel bismuth silicate templated by tetrapropylammonium bromide and polydiallyldimethylammonium chloride N2 - A bismuth silicate (BiSi-1) was hydrothermally synthesized using tetrapropylammonium bromide (TPA·Br) as the organic structure-directing agent and shown by multi-scale characterization to be distinct from known Bi–silicates. Powder X-ray diffraction is indexable with an orthorhombic metric (a = 23.234 Å, b = 17.109 Å, c = 3.897 Å), consistent with a highly anisotropic, possibly layered framework. High-resolution TEM/SAED reveals nanocrystalline, plate-like domains assembled into sub-micrometric aggregates with locally oriented lamellae; lattice fringes (0.27–0.32 nm) match the strongest XRD spacings. Solid-state NMR establishes a silica-rich network with a dominant Q4 population (77%) and minor Q3 (11%) and Q2 (12%) sites; the contact-time dependence of 1H to 29Si cross-polarization is consistent with increasing proximal-proton density from Q4 to Q2. Aging to 24 h sharpens the 29Si lineshape, while calcination progressively removes the OSDA and vicinal hydroxyls; at 750 °C, 29Si spectra indicate framework densification/rearrangement. XANES/EXAFS places bismuth predominantly as Bi3+ in an oxide-like environment with a pronounced Bi–O first shell and no detectable Bi⁰ or Bi–Br contributions. ICP–OES yields a reproducible Bi/Si atomic ratio of 1:3. Thermogravimetry shows stepwise desorption, dehydroxylation, and template removal, with thermal stability maintained to 750 °C. Nitrogen sorption confirms mesoporosity in the as-made and Soxhlet-extracted solids (the latter exhibiting the highest surface area), whereas high-temperature calcination reduces porosity. Collectively, BiSi-1 emerges as a nanocrystalline, anisotropic Bi–silicate whose connectivity, local Bi–O environment, and accessible texture are tunable by aging and post-treatments, positioning it as a promising platform for heterogeneous catalysis and environmental remediation. KW - 29Si NMR KW - Bismuth KW - Silicate PY - 2025 DO - https://doi.org/10.1007/s10853-025-11732-6 SN - 0022-2461 VL - 60 IS - 45 SP - 22615 EP - 22635 PB - Springer Science and Business Media LLC AN - OPUS4-64755 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dudziak, Mateusz A1 - Riechers, Birte A1 - Maaß, Robert A1 - Michalchuk, Adam A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Beyond conventional calorimetry: Unlocking thermal characterization with fast scanning techniques N2 - Fast scanning calorimetry (FSC) has emerged as a transformative technique in thermal analysis, enabling the investigation of rapid and kinetically driven thermal transitions that are inaccessible to conventional differential scanning calorimetry. This review highlights the capabilities enabled by FSC for studying a wide range of materials under extreme thermal conditions, including polymers, pharmaceuticals, metallic glasses, nanocomposites, and hydrogels. By employing ultrafast heating and cooling rates, FSC allows for the suppression of crystallization, resolution of weak transitions, and analysis of thermally labile or size-limited samples. The technique is particularly valuable for probing glass transitions, relaxation phenomena, and phase behavior in systems with complex morphologies or confined geometries. Case studies demonstrate the use of FSC in characterizing vitrification, physical aging, and interfacial dynamics, as well as its application in emerging fields such as additive manufacturing, supramolecular systems, and neuromorphic materials. Together, these examples underscore the role that FSC plays in advancing the understanding of structure-property relationships across diverse material classes. KW - Flash DSC KW - Calorimetry KW - Glass transition PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647405 DO - https://doi.org/10.1016/j.tca.2025.180177 VL - 754 SP - 1 EP - 14 PB - Elsevier B.V. AN - OPUS4-64740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -