TY - JOUR A1 - Curilla, L. A1 - Astrauskas, I. A1 - Pugzlys, A. A1 - Stajanca, Pavol A1 - Pysz, D. A1 - Uherek, F. A1 - Baltuska, A. A1 - Bugar, I. T1 - Nonlinear performance of asymmetric coupler based on dual-core photonic crystal fiber: Towards sub-nanojoule solitonic ultrafast all-optical switching JF - Optical Fiber Technology N2 - We demonstrate ultrafast soliton-based nonlinear balancing of dual-core asymmetry in highly nonlinear photonic crystal fiber at sub-nanojoule pulse energy level. The effect of fiber asymmetry was studied experimentally by selective excitation and monitoring of individual fiber cores at different wavelengths between 1500 nm and 1800 nm. Higher energy transfer rate to non-excited core was observed in the case of fast core excitation due to nonlinear asymmetry balancing of temporal solitons, which was confirmed by the dedicated numerical simulations based on the coupled generalized nonlinear Schrödinger equations. Moreover, the simulation results correspond qualitatively with the experimentally acquired dependences of the output dual-core extinction Ratio on excitation energy and wavelength. In the case of 1800 nm fast core excitation, narrow band spectral intensity switching between the output channels was registered with contrast of 23 dB. The switching was achieved by the change of the excitation pulse energy in sub-nanojoule region. The performed detailed analysis of the nonlinear balancing of dual-core asymmetry in solitonic propagation regime opens new perspectives for the development of ultrafast nonlinear all-optical switching devices. KW - Dual-core photonic crystal fiber KW - Soft glass KW - Asymmetric coupler KW - Ultrafast soliton fission KW - All-optical switching KW - Coupled generalized nonlinear Schrödinger equation PY - 2018 DO - https://doi.org/10.1016/j.yofte.2018.02.020 SN - 1068-5200 VL - 42 SP - 39 EP - 49 PB - Springer AN - OPUS4-44324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Medina, A. A1 - Ol, M. V. A1 - Greenblatt, D. A1 - Müller-Vahl, H. A1 - Strangfeld, Christoph T1 - High-Amplitude Surge of a Pitching Airfoil: Complementary Wind- and Water-Tunnel Measurements JF - AIAA Journal N2 - RECENT interest in gust response, rotorcraft forward flight and wind energy, among other applications, has focused on streamwise oscillations of nominally two-dimensional airfoils in attached and separated flows. The airfoil may be simultaneously held at constant incidence or execute some maneuver, such as pitch. The relative freestream is spatially uniform but temporally unsteady, and this can be accomplished in a ground-test facility in two ways. The first method is to vary the output of the prime mover, such as the rotational speed of the impeller or the blower driving a wind tunnel, or (alternatively) to vary the pressure drop in the tunnel, thereby varying the flow speed in the test section, despite nominally constant primemover revolutions per minute. The second method is used to keep the tunnel’s operating speed constant, as well as to move the test article in the streamwise direction, fore and aft (for example, via an electric linear motor), such that the relative freestream speed felt by the test article varies according to some waveform. Typically, the latter approach is chosen in water tunnels, where there is too much tunnel-circuit inertia to vary the flow speed directly but where the usually low tunnel test section flow speeds enable large excursions in the relative freestream by oscillation of the test article. In fact, outright reverse flow is possible by moving the test article in the laboratory frame at a higher speed than the water-tunnel flow speed. In either case, a sinusoidal relative-speed waveform is the most intuitively realizable, and this can be combined with similar oscillations in the airfoil incidence angle or other kinematics. Although the two methods of realizing streamwise oscillations are mechanically distinct, experimental comparisons between an oscillating test article in a water tunnel and a stationary test article in a wind tunnel with a louvermechanismhave demonstrated agreement in themeasured lift and drag histories. Such experimentswere performed by Granlund et al. for a 10% freestream amplitude oscillation and fixed airfoil incidence, comparing a free-surface water tunnel and a closed-circuit wind tunnel. After buoyancy was subtracted from the wind-tunnel data (resulting from the louver pressure drop) and the model inertia subtracted from the water-tunnel data (resulting from acceleration of the test article), the remaining lift and drag histories matched well at the low freestream oscillation amplitude regime. The work of Granlund et al. was later extended to high-advance-ratio streamwise oscillations of 50% amplitude by Greenblatt et al., where the aerodynamic histories of the water-tunnel and wind-tunnel facilities were compared in combined pitch and freestreamoscillations (governed by relative pitch phase), pure pitch oscillations, and purely freestream oscillations. Agreement between the two facilities’ data for fixed-incidence streamwise oscillations was reasonably good, and in fact, better than agreement in just the static lift and drag, evidently owing to differences in blockage and model-support systems. Additionally, Greenblatt et al. determined there was no strong coupling between simultaneous freestream oscillations and pitch oscillations on resultant lift and moment coefficients. KW - Wind energy KW - Dynamic stall KW - Deep stall KW - Airfoil surging KW - Airfoil pitching PY - 2018 DO - https://doi.org/10.2514/1.J056408 SN - 0001-1452 SN - 1533-385X VL - 56 IS - 4 SP - 1703 EP - 1709 PB - American Institute of Aeronautics and Astronautics AN - OPUS4-43994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nellesen, J. A1 - Laquai, René A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Hentschel, M. P. A1 - Anar, N. B. A1 - Soppa, E. A1 - Tillmann, W. A1 - Bruno, Giovanni T1 - In situ analysis of damage evolution in an Al/Al2O3 MMC under tensile load by synchrotron X-ray refraction imaging JF - Journal of Materials Science N2 - The in situ analysis of the damage evolution in a metal Matrix composite (MMC) using synchrotron X-ray refraction radiography (SXRR) is presented. The investigated material is an Al alloy (6061)/10 vol% Al2O3 MMC after T6 heat treatment. In an interrupted tensile test the gauge section of dog bone-shaped specimens is imaged in different states of tensile loading. On the basis of the SXRR images, the relative change of the specific surface (proportional to the amount of damage) in the course of tensile loading was analyzed. It could be shown that the damage can be detected by SXRR already at a stage of tensile loading, in which no Observation of damage is possible with radiographic absorption-based imaging methods. Moreover, the quantitative analysis of the SXRR images reveals that the amount of damage increases homogeneously by an average of 25% with respect to the Initial state. To corroborate the experimental findings, the damage distribution was imaged in 3D after the final tensile loading by synchrotron X-ray refraction computed tomography (SXRCT) and absorption-based synchrotron X-ray computed tomography (SXCT). It could be evidenced that defects and damages cause pronounced indications in the SXRCT images. KW - Composite materials KW - Defects KW - Micro analysis PY - 2018 DO - https://doi.org/10.1007/s10853-017-1957-x SN - 0022-2461 SN - 1573-4803 VL - 53 IS - 8 SP - 6021 EP - 6032 PB - Springer US AN - OPUS4-44241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Fernández, R. A1 - Gonzáles-Doncel, G. T1 - Fractal nature of aluminum alloys substructures under creep and its implications JF - Journal of applied physics N2 - The present work offers an explanation for the variation of the power-law stress exponent, n, with the stress r normalized to the shear modulus G in aluminum alloys. The approach is based on the assumption that the dislocation structure generated with deformation has a fractal nature. It fully explains the evolution of n with r/G even beyond the so-called power law breakdown region. Creep data from commercially pure Al99.8%, Al-3.85%Mg, and ingot AA6061 alloy tested at different temperatures and stresses are used to validate the proposed ideas. Finally, it is also shown that the fractal description of the dislocation structure agrees well with current knowledge. KW - SSTC Model KW - Creep KW - Aluminum Alloys KW - Fractal Microstructure PY - 2018 DO - https://doi.org/10.1063/1.5012035 SN - 0021-8979 VL - 123 IS - 14 SP - 145108-1 EP - 145108-8 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-44779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liehr, Sascha A1 - Münzenberger, Sven A1 - Krebber, Katerina T1 - Wavelength-scanning coherent OTDR for dynamic high strain resolution sensing JF - Optics Express N2 - Distributed vibration sensing in optical fibers opened entirely new opportunities and penetrated various sectors from security to seismic monitoring. Here, we demonstrate a most simple and robust approach for dynamic strain measurement using wavelength-scanning coherent optical time domain reflectometry (C-OTDR). Our method is based on laser current modulation and Rayleigh backscatter shift correlation. As opposed to common single-wavelength phase demodulation techniques, also the algebraic sign of the strain change is retrieved. This is crucial for the intended applications in structural health monitoring and modal analysis. A linear strain response down to 47.5 pε and strain noise of 100 pε/√Hz is demonstrated for repetition rates in the kHz range. A field application of a vibrating bridge is presented. Our approach provides a cost-effective high-resolution method for structural vibration analysis and geophysical applications. KW - Fiber optics sensors KW - Optical time domain reflectometry KW - Rayleigh Scattering KW - Distributed acoustic sensing KW - Distributed strain sensing PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-448069 DO - https://doi.org/10.1364/OE.26.010573 SN - 1094-4087 VL - 26 IS - 8 SP - 10573 EP - 10588 PB - Optical Society of America AN - OPUS4-44806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Titschack, J. A1 - Baum, D. A1 - Matsuyama, K. A1 - Boos, K. A1 - Färber, C. A1 - Kahl, W.-A. A1 - Ehrig, Karsten A1 - Meinel, Dietmar A1 - Soriano, C. A1 - Stock, S.R. T1 - Ambient occlusion – A powerful algorithm to segment shell and skeletal intrapores in computed tomography data JF - Computers and Geosciences N2 - During the last decades, X-ray (micro-)computed tomography has gained increasing attention for the description of porous skeletal and shell structures of various organism groups. However, their quantitative analysis is often hampered by the difficulty to discriminate cavities and pores within the object from the surrounding region. Herein, we test the ambient occlusion (AO) algorithm and newly implemented optimisations for the segmentation of cavities (implemented in the software Amira). The segmentation accuracy is evaluated as a function of (i) changes in the ray length input variable, and (ii) the usage of AO (scalar) field and other AO-derived (scalar) fields. The results clearly indicate that the AO field itself outperforms all other AO-derived fields in terms of segmentation accuracy and robustness against variations in the ray length input variable. The newly implemented optimisations improved the AO field-based segmentation only slightly, while the segmentations based on the AOderived fields improved considerably. Additionally, we evaluated the potential of the AO field and AO-derived fields for the separation and classification of cavities as well as skeletal structures by comparing them with commonly used distance-map-based segmentations. For this, we tested the zooid separation within a bryozoan colony, the stereom classification of an ophiuroid tooth, the separation of bioerosion traces within a marble block and the calice (central cavity)-pore separation within a dendrophyllid coral. The obtained results clearly indicate that the ideal input field depends on the three-dimensional morphology of the object of interest. The segmentations based on the AO-derived fields often provided cavity separations and skeleton classifications that were superior to or impossible to obtain with commonly used distance-map-based segmentations. The combined usage of various AO-derived fields by supervised or unsupervised segmentation algorithms might provide a promising target for future research to further improve the results for this kind of high-end data segmentation and classification. Furthermore, the application of the developed segmentation algorithm is not restricted to X-ray (micro-)computed tomographic data but may potentially be useful for the segmentation of 3D volume data from other sources. KW - Micro-computed tomography KW - Pore segmentation KW - Skeletal classification KW - Image analysis PY - 2018 DO - https://doi.org/10.1016/j.cageo.2018.03.007 SN - 0098-3004 SN - 1873-7803 VL - 115 SP - 75 EP - 87 PB - Elsevier Ltd. AN - OPUS4-44511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottlieb, Cassian A1 - Günther, Tobias A1 - Wilsch, Gerd T1 - Impact of grain sizes on the quantitative concrete analysis using laser-induced breakdown spectroscopy JF - Spectrochimica Acta Part B: Atomic Spectroscopy N2 - In civil engineering concrete is the most used building material for making infrastructures like bridges and parking decks worldwide. It is as a porous and multiphase material made of aggregates with a defined grain size distribution, cement and water as well as different additives and admixtures depending on the application. Different grain sizes are important to ensure the needed density and compressive strength. The resulting porous cement matrix contains a mixture of flour grains (aggregates with a grain size below 125 lm) and cement particles (particle size≈50lm). Harmful species like chlorides may penetrate together with water through the capillary pore space and may trigger different damage processes. The damage assessment of concrete structures in Germany is estimated due to the quantification of harmful elements regarding to the cement content only. In the evaluation of concrete using LIBS a two-dimensional scanning is necessary to consider the heterogeneity caused by the aggregates. Therefore, a LIBS system operating with a low energy NdCr:YAG laser, a pulse energy of 3 mJ, a wavelength of 1064 nm, a pulse width of 1.5 ns and a Repetition rate of 100 Hz has been used. Different Czerny-Turner spectrometers with CCD detectors in the UV and NIR range have been used for the detection. Large aggregates (macro-heterogeneity) can be excluded from the evaluation, whereas small aggregates in the range of the laser spot size (flour grains) cannot be spatially resolved. In this work the micro heterogeneity caused by flour grains and their impact on the quantification with LIBS will be discussed. To analyze the effect of changing grain sizes and ratios, the ablation behavior has been determined and compared. Samples with defined grain sizes were made and analyzed using LIBS. The grain size distributions were analyzed with laser diffraction (LDA). KW - LIBS KW - Concrete KW - Micro heterogeneity KW - Grain sizes PY - 2018 DO - https://doi.org/10.1016/j.sab.2018.02.004 SN - 0584-8547 SN - 0038-6987 VL - 142 SP - 74 EP - 84 PB - Elsevier AN - OPUS4-44595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baensch, Franziska A1 - Baer, Wolfram A1 - Chruscicki, Sebastian A1 - Homann, Tobias A1 - Prager, Jens A1 - Schmidt, Dirk A1 - Stajanca, Pavol A1 - Weltschev, Margit A1 - Wossidlo, Peter A1 - Habib, Abdel Karim T1 - AGIFAMOR: Anwendung der verteilten akustischen und faseroptischen Sensorik zur kontinuierlichen Überwachung von Rohrleitungen - Teil 2: Technische Hintergründe - Schadensursachen und Prüfeinrichtungen JF - Technische Sicherheit N2 - Schäden an Rohrleitungen können zu hohen Umweltbelastungen und wirtschaftlichen Schäden führen. Um die dauerhafte Verfügbarkeit der Infrastruktur zu gewährleisten, wird im Rahmen des Projekts AGIFAMOR an der Bundesanstalt für Materialforschung und -prüfung (BAM) erprobt, inwiefern das Verfahren der verteilten akustischen faseroptischen Sensorik (Distributed acoustic sensing – DAS) zur kontinuierlichen Überwachung von Rohrleitungen eingesetzt werden kann. Neben der DAS werden erprobte Verfahren der zerstörungsfreien Prüfung wie Schallemissionsanalyse (SEA) und Beschleunigungssensoren eingesetzt. An dieser Stelle soll detailliert auf die Hauptschadensursachen an Rohrleitungen, den Versuchsstand zur mechanischen Belastung von Rohren sowie die Möglichkeiten zu Untersuchungen im Realmaßstab eingegangen werden. KW - Schadensursachen an Rohrleitungen KW - Monitoring von Rohrleitungen KW - Verteilte Faseroptische Sensorik KW - Rohrbiegeprüfstand KW - Leckage PY - 2018 SN - 2191-0073 VL - 8 IS - 3 SP - 24 EP - 29 PB - Springer VDI-Verlag GmbH & Co. KG CY - Düsseldorf AN - OPUS4-44507 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kelly, U. A1 - Richter, S. A1 - Redenbach, C. A1 - Schladitz, K. A1 - Scheuerlein, C. A1 - Wolf, F. A1 - Ebermann, P. A1 - Lackner, F. A1 - Schoerling, D. A1 - Meinel, Dietmar T1 - Nb3Sn wire shape and cross sectional area inhomogeneity in Rutherford cables JF - IEEE Transactions on Applied Superconductivity N2 - During Rutherford cable production the wires are plastically deformed and their initially round shape is distorted. Using X-ray absorption tomography we have determined the 3D shape of an unreacted Nb3Sn 11 T dipole Rutherford cable, and of a reacted and impregnated Nb3Sn cable double stack. State-of-theart image processing was applied to correct for tomographic artefacts caused by the large cable aspect ratio, for the segmentation of the individual wires and subelement bundles inside the wires, and for the calculation of the wire cross sectional area and shape variations. The 11 T dipole cable cross section oscillates by 2% with a frequency of 1.24 mm (1/80 of the transposition pitch length of the 40 wire cable). A comparatively stronger cross sectional area variation is observed in the individual wires at the thin edge of the keystoned cable where the wire aspect ratio is largest. KW - X-ray absorption tomography KW - Image processing KW - Accelerator magnet coils KW - Superconducting PY - 2018 DO - https://doi.org/10.1109/TASC.2018.2791637 SN - 1051-8223 SN - 1558-2515 VL - 28 IS - 4 SP - Article 4800705, 1 EP - 6 PB - IEEE Journals & Magazines AN - OPUS4-44556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Völker, Tobias A1 - Kazakov, Alexander Ya. T1 - Extension and investigation by numerical simulations of algorithm for calibration-free laser induced breakdown spectroscopy JF - Spectrochimica Acta Part B N2 - Accuracy of calibration-free (CF) methods in laser-induced breakdown spectroscopy (LIBS) depends on experimental conditions and instrumental parameters that must match a CF LIBS model. Here, the numerical study is performed to investigate effects of various factors, such as the optical density, plasma uniformity, line overlap, noise, spectral resolution, electron density and path length on the results of CF-LIBS analyses. The effects are examined one-by-one using synthetic spectra of steel slag samples that fully comply with the mathematical model of the method. Also, the algorithm includes several new features in comparison with previously proposed CF algorithms. In particular, it removes limits on the optical thickness of spectral lines that are used for the construction of the Saha-Boltzmann plot; it retrieves the absorption path length (Plasma diameter) directly from spectral lines; it uses the more realistic Voigt line profile function instead of the Lorentzian function; and it employs the pre-calculated and tabulated thin-to-thick line ratios instead of approximating functions for selfabsorption correction. KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics KW - Calibration free LIBS PY - 2018 DO - https://doi.org/10.1016/j.sab.2018.06.011 SN - 0584-8547 VL - 147 SP - 149 EP - 163 PB - Elsevier B.V. AN - OPUS4-45340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strangfeld, Christoph A1 - Kruschwitz, Sabine T1 - Monitoring of the absolute water content in porous materials based on embedded humidity sensors JF - Journal of Construction and Building Materials N2 - Moisture transport monitoring may indicate the onset of deterioration in porous building materials Prior to damage occurring. Most moisture measurement systems provide only qualitative values, require extensive calibration, or are destructive. Thus, non-destructive and calibration-free monitoring Systems are required. Our approach of moisture monitoring is to embed sensors that measure the relative humidity. In our experiment, screed samples are monitored during the Hydration and evaporation process. Every test sample is equipped with 10 embedded sensors which measure the relative humidity across the sample thickness. Based on Hillerborg’s approach, the relative humidity is converted into the corresponding pore saturation. In our study, the free water is computed without knowledge of the Sorption isotherm. The free water in the pore system is predicted and validated. The predicted weight decrease corresponds conclusively to gravimetrically measured weights. The embedded sensors yield the absolute liquid water content and enable an experimental, non-destructive monitoring of liquid water in porous materials. KW - Moisture measurements KW - Porous materials KW - Embedded sensors KW - Partial pore saturation KW - Sorption isotherm PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-453476 DO - https://doi.org/10.1016/j.conbuildmat.2018.05.044 SN - 0950-0618 VL - 177 SP - 511 EP - 521 PB - Elsevier AN - OPUS4-45347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taffe, A. A1 - Küttenbaum, Stefan A1 - Maack, Stefan T1 - Verwendung von Messergebnissen zerstörungsfreier Prüfverfahren im Bauwesen in statischen Nachweisen - Statistisch abgesicherte Messgrößen beschreiben dem Prüfingenieur die tatsächlich ausgeführte Konstruktion JF - Der Prüfingenieur N2 - Zerstörungsfreie Prüfverfahren (ZfPBau-Verfahren) sind auch im Bauwesen stets an praxisrelevante Prüfaufgaben gekoppelt. Die Ermittlung beispielsweise eines Ist-Zustandes im Vorfeld einer Betoninstandsetzung oder die Ermittlung von Schadensursache und Schadensumfang als Folge wiederkehrender Untersuchungen von Brücken nach DIN 1076 sind etablierte Anwendungsgebiete der ZfPBau. Mit der Einführung der Nachrechnungsrichtlinie für Straßenbrücken im Jahr 2011 hat die Nachfrage nach ZfPBau-Dienstleistungen einerseits stark zugenommen, andererseits eröffnet sie Möglichkeiten, in statischen Nachweisen die tatsächlichen Eigenschaften bestehender Konstruktionen rechnerisch anzusetzen. Dazu aber müssen Messergebnisse statistisch bewertet werden können. Dies geschieht durch eine einheitliche Ermittlung der Messunsicherheit, mit der die Voraussetzungen geschaffen werden, um Messergebnisse von ZfPBau-Verfahren in statischen Berechnungen verwenden zu können. Im folgenden Beitrag wird gezeigt, wie Messgrößen der ZfPBau als (stochastische) Basisvariablen in probabilistische Nachweise zur Berechnung der Zuverlässigkeit einfließen können, indem Grenzzustandsgleichungen modifiziert werden. Mit dieser Vorgehensweise sind weitere Schlussfolgerungen aus den Ergebnissen möglich. KW - Bestandsbauwerke KW - Zerstörungsfreie Prüfung KW - Probabilistik KW - Statischer Nachweis KW - Brücken PY - 2018 UR - http://www.bvpi.de/bvpi-content/ingenieur-box/pruefingenieur.htm SN - 1430-9084 VL - 05 IS - 52 SP - 46 EP - 53 PB - Bundesvereinigung der Prüfingenieure für Bautechnik e.V. CY - Berlin AN - OPUS4-45477 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Studemund, T. T1 - Thermography using a 1D laser array – From planar to structured heating JF - Materials Testing N2 - In the field of optically excited thermography, flash lamps (impulse shaped planar heating) and halogen lamps (modulated planar heating) have become established for the specific regimes of impulse and lock-in thermography. Flying-spot laser thermography is implemented by means of a rasterized focused laser, e. g. for crack detection (continuous wave operation) and photothermal material characterization (high-frequency modulated). The availability of novel technologies, i. e. fast and high-resolution IR cameras, brilliant innovative light sources and high-performance data acquisition and processing technology will enable a paradigm shift from stand-alone photothermal and thermographic techniques to uniform quantitative measurement and testing technology that is faster and more precise. Similar to an LED array, but with irradiance two orders of magnitude higher, a new type of brilliant laser source, i. e. the VCSEL array (vertical-cavity surface-emitting laser), is now available. This novel optical energy source eliminates the strong limitation to the temporal dynamics of established light sources and at the same time is spectrally clearly separated from the detection wavelength. It combines the fast temporal behavior of a diode laser with the high optical irradiance and the wide illumination area of flash lamps. In addition, heating can also be carried out in a structured manner, because individual areas of the VCSEL array can be controlled independently of each other. This new degree of freedom enables the development of completely new thermographic NDT methods. KW - Thermography KW - Laser thermography KW - Laser KW - Lock-in KW - VCSEL KW - Thermal wave KW - Photothermal PY - 2018 UR - https://www.hanser-elibrary.com/doi/abs/10.3139/120.111209 DO - https://doi.org/10.3139/120.111209 SN - 0025-5300 VL - 60 IS - 7-8 SP - 749 EP - 757 PB - Carl Hanser Verlag CY - München AN - OPUS4-45482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schumacher, David A1 - Sharma, R. A1 - Grager, J.-C. A1 - Schrapp, M. T1 - Scatter and beam hardening reduction in industrial computed tomography using photon counting detectors JF - Measurement Science and Technology N2 - Photon counting detectors (PCD) offer new possibilities for x-ray micro computed tomography (CT) in the field of non-destructive testing. For large and/or dense objects with high atomic numbers the problem of scattered radiation and beam hardening severely influences the image quality. This work shows that using an energy discriminating PCD based on CdTe allows to address these problems by intrinsically reducing both the influence of scattering and beam hardening. Based on 2D-radiographic measurements it is shown that by energy thresholding the influence of scattered radiation can be reduced by up to in case of a PCD compared to a conventional energy-integrating detector (EID). To demonstrate the capabilities of a PCD in reducing beam hardening, cupping artefacts are analyzed quantitatively. The PCD results show that the higher the energy threshold is set, the lower the cupping effect emerges. But since numerous beam hardening correction algorithms exist, the results of the PCD are compared to EID results corrected by common techniques. Nevertheless, the highest energy thresholds yield lower cupping artefacts than any of the applied correction algorithms. As an example of a potential industrial CT application, a turbine blade is investigated by CT. The inner structure of the turbine blade allows for comparing the image quality between PCD and EID in terms of absolute contrast, as well as normalized signal-to-noise and contrast-to-noise ratio. Where the absolute contrast can be improved by raising the energy thresholds of the PCD, it is found that due to lower statistics the normalized contrast-to-noise-ratio could not be improved compared to the EID. These results might change to the contrary when discarding pre-filtering of the x-ray spectra and thus allowing more low-energy photons to reach the detectors. Despite still being in the early phase in technological progress, PCDs already allow to improve CT image quality compared to conventional detectors in terms of scatter and beam hardening reduction. KW - X-ray computed tomography KW - Photon counting detector KW - CdTe sensor KW - Non-destructive testing KW - Beam hardening KW - Scattered radiation PY - 2018 UR - http://iopscience.iop.org/article/10.1088/1361-6501/aabef7/meta DO - https://doi.org/10.1088/1361-6501/aabef7 SN - 1361-6501 VL - 29 IS - 7 SP - 075101, 1 EP - 12 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-44959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kapa, Thomas A1 - Schreier, Andy A1 - Krebber, Katerina T1 - 63 km BOFDA for temperature and strain monitoring JF - Sensors N2 - We demonstrate (and are the first to do so) 63 km Brillouin Optical Frequency-Domain Analysis (BOFDA) for temperature and strain monitoring using a 100 km fiber loop. The use of BOFDA for long-range applications can be considered a novel approach, as previous investigations focused on the utilization of Brillouin Optical Time-Domain Reflectometry and Analysis (BOTDR and BOTDA, respectively). At 51.7 km, a 100 m hotspot (37 °C) was detected without using distributed Raman amplification or image processing. KW - Distributed sensing KW - Stimulated Brillouin scattering KW - Fiber optics sensors PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-449679 DO - https://doi.org/10.3390/s18051600 SN - 1424-8220 VL - 18 IS - 5 SP - 1600, 1 EP - 9 PB - MDPI CY - Basel, Switzerland AN - OPUS4-44967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oesch, Tyler A1 - Landis, E. A1 - Kuchma, D. ED - Lura, P. T1 - A methodology for quantifying the impact of casting procedure on anisotropy in fiber-reinforced concrete using X-ray CT JF - Materials and Structures N2 - Fiber-reinforced concretes (FRCs) offer significant improvements in tensile strength and durability compared to most other concrete mixes. However, for safe and efficient use of FRC in large structures, anisotropy of fiber orientation needs to be understood and properly controlled. In this project, both cored samples extracted from a FRC slab and FRC samples cast individually in molds were assessed using X-ray computed tomography (CT) and measurements of fiber orientation were extracted from the resulting CT images. These results showed that fibers within the slab were highly anisotropic in orientation while fibers in individually cast samples showed a much more heterogeneous distribution of orientations. This indicates that fiber orientation is highly dependent on the casting process and suggests that FRC can only be safely and efficiently utilized if anisotropic fiber orientation is properly accounted for during design and optimized casting methods are used during construction. KW - Anisotropic fiber orientation KW - Computed tomography KW - Fiber-reinforced concrete KW - UHPC KW - Hessian analysis KW - Order parameter PY - 2018 UR - https://rdcu.be/OR6k DO - https://doi.org/10.1617/s11527-018-1198-8 SN - 1359-5997 SN - 1871-6873 N1 - xxx VL - 51 IS - 3 SP - Article 73, 1 EP - 13 PB - Springer Netherlands CY - Dordrecht, Niederlande AN - OPUS4-45045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Haferkamp, Sebastian A1 - Akhmetova, Irina A1 - Röllig, Mathias A1 - Maierhofer, Christiane A1 - Rademann, Klaus A1 - Emmerling, Franziska T1 - In situ investigations of mechanochemical one-pot syntheses JF - Angewandte Chemie International Edition N2 - We present an in situ triple coupling of synchrotron X-ray diffraction with Raman spectroscopy, and thermography to study milling reactions in real time. This combination of methods allows a correlation of the structural evolution with temperature information. The temperature information is crucial for understanding both the thermodynamics and reaction kinetics. The reaction mechanisms of three prototypical mechanochemical syntheses, a cocrystal formation, a C@C bond formation (Knoevenagel condensation), and the formation of a manganese-phosphonate, were elucidated. Trends in the temperature development during milling are identified. The heat of reaction and latent heat of crystallization of the product contribute to the overall temperature increase. A decrease in temperature occurs via release of, for example, water as a byproduct. Solid and liquid intermediates are detected. The influence of the mechanical impact could be separated from temperature effects caused by the reaction. KW - In situ studies KW - Mechanochemistry KW - Raman spectroscopy KW - Thermography KW - X-ray diffraction PY - 2018 DO - https://doi.org/10.1002/anie.201800147 SN - 1433-7851 SN - 1521-3773 VL - 57 IS - 20 SP - 5930 EP - 5933 PB - Wiley-VCH CY - Weinheim AN - OPUS4-44946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Örnek, C. A1 - Léonard, Fabien A1 - McDonald, S. A1 - Prajapati, A A1 - Withers, P. J. A1 - Engelberg, D. T1 - Time-dependent in situ measurement of atmospheric corrosion rates of duplex stainless steel wires JF - npj Materials Degradation N2 - Corrosion rates of strained grade UNS S32202 (2202) and UNS S32205 (2205) duplex stainless steel wires have been measured, in situ, using time-lapse X-ray computed tomography. Exposures to chloride-containing (MgCl2) atmospheric environments at 50 °C (12–15 M Cl− and pH ~5) with different mechanical elastic and elastic/plastic loads were carried out over a period of 21 months. The corrosion rates for grade 2202 increased over time, showing selective dissolution with shallow corrosion sites, coalescing along the surface of the wire. Corrosion rates of grade 2205 decreased over time, showing both selective and pitting corrosion with more localised attack, growing preferentially in depth. The nucleation of stress corrosion cracking was observed in both wires. KW - X-ray computed tomography KW - Time-lapse X-ray computed tomography PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444153 UR - https://www.nature.com/articles/s41529-018-0030-9 DO - https://doi.org/10.1038/s41529-018-0030-9 SN - 2397-2106 VL - 2 SP - Article 10, 1 EP - 15 PB - Nature CY - London AN - OPUS4-44415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vössing, Konrad A1 - Niederleithinger, Ernst ED - Faix, O. T1 - Nondestructive assessment and imaging methods for internal inspection of timber. A review. JF - Holzforschung N2 - This paper reviews state-of-the-art in nondestructive testing (NDT) and semidestructive testing (SDT) methods applicable for imaging the condition of structural timber. Both NDT and SDT imaging reveal defects, damages, and decay, while the extent of wood decay can also be quantified. Combined with an appropriate data interpretation concerning the internal defects, the mechanical properties of the material can also be assessed. The possibilities and limitations of the most relevant individual NDT and SDT methods, also in combination with each other, are outlined and compared. To facilitate comparison, many observations are reported based on the same test specimen. KW - Drilling resistance KW - Electrical resistivity KW - Radar KW - Radiography KW - Sonic stress wave KW - Ultrasound KW - Non destructive testing KW - Timber structure PY - 2018 DO - https://doi.org/10.1515/hf-2017-0122 SN - 0018-3830 SN - 1437-434X VL - 72 IS - 6 SP - 467 EP - 476 PB - De Gruyter CY - Berlin AN - OPUS4-44445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Christoph A1 - Kruschwitz, Sabine A1 - Ebell, Gino T1 - Datengesteuerte Multisensor-Fusion zur Korrosionsprüfung von Stahlbetonbauteilen JF - The e-journal of nondestructive testing & ultrasonics N2 - Potentialfeldmessung (PM) ist die beliebteste Methode der Zerstörungsfreien Prüfung (ZfP) zur Lokalisierung von aktiver Betonstahlkorrosion. PM wird durch Parameter wie z. B. Feuchtigkeits- und Chloridgradienten im Bauteil beeinflusst, so dass die Sensitivität gegenüber der räumlich sehr begrenzten, aber gefährlichen Lochkorrosion gering ist. Wir zeigen in dieser Studie, wie zusätzliche Messinformationen mit Multisensor-Datenfusion genutzt werden können, um die Detektionsleistung zu verbessern und die Auswertung zu automatisieren. Die Fusion basiert auf überwachtem maschinellen Lernen (ÜML). ÜML sind Methoden, die Zusammenhänge in (Sensor-) Daten anhand vorgegebener Kennzeichnungen (Label) erkennen. Wir verwenden ÜML um „defekt“ und „intakt“ gelabelte Bereiche in einem Multisensordatensatz zu unterscheiden. Unser Datensatz besteht aus 18 Messkampagnen und enthält jeweils PM-, Bodenradar-, Mikrowellen-Feuchte- und Wenner-Widerstandsdaten. Exakte Label für veränderliche Umweltbedingungen wurden in einer Versuchsanordnung bestimmt, bei der eine Stahlbetonplatte im Labor kontrolliert und beschleunigt verwittert. Der Verwitterungsfortschritt wurde kontinuierlich überwacht und die Korrosion gezielt erzeugt. Die Detektionsergebnisse werden quantifiziert und statistisch ausgewertet. Die Datenfusion zeigt gegenüber dem besten Einzelverfahren (PM) eine deutliche Verbesserung. Wir beschreiben die Herausforderungen datengesteuerter Ansätze in der zerstörungsfreien Prüfung und zeigen mögliche Lösungsansätze. T2 - DGZfP Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Maschinelles Lernen KW - Datenfusion KW - ZfP KW - Beton KW - Korrosion PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444852 UR - http://www.ndt.net/?id=23106 SN - 1435-4934 VL - 23 IS - 9 SP - 1 EP - 9 PB - NDT.net CY - Kirchwald AN - OPUS4-44485 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst A1 - Wang, Xin A1 - Herbrand, M. A1 - Müller, M. T1 - Processing ultrasonic data by coda wave interferometry to monitor load tests of concrete beams JF - Sensors N2 - Ultrasonic transmission measurements have been used for decades to monitor concrete elements, mostly on a laboratory scale. Recently, coda wave interferometry (CWI), a technique adapted from seismology, was introduced to civil engineering experiments. It can be used to reveal subtle changes in concrete laboratory samples and even large structural elements without having a transducer directly at the place where the change is taking place. Here, several load tests until failure on large posttensioned concrete beams have been monitored using networks of embedded transducers. To detect subtle effects at the beginning of the experiments and cope with severe changes due to cracking close to failure, the coda wave interferometry procedures had to be modified to an adapted step-wise approach. Using this methodology, we were able to monitor stress distribution and localize large cracks by a relatively simple technique. Implementation of this approach on selected real structures might help to make decisions in infrastructure asset management. KW - Ultrasound KW - Concrete KW - Monitoring KW - Coda wave interferometry KW - Embedded transducers PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452328 DO - https://doi.org/10.3390/s19010147 SN - 1424-8220 VL - 19 IS - 1 SP - Article 147, 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-45232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Terzioglu, T. A1 - Karthik, M. A1 - Hurlebaus, S. A1 - Hueste, M. A1 - Maack, Stefan A1 - Wöstmann, Jens A1 - Wiggenhauser, Herbert A1 - Krause, M. A1 - Miller, P. A1 - Olson, L. T1 - Nondestructive evaluation of grout defects in internal tendons of posttensioned girders JF - NDT and E International N2 - Post-tensioning systems provide safe and efficient construction solutions for long span bridges. Despite the improved grouting practices over the past decade, existing post-tensioning systems may have significant amount of grout defects, which could lead to corrosion of the strands. Condition assessment of post-tensioning systems is necessary to allow bridge owners to take timely, proactive actions to mitigate or prevent further Deterioration and unanticipated tendon failures. A detailed experimental study conducted to assess the performance of nondestructive evaluation techniques in detecting grout defects within internal tendons is presented herein. Nondestructive evaluation techniques that include Ground Penetrating Radar, Impact Echo, Ultrasonic Tomography, and Ultrasonic Echo are evaluated in terms of detecting the location and severity of fabricated grout defects in a full-scale post-tensioned U-girder mock-up specimen. While Ground Penetrating Radar can identify the location and profile of the internal tendons, particularly metal ducts due to strong reflections, this method did not provide any information about the defect conditions within the tendon. Both Impact Echo and Ultrasonic Echo techniques are effective in identifying the Location of grout defects, but could not differentiate between water, void, or compromised grout conditions. The study clearly demonstrates the need for NDE techniques that are applicable to anchorage regions, and that are capable of estimating the severity and nature of grout defects in internal tendons. KW - Zerstörungsfreie Prüfung KW - Nondestructive testing KW - Ground penetrating radar KW - Impact Echo KW - Ultrasonic tomography KW - Ultrasonic echo KW - Bridge inspection PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S0963869517305996?via%3Dihub DO - https://doi.org/10.1016/j.ndteint.2018.05.013 SN - 0963-8695 VL - 99 SP - 23 EP - 35 PB - Elsevier Ltd. AN - OPUS4-45218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fernández, R. A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Fernández-Castrillo, P. A1 - González-Doncel, G. A1 - Bruno, Giovanni T1 - Residual stress and yield strength evolution with annealing treatments in an age-hardenable aluminum alloy matrix composite JF - Materials Science & Engineering A N2 - We investigated the possibility of minimizing tensile matrix residual stresses in age hardenable aluminum alloy metal matrix composites without detrimentally affect their mechanical properties (such as yield strength). Specifically, we performed thermal treatments at different temperatures and times in an age-hardenable aluminum matrix composite 2014Al-15vol%Al2O3. Using X-ray synchrotron radiation diffraction and mechanical tests, we show that below a certain treatment temperature (250 °C) it is possible to identify an appropriate thermal treatment capable of relaxing residual stress in this composite while even increasing its yield strength, with respect to the as processed conditions. KW - Residual stress KW - X-ray diffraction KW - Annealing treatment KW - Metal matrix composite KW - Yield strength PY - 2018 DO - https://doi.org/10.1016/j.msea.2018.06.031 SN - 0921-5093 SN - 1873-4936 VL - 731 SP - 344 EP - 350 PB - Elsevier CY - Amsterdam AN - OPUS4-45255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stajanca, Pavol A1 - Topolniak, Ievgeniia A1 - Pötschke, Samuel A1 - Krebber, Katerina T1 - Solution-mediated cladding doping of commercial polymer optical fibers JF - Optical Fiber Technology N2 - Solution doping of commercial polymethyl methacrylate (PMMA) polymer optical fibers (POFs) is presented as a novel approach for preparation of custom cladding-doped POFs (CD-POFs). The presented method is based on a solution-mediated diffusion of dopant molecules into the fiber cladding upon soaking of POFs in a methanol-dopant solution. The method was tested on three different commercial POFs using Rhodamine B as a fluorescent dopant. The dynamics of the diffusion process was studied in order to optimize the doping procedure in terms of selection of the most suitable POF, doping time and conditions. Using the optimized procedure, longer segment of fluorescent CD-POF was prepared and its performance was characterized. Fiber’s potential for sensing and illumination applications was demonstrated and discussed. The proposed method represents a simple and cheap way for fabrication of custom, short to medium length CD-POFs with various dopants. KW - Polymer optical fiber KW - Solution doping KW - Polymethyl methacrylate KW - Rhodamine B KW - Dye-doped fiber KW - Fluorescent optical fiber PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-441045 DO - https://doi.org/10.1016/j.yofte.2018.02.008 SN - 1068-5200 SN - 1095-9912 VL - 41 SP - 227 EP - 234 PB - Elsevier Inc. AN - OPUS4-44104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abraham, O. A1 - Ferria, H. A1 - Niederleithinger, Ernst A1 - Brühwiler, E. A1 - Dalsgard Sörensen, J. A1 - Klikowicz, P. A1 - Kirsch, F. A1 - Niedermayer, H. A1 - Yalamas, T. T1 - INFRASTAR - Innovation and networking for fatigue and reliability analysis of structures - Training for assessment of risk - H2020 JF - Impact N2 - "INFRASTAR aims to develop knowledge, expertise and skills for optimal and reliable management of structures. The generic methodology is applied to bridges and wind turbines in relation to fatigue offering the opportunity to deal with complementary notions (such as old and new asset management, unique and similar structures, wind and traffic actions) while addressing 3 major challenges: 1/ advanced modelling of concrete fatigue behaviour, 2/new non destructive testing methods for early aged damage detection and 3/probabilistic approach of structure reliability under fatigue. Benefit of cross-experience and inter-disciplinary synergies creates new knowledge. INFRASTAR proposes innovative solutions for civil infrastructure asset management so that young scientists acquire a high employment profile in close dialogue between industry and academic partners. Modern engineering methods, including probabilistic approaches, risk and reliability assessment tools, will take into account the effective structural behaviour of existing bridges and wind turbines by exploiting monitored data. Existing methods and current state-of -the art is based on excessive conservatism which produces high costs and hinders sustainability. INFRASTAR improves knowledge for optimising the design of new structures, for more realistic verification of structural safety and more accurate prediction of future lifetime of the existing structures. That is a challenge for a sustainable development because it reduces building material and energy consumption as well as CO2 production. Within the global framework of optimal infrastructure asset management, INFRASTAR will result in a multi-disciplinary body of knowledge covering generic problems from the design stage process of the new civil infrastructures up to recycling after dismantlement. This approach and the proposed methods and tools are new and allow a step forward for innovative and effective process." KW - Concrete KW - Fatigue KW - Wind turbine KW - Bridge PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-447016 UR - http://www.ingentaconnect.com/content/sil/impact/2018/00002018/00000001/art00023 DO - https://doi.org/10.21820/23987073.2018.70 SN - 2398-7073 VL - 2018 IS - 1 SP - 70 EP - 72 PB - Science Impact Ltd. CY - Bristol, UK AN - OPUS4-44701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotschate, Daniel A1 - Gaal, Mate A1 - Kersten, H. T1 - Acoustic emission by self-organising effects of micro-hollow cathode discharges JF - Applied Physics Letters N2 - We designed micro-hollow cathode discharge prototypes under atmospheric pressure and investi-gated their acoustic characteristics. For the acoustic model of the discharge, we correlated the self-organisation effect of the current density distribution with the ideal model of an acoustic membrane. For validation of the obtained model, sound particle velocity spectroscopy was used to detect and analyse the acoustic emission experimentally. The results have shown a behaviour similar to the ideal acoustic membrane. Therefore, the acoustic excitation is decomposable into its eigenfrequencies and predictable. The model was unified utilising the gas exhaust velocity caused by the electrohydrodynamic force. The results may allow a contactless prediction of the current density distribution by measuring the acoustic emission or using the micro-discharge as a tunable acoustic source for specific applications as well. KW - Micro hollow cathode discharge KW - Atmospheric pressure plasma KW - Gas discharges KW - Plasma acoustics PY - 2018 DO - https://doi.org/10.1063/1.5024459 SN - 0003-6951 VL - 112 IS - 15 SP - Article 154102, 1 EP - 4 PB - AIP Publishing AN - OPUS4-44659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens T1 - Structural health monitoring of composite pressure vessels using guided ultrasonic waves JF - Insight – Non-Destructive Testing and Condition Monitoring N2 - Composite pressure vessels are important components in the storage of gases under high pressure. Among others, a common type of pressure vessel is made of a metal liner overwrapped with a fibre-reinforced plastic material. Conventional hydrostatic tests, used to assess the integrity of pressure vessels, may overstress the material and thus reduce the remaining lifetime of the tested component. Therefore, a truly non-destructive structural health monitoring (SHM) system would not only ensure a safer usage and extended lifetime, but also remove the necessity for periodic inspection and the testing of pressure vessels. The authors propose the use of guided ultrasonic waves, which have the potential to detect the main damage types, such as cracking in the metal liner, fibre breaks and composite matrix delamination. For the design of such an SHM system, multimodal ultrasonic wave propagation and defect-mode interaction must be fully understood. In this paper, simulation results obtained by means of finite element modelling (FEM) are presented. Based on the findings, suggestions are made regarding appropriate wave modes and their interaction with different flaw types, as well as the necessary excitation and suitable sensor configurations. Finally, a first approach for a reliable SHM system for composite pressure vessels is suggested. T2 - First World Congress on Condition Monitoring (WCCM) CY - London, UK DA - 13.06.2017 KW - Composite materials KW - Pressure tanks KW - Condition monitoring PY - 2018 DO - https://doi.org/10.1784/insi.2018.60.3.139 SN - 1354-2575 VL - 60 IS - 3 SP - 139 EP - 144 PB - The British Institute of Non-Destructive Testing CY - Northampton, UK AN - OPUS4-44605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cabeza, Sandra A1 - Müller, Bernd R. A1 - Pereyra, R. A1 - Fernández, R. A1 - González-Doncel, G. A1 - Bruno, Giovanni T1 - Evidence of damage evolution during creep of Al–Mg alloy using synchrotron X-ray refraction JF - Journal of applied crystallography N2 - In order to provide further evidence of damage mechanisms predicted by the recent solid-state transformation creep (SSTC) model, direct observation of damage accumulation during creep of Al–3.85Mg was made using synchrotron X-ray refraction. X-ray refraction techniques detect the internal specific surface (i.e. surface per unit volume) on a length scale comparable to the specimen size, but with microscopic sensitivity. A significant rise in the internal specific surface with increasing creep time was observed, providing evidence for the creation of a fine grain substructure, as predicted by the SSTC model. This substructure was also observed by scanning electron microscopy KW - Aluminium alloys KW - Creep KW - Damage KW - Synchrotron X-ray refraction KW - Electron microscopy KW - subgrain structure PY - 2018 DO - https://doi.org/10.1107/S1600576718001449 SN - 1600-5767 VL - 51 SP - 420 EP - 427 PB - Wiley AN - OPUS4-44619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maierhofer, Christiane A1 - Röllig, Mathias A1 - Gower, M. A1 - Lodeiro, M. A1 - Baker, G. A1 - Monte, C. A1 - Adibekyan, A. A1 - Gutschwager, B. A1 - Knazowicka, L. A1 - Blahut, A. T1 - Evaluation of different techniques of active thermography for quantification of artificial defects in fiber-reinforced composites using thermal and phase contrast data analysis JF - International Journal of Thermophysics N2 - For assuring the safety and reliability of components and constructions in energy applications made of fiber-reinforced polymers (e.g., blades of wind turbines and tidal power plants, engine chassis, flexible oil and gas pipelines) innovative non-destructive testing methods are required. Within the European Project VITCEA complementary methods (shearography, microwave, ultrasonics and thermography) have been further developed and validated. Together with partners from the industry, test specimens have been constructed and selected on-site containing different artificial and natural defect artefacts. As base materials, carbon and glass fibers in different orientations and layering embedded in different matrix materials (epoxy, polyamide) have been considered. In this contribution, the validation of flash and lock-in thermography to these testing problems is presented. Data analysis is based on thermal contrasts and phase evaluation techniques. Experimental data are compared to analytical and numerical models. Among others, the influence of two different types of artificial defects (flat bottom holes and delaminations) with varying diameters and depths and of two different materials (CFRP and GFRP) with unidirectional and quasi-isotropic fiber alignment is discussed. KW - Active thermography KW - CFRP KW - GFRP KW - Delaminations KW - Flash excitation KW - Lock-in excitation PY - 2018 DO - https://doi.org/10.1007/s10765-018-2378-z SN - 0195-928X SN - 1572-9567 VL - 39 IS - 5 SP - Article 61, 1 EP - 37 PB - Springer AN - OPUS4-44687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strangfeld, Christoph A1 - Nayeri, C. N. A1 - Paschereit, C. O. A1 - Greenblatt, D. T1 - Mechanism of vortex perturbation via unsteady pitching JF - Journal of aircraft N2 - Experiments indicate that vortices trailing finite wings can be perturbed by periodic wing pitching, leading to rapid dissipation and bursting. To illustrate the perturbation mechanism, Betz vortex rollup relations are combined with the Theodorsen theory for unsteady lift response. A sinusoidal pitch motion on a rigid elliptic planform wing is computed in this study as one example. Pitching modifies the instantaneous lift due to the planform variations, via the reduced frequency, and the rollup relations are applied to low-frequency experimental conditions. The combined Betz–Theodorsen theory shows that relatively large spanwise perturbations of the vortex centers can be achieved and may accelerate the exponential growth associated with the Crow instability. In fact, 84.2% of the displacement of the unsteady trailing vortices due to unsteady pitching is oriented in the direction of the Crow instability. Furthermore, the axial velocity in the vortex center, calculated based on the Batchelor method, varies on the order of the flight speed. This forms two types of stagnation points produced by approaching and retreating axial core velocities; in the former case, conservation of mass leads to observations of “bursting.” This observation can be explained adequately on the basis of quasi-steady considerations. KW - Trailing vortex KW - Unsteady pitching KW - Betz vortex relation KW - Theodorsen theory PY - 2018 DO - https://doi.org/10.2514/1.C034646 SN - 0021-8669 VL - 55 IS - 5 SP - 1831 EP - 1838 PB - Elsevier AN - OPUS4-45575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rifai, Haifa A1 - Staude, Andreas A1 - Meinel, Dietmar A1 - Illerhaus, Bernhard A1 - Bruno, Giovanni T1 - In-situ pore size investigations of loaded porous concrete with non-destructive methods JF - Cement and Concrete Research N2 - Subject of this investigation is the in-situ evolution of pore volume and pore size distribution in Ytong (a porous concrete material) under increasing pressure with two different non-destructive analytical methods: Nuclear Magnetic Resonance (NMR) and X-ray Computed Tomography (CT). For both methods special strain devices to apply external pressure were constructed. The results from the two techniques yield complementary information on the pore size distribution and allows covering different pore size regions. KW - Pore size KW - Porous concrete KW - Computed tomography KW - Nuclear magnetic resonance PY - 2018 DO - https://doi.org/10.1016/j.cemconres.2018.06.008 SN - 0008-8846 SN - 1873-3948 VL - 111 SP - 72 EP - 80 PB - Elsevier Ltd. AN - OPUS4-45617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ermawati, F. U. A1 - Supardi, Z. A. I. A1 - Suasmoro, S. A1 - Hübert, Thomas T1 - Contribution of Relaxation Effect to the Permittivity of Mg1-xZnxTiO3 Ceramics JF - IOP Conference Series: Materials Science and Engineering N2 - This work reported the investigation on the effect of relaxation to the permittivity (epsilon' r ) characteristic of Mg1-x Zn x TiO3 ceramics for x = 0 – 0.5 (MZT0 – MZT0.5) measured from 1 Hz to 330 MHz. Within that frequency range, the relaxation effect that consists of the space charge (SC) and the dipolar (D) polarization mechanisms were identified. The contribution of the D relaxation in MZT0 – MZT0.2 systems extents overall from about 100 Hz to 330 MHz, while that in MZT0.3 – MZT0.5 systems is from 50 kHz to 330 MHz. The remaining frequencies, i.e. from 1 to 90 Hz for MZT0 – MZT0.2 and from 1 Hz to 50 kHz for MZT0.3 – MZT0.5, are attributed to the SC relaxation. The D polarization mechanism provides constant epsilon' r values which vary from (15.4 – 17.0) ± 0.3 throughout the samples. Contribution of the SC polarization mechanism to the characteristic is supported by the simultaneous presence of different content and level of resistivity of the secondary phase of (Mg1-αZnα)2TiO4 in MZT0 – MZT0.2 systems and of (Zn1-αMgα)2TiO4 in MZT0.3 – MZT0.5, along with the presence of the main Mg1-x Zn x TiO3 phase, as a result of the variation of zinc content in the systems. T2 - The 5th International Conference on Advanced Materials Sciences and Technology (ICAMST 2017) CY - Makassar, Indonesia DA - 19.09.2017 KW - Dielectric ceramic KW - dipolar polarization KW - Mg1-xZnxTiO3 KW - permittivity KW - space charge polarization PY - 2018 DO - https://doi.org/10.1088/1757-899X/367/1/012003 SN - 1757-8981 VL - 367 SP - 1 EP - 6 PB - IOP Publishing Ltd AN - OPUS4-45618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Buljak, V. T1 - Numerical modeling of thermally induced microcracking in porous ceramics: An approach using cohesive elements JF - Journal of the European Ceramic Society N2 - A numerical framework is developed to study the hysteresis of elastic properties of porous ceramics as a function of temperature. The developed numerical model is capable of employing experimentally measured crystallographic orientation distribution and coefficient of thermal expansion values. For realistic modeling of the microstructure, Voronoi polygons are used to generate polycrystalline grains. Some grains are considered as voids, to simulate the material porosity. To model intercrystalline cracking, cohesive elements are inserted along grain boundaries. Crack healing (recovery of the initial properties) upon closure is taken into account with special cohesive elements implemented in the commercial code ABAQUS. The numerical model can be used to estimate fracture properties governing the cohesive behavior through inverse analysis procedure. The model is applied to a porous cordierite ceramic. The obtained fracture properties are further used to successfully simulate general non-linear macroscopic stress-strain curves of cordierite, thereby validating the model. KW - Interfacial strength KW - Cordierite KW - Young’s modulus KW - Thermal expansion KW - Hysteresis KW - Inverse analysis KW - Cohesive finite elements PY - 2018 DO - https://doi.org/10.1016/j.jeurceramsoc.2018.03.041 SN - 0955-2219 VL - 38 IS - 11 SP - 4099 EP - 4108 PB - Elsevier Ltd. AN - OPUS4-45117 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Klaus, Manuela A1 - Genzel, Christoph A1 - Haberland, Christoph A1 - Bruno, Giovanni T1 - The influence of the support structure on residual stress and distortion in SLM Inconel 718 parts JF - Metallurgical and materials transactions A N2 - The effect of support structure and of removal from the base plate on the residual stress state in selective laser melted IN718 parts was studied by means of synchrotron X-ray diffraction. The residual stresses in subsurface region of two elongated prisms in as-built condition and after removal from the base plate were determined. One sample was directly built on a base plate and another one on a support structure. Also, the distortion on the top surface due to stress release was measured by contact profilometry. High tensile residual stress values were found, with pronounced stress gradient along the hatching direction. In the sample on support, stress redistribution took place after removal from the base plate, as opposed to simple stress relaxation for the sample without support. The sample on support structure showed larger distortion compared to sample without support. We conclude that the use of a support decreases stress values but stress-relieving heat treatments are still needed. KW - Additive manufacturing KW - SLM KW - Residual stress KW - Synchrotron X-ray diffraction KW - IN718 PY - 2018 DO - https://doi.org/10.1007/s11661-018-4653-9 SN - 1073-5623 VL - 49A IS - 7 SP - 3038 EP - 3046 PB - Springer Sciences & Business Media CY - New York, NY AN - OPUS4-45100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giovannelli, F. A1 - Chen, Cong A1 - Díaz-Chao, P. A1 - Guilmeau, E. A1 - Delorme, F. T1 - Thermal conductivity and stability of Al-doped ZnO nanostructured ceramics JF - Journal of the European Ceramic Society N2 - Pure and Al-doped ZnO powders have been sintered by Spark Plasma Sintering. Al doping allows the ceramics to reach a relative density greater than 90% at a sintering temperature of 500°C. The morphology of powder nanoparticles impacts the final grain size of the sintered bulk compounds. A ceramic sintered from isotropic nanoparticles of 30 nm in diameter can reach an average grain size of 110 nm, whereas a ceramic sintered from platelets and isotropic nanoparticles exhibits an average grain size in the submicrometric range. The influence of ceramic grain size on the thermal conductivity has been investigated. It shows that substantial decrease of the grain size from several microns down to 100 nm reduces the thermal conductivity from 29.5 to 7.8 W/m K at 100°C. The stability of nanostructured ceramic has also been checked. After SPS, an annealing at 500°C in air also leads to grain growth. KW - Spark plasma sintering KW - Oxide KW - Thermal conductivity KW - Nanostructuring PY - 2018 DO - https://doi.org/10.1016/j.jeurceramsoc.2018.07.032 SN - 0955-2219 VL - 38 IS - 15 SP - 5015 EP - 5020 PB - Elsevier Science CY - Amsterdam AN - OPUS4-45740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiggenhauser, Herbert A1 - Köpp, Christian A1 - Timofeev, Juri A1 - Azari, H. T1 - Controlled creating of cracks in concrete for non-destructive testing JF - Journal of Nondestructive Evaluation N2 - The non-destructive assessment of cracks in concrete is a common task for which non-destructive evaluation solutions have been published. Primarily, these tests have been carried out on artificial cracks that have been created by using notches instead of natural cracks. This study evaluates a procedure designed to create reproducible and controlled cracks in concrete. The procedure is based on using expanding mortar in a series of blind holes. This is done in combination with carefully aligned reinforcement to guide the direction of the crack development. The depth of the crack is also controlled by reinforcement. Crack depth varies statistically in the range of the Maximum aggregate size (16 mm) used for concrete. KW - Non-destructive testing of concrete KW - Cracks KW - Reference specimen PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-457367 UR - https://rdcu.be/4IPN DO - https://doi.org/10.1007/s10921-018-0517-x SN - 0195-9298 SN - 1573-4862 VL - 37 IS - 3 SP - 67, 1 EP - 9 PB - Springer CY - New York AN - OPUS4-45736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schreier, Andy A1 - Wosniok, Aleksander A1 - Liehr, Sascha A1 - Krebber, Katerina T1 - Humidity-induced Brillouin frequency shift in perfluorinated polymer optical fibers JF - Optics Express N2 - We report, to our knowledge, for the first time on humidity-induced Brillouin frequency shifts in perfluorinated graded index polymer optical fibers. A linear relation between Brillouin frequency shift and humidity was observed. Furthermore, the humidity coefficient of the Brillouin frequency shift is demonstrated to be a function of temperature (-107 to -64 kHz/%r.h. or -426 to -49 kHz m3/g in the range of 20 to 60 °C). An analytical description proves temperature and humidity as two mutually independent effects on the Brillouin frequency shift. KW - Brillouin KW - Polymer optical fibre KW - Humidity PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-457165 DO - https://doi.org/10.1364/OE.26.022307 SN - 1094-4087 VL - 26 IS - 17 SP - 22307 EP - 22314 PB - Optical Society of America AN - OPUS4-45716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Müller, Bernd R. A1 - Kasperovich, G. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - X-ray refraction distinguishes unprocessed powder from empty pores in selective laser melting Ti-6Al-4V JF - Materials Research Letters N2 - For the first time, X-ray refraction techniques are proven for the identification of void formation in Ti-6Al-4V parts produced by selective laser melting. The topology and volume fraction of pores are measured in samples produced with different laser energy density. Unique X-ray refraction methods identify different kinds of defects, characteristic to the regions below and above the Optimum laser energy density, namely unprocessed powder (unmolten powder particles, balling effect, and Fusion defects) from empty keyhole pores. Furthermore, it is possible to detect small inhomogeneities (voids or cracks) with sizes below the spatial resolution of optical microscopy and X-ray computed tomography. KW - Additive manufacturing KW - X-ray refraction KW - Microscopy KW - X-ray computed tomography KW - Porosity PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-434041 DO - https://doi.org/10.1080/21663831.2017.1409288 SN - 2166-3831 VL - 6 IS - 2 SP - 130 EP - 135 PB - Taylor & Francis Group CY - London, UK AN - OPUS4-43404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Bernd R. A1 - Cooper, R.C. A1 - Lange, Axel A1 - Kupsch, Andreas A1 - Wheeler, M. A1 - Hentschel, Manfred P. A1 - Staude, Andreas A1 - Pandey, A. A1 - Shyam, A. A1 - Bruno, Giovanni T1 - Stress-induced microcrack density evolution in β-eucryptite ceramics: Experimental observations and possible route to strain hardening JF - Acta Materialia N2 - In order to investigate their microcracking behaviour, the microstructures of several β-eucryptite ceramics, obtained from glass precursor and cerammed to yield different grain sizes and microcrack densities, were characterized by laboratory and synchrotron x-ray refraction and tomography. Results were compared with those obtained from scanning electron microscopy (SEM). In SEM images, the characterized materials appeared fully dense but computed tomography showed the presence of pore clusters. Uniaxial tensile testing was performed on specimens while strain maps were recorded and analyzed by Digital Image Correlation (DIC). X-ray refraction techniques were applied on specimens before and after tensile testing to measure the amount of the internal specific surface (i.e., area per unit volume). X-ray refraction revealed that (a) the small grain size (SGS) material contained a large specific surface, originating from the grain boundaries and the interfaces of TiO2 precipitates; (b) the medium (MGS) and large grain size (LGS) materials possessed higher amounts of specific surface compared to SGS material due to microcracks, which decreased after tensile loading; (c) the precursor glass had negligible internal surface. The unexpected decrease in the internal surface of MGS and LGS after tensile testing is explained by the presence of compressive regions in the DIC strain maps and further by theoretical arguments. It is suggested that while some microcracks merge via propagation, more close mechanically, thereby explaining the observed X-ray refraction results. The mechanisms proposed would allow the development of a strain hardening route in ceramics. KW - Beta-eucryptite KW - Microcracked ceramics KW - X-ray refraction KW - Tensile load KW - Strain hardening KW - Synchrotron KW - BAMline KW - Computed Tomography KW - CT PY - 2018 UR - http://www.sciencedirect.com/science/article/pii/S1359645417308881 DO - https://doi.org/10.1016/j.actamat.2017.10.030 SN - 1359-6454 SN - 1873-2453 VL - 144 IS - Supplement C SP - 627 EP - 641 PB - Elsevier B.V. AN - OPUS4-43024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Alig, I. A1 - Oehler, H. A1 - Lellinger, D. A1 - Meinel, Dietmar A1 - Böhning, Martin T1 - Crack propagation in PE-HD induced by environmental stress cracking (ESC) analyzed by several imaging techniques JF - Polymer Testing N2 - Different imaging techniques were employed to monitor Full Notch Creep Test (FNCT) experiments addressing environmental stress cracking in more detail. The FNCT is a well-established test method to assess slow crack growth and environmental stress cracking of polymer materials, especially polyethylene. The standard test procedure, as specified in ISO 16770, provides a simple comparative measure of the resistance to crack growth of a certain material based on the overall time to failure when loaded with a well-defined mechanical stress and immersed in a liquid medium promoting crack propagation. Destructive techniques which require a direct view on the free fracture surface, such as light microscopy and laser scanning microscopy, are compared to non-destructive techniques, i.e. scanning acoustic microscopy and xray micro computed tomography. All methods allow the determination of an effective crack length. Based on a series of FNCT specimens progressively damaged for varied Durations under standard test conditions, the estimation of crack propagation rates is also enabled. Despite systematic deviations related to the respective Imaging techniques, this nevertheless provides a valuable tool for the detailed evaluation of the FNCT and its further development. KW - Environmental stress cracking (ESC) KW - Slow crack growth (SCG) KW - Full notch creep test (FNCT) KW - X-ray computed tomography (CT) KW - Laser scanning microscopy (LSM) KW - Scanning acoustic microscopy (SAM) PY - 2018 DO - https://doi.org/10.1016/j.polymertesting.2018.08.014 SN - 0142-9418 SN - 1873-2348 VL - 70 SP - 544 EP - 555 PB - Elsevier AN - OPUS4-45766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sharatchandra Singh, W. A1 - Stegemann, Robert A1 - Kreutzbruck, Marc A1 - Mukhopadhyay, C. K. A1 - Purnachandra Rao, B. T1 - Mapping of Deformation-Induced Magnetic Fields in Carbon Steels Using a GMR Sensor Based Metal Magnetic Memory Technique JF - Journal of Nondestructive Evaluation N2 - Giant magneto-resistive (GMR) sensor based metal magnetic memory (MMM) technique is proposed for mapping of deformation-induced self-magnetic leakage fields (SMLFs) in carbon steel. The specimens were subjected to different amounts of tensile deformation and the deformation-induced SMLFs were measured using a GMR sensor after unloading the specimens. 3D-nonlinear finite element modeling was performed to predict stress–strain state in a steel specimen under tensile load. The experimentally obtained SMLF images were correlated with the finite element model predicted stress–strain states. Studies reveal that the MMM technique can detect the plastic deformation with signal-to-noise ratio better than 20 dB. The technique enables the mapping of plastic deformation in carbon steels for the evaluation of the severity of deformation. The study also reveals that deformation-induced SMLF is influenced by the presence of initial surface residual stress, introduced by shot peening. The intensity of SMLF signal is found to increase with increase in tensile load and decrease with shot peening. KW - GMR KW - Metal Magnetic Memory KW - 3D-finite element modeling KW - Plastic deformation KW - Carbon steel PY - 2018 DO - https://doi.org/10.1007/s10921-018-0470-8 SN - 0195-9298 VL - 37 IS - 2 SP - 21 PB - Springer US AN - OPUS4-45667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghantous, R.M. A1 - François, R. A1 - Poyet, S. A1 - L’hostis, V. A1 - Bernachy-Barbe, F. A1 - Meinel, Dietmar A1 - Portier, L. A1 - Tran, N.-C. T1 - Relation between crack opening and extent of the damage induced at the steel/mortar interface JF - Construction and Building Materials N2 - Cracks are inevitable in reinforced concrete structures and promote the diffusion of aggressive agents towards the reinforcement. In Eurocodes, for some exposure conditions, a threshold not to be exceeded for crack width near the rebar is recommended in order to limit risks of corrosion development and ensure structure durability. On the other hand, several studies show that the steel/mortar interface quality at the intersection with a crack strongly influences corrosion development. The aim of this study was therefore to test whether a relation exists between the extent of mechanical damage at the interface and the corresponding residual crack opening. To this end, specimens were cracked using three point bending test apparatus and the evolution of crack opening was determined on the outer surface and deep within the specimen. It was observed that the crack opening measured on the outer surface of the specimen was very close to that measured at various depths within the specimen at the same height level. In addition, the length of the mechanically damaged interface was determined for each residual crack opening. It was deduced that cracks induced significant steel/mortar Interface damage independently of the size of their openings. The length of the mechanically damaged interface increased proportionally to the residual crack opening without showing marked variation after a certain crack opening value. Based on the observed results, it is deduced that defining thresholds on crack openings is logical for esthetic reasons but is not articularly relevant for corrosion risk assessment. KW - Reinforced concrete KW - Cracks KW - Load-induced damage KW - Micro-CT PY - 2018 DO - https://doi.org/10.1016/j.conbuildmat.2018.10.176 VL - 193 SP - 97 EP - 104 PB - Elsevier Ltd. CY - Oxford, GB AN - OPUS4-46623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziegler, Mathias A1 - Thiel, Erik T1 - Wenn die Wärme Wellen schlägt JF - Physik in unserer Zeit N2 - Mit Laserlicht kann man eine Materialoberfläche berührungslos und schnell moduliert aufheizen. Dabei entsteht eine stark gedämpfte Wärmewelle, die tief ins Material eindringen kann. Erzeugt und überlagert man solche thermischen Wellen auf kohärente Weise, dann kann man damit versteckte Materialfehler zerstörungsfrei und sehr präzise aufspüren. Sogar eine bildgebende Tomografie ist denkbar. KW - Thermography KW - Laser thermography KW - Lock-in thermography KW - NDT KW - Thermal waves PY - 2018 DO - https://doi.org/10.1002/piuz.201801512 SN - 0031-9252 VL - 49 IS - 6 SP - 296 EP - 303 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-46630 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schreier, Andy A1 - Liehr, Sascha A1 - Wosniok, Aleksander A1 - Krebber, Katerina T1 - Investigation on the influence of humidity on stimulated Brillouin backscattering in perfluorinated polymer optical fibers JF - Sensors N2 - In this paper perfluorinated graded-index polymer optical fibers are characterized with respect to the influence of relative humidity changes on spectral transmission absorption and Rayleigh backscattering. The hygroscopic and thermal expansion coefficient of the fiber are determined to be CHE = (7.4 +/- 0.1) 10^-6 %r.h.^-1 and CTE = (22.7 +/- 0.3) 10^-6 K^-1, respectively. The influence of humidity on the Brillouin backscattering power and linewidth are presented for the first time to our knowledge. The Brillouin backscattering power at a pump wavelength of 1319 nm is affected by temperature and humidity. The Brillouin linewidth is observed to be a function of temperature but not of humidity. The strain coefficient of the BFS is determined to be CS = (146.5 +/- 0.9) MHz/% for a wavelength of 1319 nm within a strain range from 0.1 % to 1.5 %. The obtained results demonstrate that the humidity-induced Brillouin frequency shift is predominantly caused by the swelling of the fiber over-cladding that leads to fiber straining. KW - Brillouin KW - Polymer optical fibre KW - Humidity PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465932 DO - https://doi.org/10.3390/s18113952 SN - 1424-8220 VL - 18 IS - 11 SP - 3952, 1 EP - 12 PB - MDPI CY - Basel, Switzerland AN - OPUS4-46593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Millar, Steven A1 - Gottlieb, Cassian A1 - Sankat, Nina A1 - Wilsch, Gerd A1 - Kruschwitz, Sabine T1 - Chlorine determination in cement-bound materials with Laser-induced Breakdown Spectroscopy (LIBS) – A review and validation JF - Spectrochimica Acta Part B-Atomic Spectroscopy N2 - The determination of chloride is still one of the main tasks for the evaluation of reinforced concrete structures. The corrosion of the reinforcement induced by the penetrating chlorides is the dominant damage process affecting the lifetime of concrete structures. In the recent years different research groups demonstrated that LIBS can be a fast and reliable method to quantify chlorine in cement-bound materials. Because chlorine in concrete can only occur as solved ions in the pore solution or bound in salts or hydrated cement phases, the detected emission of chlorine can be correlated with the chloride concentration determined e.g. with potentiometric titration. This work inter alia describes the production of reference samples and possible side effects during the production process. Due to transport processes in the porous matrix of the cement a misinterpretation of the concentrations is possible. It is shown how to overcome these effects and higher precisions of the single measurements can be realised. Using the calibration method, blank sample method and noise method, three different ways of calculating the limit of detection (LOD) and limit of quantification (LOQ) are compared. Due to the preparation of the reference samples a precision of the whole calibration model of sx0 = 0.023 wt% is determined. The validation of the model is based on different test sets, which are varying in their composition (different Cl-salts, water-to-cement ratios and additives). The determined mean error of the validation is 0.595 ± 0.063 wt%, which is comparable to standardised methods like potentiometric titration, direct potentiometry or photometry (0.40 ± 0.06 wt%) [1]. KW - LIBS KW - Chlorine KW - Cement KW - Calibration KW - Validation PY - 2018 DO - https://doi.org/10.1016/j.sab.2018.05.015 SN - 0584-8547 VL - 147 IS - September SP - 1 EP - 8 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-46558 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Cabeza, S. A1 - Kuntner, M. A1 - Mishurova, Tatiana A1 - Klaus, M. A1 - Kling e Silva, L. A1 - Skrotzki, Birgit A1 - Genzel, Ch. A1 - Bruno, Giovanni T1 - Visualisation of deformation gradients in structural steel by macroscopic magnetic domain distribution imaging (Bitter technique) JF - Strain N2 - Abstract While classically used to visualise the magnetic microstructure of functional materials (e.g., for magnetic applications), in this study, the Bitter technique was applied for the first time to visualise macroscopic deformation gradients in a polycrystalline low-carbon steel. Spherical indentation was chosen to produce a multiaxial elastic–plastic deformation state. After removing the residual imprint, the Bitter technique was applied, and macroscopic contrast differences were captured in optical microscopy. To verify this novel characterisation technique, characteristic “hemispherical” deformation zones evolving during indentation were identified using an analytical model from the field of contact mechanics. In addition, near-surface residual stresses were determined experimentally using synchrotron radiation diffraction. It is established that the magnetic domain distribution contrast provides deformation-related information: regions of different domain wall densities correspond to different “hemispherical” deformation zones (i.e., to hydrostatic core, plastic zone and elastic zone, respectively). Moreover, the transitions between these three zones correlate with characteristic features of the residual stress profiles (sign changes in the radial and local extrema in the hoop stress). These results indicate the potential of magnetic domain distribution imaging: visualising macroscopic deformation gradients in fine-grained ferromagnetic material with a significantly improved spatial resolution as compared to integral, mean value-based measurement methods. KW - Bitter technique KW - Deformation KW - Expanding cavity model KW - Indentation KW - Magnetic domain distribution KW - Residual stress PY - 2018 DO - https://doi.org/10.1111/str.12296 SN - 1475-1305 VL - 54 IS - 6 SP - e12296, 1 EP - 15 PB - Wiley AN - OPUS4-46569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hüllmann, Dino A1 - Paul, Niels A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Lilienthal, A. J. ED - Eberhardsteiner, J. ED - Růžička, M. ED - Cosmi, F. T1 - Measuring rotor speed for wind vector estimation on multirotor aircraft JF - Materials Today: Proceedings N2 - For several applications involving multirotor aircraft, it is crucial to know both the direction and speed of the ambient wind. In this paper, an approach to wind vector estimation based on an equilibrium of the principal forces acting on the aircraft is shown. As the thrust force generated by the rotors depends on their rotational speed, a sensor to measure this quantity is required. Two concepts for such a sensor are presented: One is based on tapping the signal carrying the speed setpoint for the motor controllers, the other one uses phototransistors placed underneath the rotor blades. While some complications were encountered with the first approach, the second yields accurate measurement data. This is shown by an experiment comparing the proposed speed sensor to a commercial non-contact tachometer. T2 - 34th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Trieste, Italy DA - 19.09.2017 KW - Wind vector estimation KW - Rotor speed KW - UAV KW - Tachometer PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S2214785318321114 DO - https://doi.org/10.1016/j.matpr.2018.08.139 SN - 2214-7853 VL - 5 IS - 13 SP - 26703 EP - 26708 PB - Elsevier CY - Amsterdam, Netherlands AN - OPUS4-47097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dzierliński, M. A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias ED - Zagrobelny, Maciej ED - Suś-Ryszkowska, Małgorzata T1 - Wykrywanie wycieków gazu za pomocą bezzałogowych pojazdów powietrznych T1 - Detection of gas leaks by unmanned aerial vehicles JF - Inspektor N2 - Wyciek metanu (CH4) z infrastruktury takiej jak rurociągi czy zbiorniki magazynowe ma kluczowe znaczenie dla środowiska oraz stwarza zagrożenie dla bezpieczeństwa ludzi i mienia. Obecnie, po okresie bezawaryjnej eksploatacji, można zaobserwować wzrost liczby incydentów spowodowanych nieszczelnościami rurociągów przesyłowych. W Polsce szczególnie problematyczne okazują się gazociągi, które powstały dekady temu. W tamtym czasie normy techniczne i przepisy budowlane były łagodniejsze niż obecnie obowiązujące. Integralność tych gazociągów jest trudna do skontrolowania, gdyż na etapie budowy nie zostały one przystosowane do badania tłokami pomiarowymi. Aby sprostać temu wyzwaniu, UDT poszukuje metod umożliwiających szybkie i niezawodne wykrywanie oraz lokalizowanie nieszczelności gazociągów na duże odległości. N2 - Methane leakage (CH4) from infrastructure such as pipelines or storage tanks is crucial for the environment and poses a threat to the safety of people and property. Today, after a period of failure-free operation, an increase in the number of incidents caused by leaks in transmission pipelines can be observed. In Poland, gas pipelines created decades ago turn out to be particularly problematic. At that time, technical standards and building regulations were milder than those currently in force. The integrity of these pipelines is difficult to control, as they were not adapted for testing with measuring pigs at the construction stage. To meet this challenge, UDT is looking for methods to quickly and reliably detect and locate leaks in pipelines over long distances. KW - Aerial robot KW - Mobile robot olfaction KW - Tomographic reconstruction of gas plumes KW - Tunable diode laser absorption Spectroscopy (TDLAS) KW - UAV-REGAS PY - 2018 UR - https://www.udt.gov.pl/inspektor-on-line VL - 4 SP - 19 EP - 21 PB - Urząd Dozoru Technicznego CY - Warszawa, Polska AN - OPUS4-47062 LA - pol AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wasmer, Paul A1 - Krome, Fabian A1 - Bulling, Jannis A1 - Prager, Jens T1 - A fluid model for the simulation of fluid‐structure interaction in the Scaled Boundary Finite Element Method for prismatic structures JF - Proceedings in applied mathematics and mechanics : PAMM N2 - The Scaled Boundary Finite Element Method is known as an efficient method for the simulation of ultrasonic wave propagation. As to investigate acoustic wave behavior in case of fluid‐structure interaction, a fluid model is implemented in the SBFEM for prismatic structures. To omit coupling terms a displacement‐based formulation is used. Spurious modes, which occur in the solution, are suppressed using a penalty parameter. To verify this formulation dispersion curves obtained with Comsol Multiphysics are compared to results of SBFEM. The results of both methods are in very good agreement T2 - GAMM 2018 CY - Munich, Germany DA - 19.03.2018 KW - Scaled Boundary Finite Element Method KW - Penalty Parameter KW - Fluid-Structure Interaction KW - Guided Waves PY - 2018 DO - https://doi.org/10.1002/pamm.201800139 VL - 18 IS - 1 SP - e201800139 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-47063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waske, Anja A1 - Dutta, B. A1 - Teichert, N. A1 - Weise, B. A1 - Shayanfar, N. A1 - Becker, A. A1 - Hütten, A. A1 - Hickel, T. T1 - Coupling Phenomena in Magnetocaloric Materials JF - Energy Technology N2 - Strong coupling effects in magnetocaloric materials are the key factor to achieve a large magnetic entropy change. Combining insights from experiments and ab initio calculations, we review relevant coupling phenomena, including atomic coupling, stress coupling, and magnetostatic coupling. For the investigations on atomic coupling, we have used Heusler compounds as a flexible model system. Stress coupling occurs in first‐order magnetocaloric materials, which exhibit a structural transformation or volume change together with the magnetic transition. Magnetostatic coupling has been experimentally demonstrated in magnetocaloric particles and fragment ensembles. Based on the achieved insights, we have demonstrated that the materials properties can be tailored to achieve optimized magnetocaloric performance for cooling applications. KW - Ab initio calculations KW - Magneto-structural transition KW - Magnetocaloric materials KW - Ferroic cooling KW - Heusler alloys PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473045 DO - https://doi.org/10.1002/ente.201800163 VL - 6 IS - 8 SP - 1429 EP - 1447 PB - Wiley AN - OPUS4-47304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ewert, Uwe A1 - Zscherpel, Uwe A1 - Vogel, Justus A1 - Zhang, F. A1 - Long, N.X. A1 - Nguyen, T.P. T1 - Visibility of Image Quality Indicators (IQI) by Human Observers in Digital Radiography in Dependence on Measured MTFs and Noise Power Spectra JF - The e-journal of nondestructive testing & ultrasonics N2 - Digital radiographic images were analysed to predict the visibility of image quality indicators (IQI), based on normalized noise power spectra (NNPP) and modulation transfer function (MTF) measurements. The fixed pattern noise of some digital detectors result in different noise spectra, which influence the visibility of different IQIs, depending on the hole diameter. Studies, based on measurement of basic spatial resolution and contrast to noise ratio were performed together with presampled MTF measurements and the NNPS in dependence on the spatial frequency. Plate hole IQIs, step hole IQIs, and equivalent penetrameter sensitivity (EPS) IQIs based on ASTM E 746 were measured to verify the influence of the different parameters. Modelling of digital images was used to verify the applied numeric tools. A study has been performed for imaging plates and digital detector arrays to analyse differences. Formulas for the prediction of the visibility functions for hole type IQIs are derived. In consequence the standards for characterization and classification of computed radiography (ASTM E 2446) and radiography with DDAs (ASTM E 2597) need to be revised. T2 - 12th ECNDT 2018 CY - Gothenburg, Sweden DA - 11.06.2018 KW - Image evaluation KW - Computed radiography (CR) KW - Digital Detector Array (DDA) KW - Detail detection PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473486 UR - www.ndt.net/?id=22967 SN - 1435-4934 VL - 23 IS - 8 SP - 1 EP - 7 PB - NDT.net CY - Kirchwald AN - OPUS4-47348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moldenhauer, Laura A1 - Helmerich, Rosemarie A1 - Köppe, E. A1 - Wittmann, H.-J. T1 - Experimental modeling approach for determining the moisture damping exponent of a bluetooth low energy signal in moist building material JF - MaterialsToday: Proceedings N2 - The presented development of a damping model is a research component of an experimental feasibility study about moisture in building materials measured with Bluetooth® Low Energy (BLE) signals. This study may be part of a structural health- and long-term monitoring aiming at early damage detection in the built infrastructure and is increasingly focusing on wireless sensor network technology. It is investigated, how the Received Signal Strength Indicator (RSSI) of a BLE signal, transmitted from the BLE-module embedded in building materials with changing moisture content is damped. The aim of the modelling is the derivation of a damping equation for the formal model to determine the moisture damping exponent to finding a correlation. T2 - 34th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Trieste, Italy DA - 19.09.2017 KW - BLE Bluetooth low energy KW - Sensor network KW - RSSI Received Signal Strength Indicator KW - Structural Health Monitoring KW - Moisture measurements PY - 2018 DO - https://doi.org/10.1016/j.matpr.2018.08.124 SN - 2214-7853 VL - 5 IS - Issue 13, Part 2 SP - 26469 EP - 26792 PB - Elsevier Ltd. CY - Radarweg 29, 1043 NX Amsterdam, The Netherlands AN - OPUS4-47171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Laquai, René A1 - Nellesen, J. A1 - Tillmann, W. A1 - Kasperovich, G. A1 - Bruno, Giovanni T1 - Microstructure characterisation of advanced materials via 2D and 3D X-ray refraction techniques JF - Materials Science Forum N2 - 3D imaging techniques have an enormous potential to understand the microstructure, its evolution, and its link to mechanical, thermal, and transport properties. In this conference paper we report the use of a powerful, yet not so wide-spread, set of X-ray techniques based on refraction effects. X-ray refraction allows determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with a nanometric detectability. We demonstrate showcases of ceramics and composite materials, where microstructural parameters could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. We present in situ analysis of the damage evolution in an Al/Al2O3 metal matrix composite during tensile load and the identification of void formation (different kinds of defects, particularly unsintered powder hidden in pores, and small inhomogeneity’s like cracks) in Ti64 parts produced by selective laser melting using synchrotron X-ray refraction radiography and tomography. T2 - THERMEC 2018: 10TH international conference on processing and manufacturing of advanced materials CY - Paris, France DA - 08.07.2018 KW - Additive manufacturing (AM) KW - Creep KW - Damage evolution KW - Synchrotron X-ray refraction radiography KW - Metal matrix composites PY - 2018 UR - https://www.scientific.net/MSF.941.2401 SN - 978-3-0357-1208-7 DO - https://doi.org/10.4028/www.scientific.net/MSF.941.2401 SN - 1662-9752 SN - 0255-5476 VL - 941 SP - 2401 EP - 2406 PB - Trans Tech Publications CY - Switzerland AN - OPUS4-47148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Rachmatulin, Natalia A1 - Fontana, Patrick A1 - Oesch, Tyler A1 - Bruno, Giovanni A1 - Radi, E. A1 - Sevostianov, I. T1 - Evaluation of the probability density of inhomogeneous fiber orientations by computed tomography and its application to the calculation of the effective properties of a fiber-reinforced composite JF - International Journal of Engineering Science N2 - This paper focuses on the experimental evaluation of one of the key microstructural Parameters of a short-fiber reinforced composite – the orientation distribution of fibers. It is shown that computed tomography (CT) produces results suitable for reconstruction of the orientation distribution function. This function is used for calculation of the effective elastic properties of polymer-fiber reinforced concrete. Explicit formulas are derived for overall elastic moduli accounting for orientation distribution in the frameworks of the noninteraction approximation, the Mori–Tanaka–Benveniste scheme, and the Maxwell scheme. The approach illustrated can be applied to any kind of composite material. KW - Computed tomography KW - Orientation distribution KW - Effective properties KW - Fiber-reinforced composite PY - 2018 DO - https://doi.org/10.1016/j.ijengsci.2017.10.002 SN - 0020-7225 SN - 1879-2197 VL - 122 SP - 14 EP - 29 PB - Elsevier AN - OPUS4-42814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Koos, R. A1 - Sevostianov, I. A1 - Garces, G. A1 - Requena, G. A1 - Fernández, R. A1 - Bruno, Giovanni T1 - The role of intermetallics in stress partitioning and damage evolution of AlSi12CuMgNi alloy JF - Materials Science & Engineering A N2 - Load partitioning between phases in a cast AlSi12CuMgNi alloy was investigated by in-situ compression test during neutron diffraction experiments. Computed tomography (CT) was used to determine volume fractions of eutectic Si and intermetallic (IM) phases, and to assess internal damage after ex-situ compression tests. The CT reconstructed volumes showed the interconnectivity of IM phases, which build a 3D network together with eutectic Si. Large stresses were found in IMs, revealing their significant role as a reinforcement for the alloy. An existing micromechanical model based on Maxwell scheme was extended to the present case, assuming the alloy as a three-phase composite (Al matrix, eutectic Si, IM phases). The model agrees well with the experimental data. Moreover, it allows predicting the principal stresses in each phase, while experiments can only determine stress differences between the axial and radial sample directions. Finally, we showed that the addition of alloying elements not only allowed developing a 3D interconnected network, but also improved the strength of the Al matrix, and the ability of the alloy constituents to bear mechanical load. KW - Aluminum alloys KW - Neutron diffraction KW - Micromechanical modeling KW - Internal stress KW - Computed tomography PY - 2018 DO - https://doi.org/10.1016/j.msea.2018.08.070 VL - 736 SP - 453 EP - 464 PB - Elsevier B.V. AN - OPUS4-45927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baensch, Franziska A1 - Baer, Wolfram A1 - Chruscicki, Sebastian A1 - Homann, Tobias A1 - Prager, Jens A1 - Schmidt, Dirk A1 - Stajanca, Pavol A1 - Weltschev, Margrit A1 - Wosidlo, Peter A1 - Habib, Abdel Karim T1 - AGIFAMOR: Anwendung der akustischer und faseroptischer Sensorik zur Überwachung von Rohrleitungen; Teil 3: Technische Hintergründe - Messmethoden JF - Technische Sicherheit N2 - Schäden an Rohrleitungen können zu hohen Umweltbelastungen und wirtschaftlichen Schäden führen. Um die dauerhafte Verfügbarkeit der Infrastruktur zu gewährleisten, wird im Rahmen des Projekts AGIFAMOR an der Bundesanstalt für Materialforschung und -prüfung (BAM) erprobt, inwiefern das Verfahren der verteilten akustischen faseroptischen Sensorik (Distributed acoustic sensing - DAS) zur kontinuierlichen Überwachung von Rohrleitungen verwendet werden kann. Neben der DAS werden erprobte Verfahren der zerstörungsfreien Prüfung wie Schallemissionsanalyse (SEA) und Beschleunigungssensoren eingesetzt. An dieser Stelle soll detailliert auf die unterschiedlichen Messverfahren und deren spezifischen Einsatz im Rahmen des Projektes eingegangen werden. KW - Verteilten akustischen faseroptischen Sensorik KW - Überwachung von Rohrleitungen KW - Zerstörungsfreie Prüfung KW - Schallemissionsanalyse KW - Beschleunigungssensorik PY - 2018 SN - 2191-0073 VL - 8 IS - 5 SP - 29 EP - 35 PB - Springer-VDI-Verl. CY - Düsseldorf AN - OPUS4-45933 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Waske, Anja A1 - Dutta, B. A1 - Teichert, N. A1 - Weise, B. A1 - Shayanfar, N. A1 - Becker, A. A1 - Hütten, A. A1 - Hickel, T. T1 - Coupling Phenomena in Magnetocaloric Materials N2 - Strong coupling effects in magnetocaloric materials are the key factor to achieve a large magnetic entropy change. Combining insights from experiments and ab initio calculations, we review relevant coupling phenomena, including atomic coupling, stress coupling, and magnetostatic coupling. For the investigations on atomic coupling, we have used Heusler compounds as a flexible model system. Stress coupling occurs in first‐order magnetocaloric materials, which exhibit a structural transformation or volume change together with the magnetic transition. Magnetostatic coupling has been experimentally demonstrated in magnetocaloric particles and fragment ensembles. Based on the achieved insights, we have demonstrated that the materials properties can be tailored to achieve optimized magnetocaloric performance for cooling applications. KW - Epitaxial thin films KW - Coupling KW - Atomic Scale KW - Stoichiometric phases KW - Multilaysers KW - Stress Coupling KW - Surface defects PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-458856 DO - https://doi.org/10.1002/ente.201800163 VL - 6 IS - 8 SP - 1429 EP - 1447 PB - Wiley-VCH AN - OPUS4-45885 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Detjens, Marc A1 - Hübert, Thomas A1 - Tiebe, Carlo A1 - Banach, Ulrich T1 - Coulometric trace humidity measurement in technical gases JF - Review of scientific instruments N2 - Trace humidity was measured by using miniaturized planar coulometric sensors in technical gases such as hydrogen, nitrogen, helium, nitrous oxide, and synthetic air. Frost point temperatures tf in the gases ranged from −60 °C to −30 °C, which is equivalent to a vapour mole fraction xv from 10 μmol mol−1 to 376 μmol mol−1. In addition, the generated humidity was determined by using a precision dew point hygrometer as reference. Nonlinear calibration functions were calculated that correlated electric current (sensor signal) and reference humidity. Parameters of functions were tested with one-way analysis of variances (ANOVA) to prove if all used sensors had a similar behavior in the same gas during experiments. Results of ANOVA confirmed that averaged functions can be applied for trace humidity measurement in nitrogen, helium, nitrous oxide, and synthetic air. The calculated functions were negligibly different for nitrogen, helium, and synthetic air. In humidified nitrous oxide, a minor change of parameters was observed due to lower electrical currents. In total contrast to that, the measured sensor signals were significantly higher in humidified hydrogen and each sensor required its own calibration function. The reason was a recombination effect that favoured multiple measurements of water molecules. Nevertheless, it was possible to measure continuously trace humidity in all tested gases by using coulometric sensors with an expanded uncertainty below 2 K (k = 2). KW - ANOVA KW - Trace humdity measurement KW - Coulometric sensors KW - Chemical sensors KW - Measurement uncertainty PY - 2018 DO - https://doi.org/10.1063/1.5008463 SN - 0034-6748 SN - 1089-7623 VL - 89 IS - 8 SP - 085004, 1 EP - 8 PB - American Institute of Physics (AIP) CY - Maryland (USA) AN - OPUS4-45956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tiebe, Carlo A1 - Detjens, Marc A1 - Banach, Ulrich A1 - Hübert, Thomas T1 - Measurement uncertainty of coulometric trace humidity sensors JF - tm - Technisches Messen N2 - Especially trace amounts of water vapour in gases can be reliably determined by coulometric trace humidity sensors. The principle of these sensors is based on water vapour absorption in a hygroscopic layer and its subsequent electrolytic decomposition. The calibration of sensors was performed in the humidity range, expressed as frost point temperature, from −30°C to −80°C . This range is equivalent to volume fractions smaller than 376 µL·L−1. Generated humidity was measured with coulometric sensors and a chilled dew point hygrometer that was used as reference. An empirical non-linear function was found between sensor signal and measured reference humidity. This function consists of two parameters with a measurement uncertainty. Both calibration parameters were checked by means of one-way analysis of variance. It showed that gas specific function can be used for humidity measurement in nitrogen, hydrogen, dinitrogen monoxide, compressed and synthetic air. It is possible to determine trace humidity in all tested gases with an expanded uncertainty less than 2.1 K (coverage factor k=2 ) regarding frost point temperature. KW - Trace humidity KW - Coulometric sensor KW - Measurement uncertainty KW - ANOVA PY - 2018 DO - https://doi.org/10.1515/teme-2018-0031 SN - 0171-8096 VL - 85 IS - 12 SP - 746 EP - 753 PB - De Gruyter CY - Oldenbourg AN - OPUS4-45959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Göbel, M. A1 - Kirsch, S. A1 - Schwarze, L: A1 - Schmidt, L. A1 - Scholz, H. A1 - Haußmann, J. A1 - Klages, M. A1 - Scholta, J. A1 - Markötter, H. A1 - Alrwashdeh, S. A1 - Manke, I. A1 - Müller, Bernd R. T1 - Transient limiting current measurements for characterization of gas diffusion layers JF - Journal of Power Sources N2 - The water management in proton exchange membrane fuel cells (PEMFC) is strongly influenced by the design of the gas diffusion layers (GDL). Limiting current measurements in small-scale cells operating at high stoichiometries are useful to determine the oxygen transport resistance. The oxygen transport resistance increases, once water condenses inside the GDL. In this study a new electrochemical method for voltage loss estimation of GDL induced oxygen transport losses are presented. This new method, referred to as “transient limiting current” (TLC), is compared with the literature method. TLC allows a direct estimation of oxygen transport resistance at an arbitrarily conditioned state. This study also presents a case study of liquid water visualization of a PEM fuel cell with varying GDLs types. With the help of quasi in-situ synchrotron X-ray computed tomography and time resolved radiography measurements we investigate appearance and distribution of liquid water inside the GDLs under limiting current conditions. KW - In-situ characterization of GDLs KW - In-situ synchrotron X-ray computed tomography KW - In-situ synchrotron X-ray radiography KW - BAMline PY - 2018 DO - https://doi.org/10.1016/j.jpowsour.2018.09.003 SN - 0378-7753 SN - 1873-2755 VL - 402 SP - 237 EP - 245 PB - Elsevier B.V. AN - OPUS4-46552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Z. A1 - Kruschwitz, Sabine A1 - Weller, A. A1 - Halisch, M. T1 - Enhanced pore space analysis by use of µ-CT, MIP, NMR, and SIP JF - Solid Earth N2 - We investigate the pore space of rock samples with respect to different petrophysical parameters using various methods, which provide data on pore size distributions, including micro computed tomography (µ-CT), mercury Intrusion porosimetry (MIP), nuclear magnetic resonance (NMR), and spectral-induced polarization (SIP). The resulting cumulative distributions of pore volume as a function of pore size are compared. Considering that the methods differ with regard to their limits of resolution, a multiple-length-scale characterization of the pore space is proposed, that is based on a combination of the results from all of these methods. The approach is demonstrated using samples of Bentheimer and Röttbacher sandstone. Additionally, we compare the potential of SIP to provide a pore size distribution with other commonly used methods (MIP, NMR). The limits of Resolution of SIP depend on the usable frequency range (between 0.002 and 100 Hz). The methods with similar Resolution show a similar behavior of the cumulative pore volume distribution in the verlapping pore size range. We assume that µ-CT and NMR provide the pore body size while MIP and SIP characterize the pore throat size. Our study Shows that a good agreement between the pore radius distributions can only be achieved if the curves are adjusted considering the resolution and pore volume in the relevant range of pore radii. The MIP curve with the widest range in Resolution should be used as reference. KW - Pore space KW - Induced polarization KW - Mercury intrusion porosimetry KW - µ-CT KW - NMR PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465071 DO - https://doi.org/10.5194/se-9-1225-2018 SN - 1869-9510 SN - 1869-9529 VL - 9 IS - 6 SP - 1225 EP - 1238 PB - Copernicus Publications CY - Göttingen AN - OPUS4-46507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Kachanov, M. A1 - Sevostianov, I. A1 - Shyam, A. T1 - Micromechanical modeling of non-linear stress-strain behavior of polycrystalline microcracked materials under tension JF - Acta Materialia N2 - The stress-strain behavior of microcracked polycrystalline materials (such as ceramics or rocks) underconditions of tensile, displacement-controlled, loading is discussed. Micromechanical explanation andmodeling of the basic features, such as non-linearity and hysteresis in stress-strain curves, is developed,with stable microcrack propagation and “roughness” of intergranular cracks playing critical roles. Ex-periments involving complex loading histories were done on large- and medium grain sizeb-eucryptiteceramic. The model is shown to reproduce the basic features of the observed stress-strain curves. KW - Nonlinearity KW - Stress-strain relations KW - Hysteresis KW - Polycrystals PY - 2018 DO - https://doi.org/10.1016/j.actamat.2018.10.024 SN - 1359-6454 SN - 1873-2453 VL - 164 SP - 50 EP - 59 PB - Elsevier Ltd. AN - OPUS4-46515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brierley, N. A1 - Bellon, Carsten A1 - Lazaro Toralles, B. T1 - Optimized multi-shot imaging inspection design JF - Proceedings of The Royal Society A N2 - The inspection of complex-shaped components, such as those enabled by additive manufacturing, is a major challenge in industrial quality assurance. A frequently adopted approach to volumetric non-destructive evaluation is X-ray computed tomography, but this has major drawbacks. Two-dimensional radiography can overcome some of these problems, but does not generally provide an inspection that is as capable. Moreover, designing a detailed inspection for a complex-shaped component is a labour-intensive task, requiring significant expert input. In response, a computational framework for optimizing the data acquisition for an image-based inspection modality has been devised. The initial objective is to advance the capabilities of radiography, but the algorithm is, in principle, also applicable to alternative types of imaging. The algorithm exploits available prior information about the inspection and simulations of the inspection modality to allow the Determination of the optimal inspection configuration, including specifically component poses with respect to the imaging system. As an intermediate output, spatial maps of inspection performance are computed, for understanding spatially varying limits of detection. Key areas of innovation concern the defect detectability evaluation for arbitrarily complex indications and the creation of an application-specific optimization algorithm. Initial trials of the algorithm are presented, with good results. KW - Inspection design and planning KW - Optimization KW - Radiography KW - Simulation PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-458363 DO - https://doi.org/10.1098/rspa.2017.0319 SN - 1471-2946 SN - 1364-5021 VL - 474 IS - 2216 SP - 70319, 1 EP - 25 PB - The Royal Society CY - London AN - OPUS4-45836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rasmussen, H. K. A1 - Fasano, A. A1 - Stajanca, Pavol A1 - Woyessa, G. A1 - Schukar, Marcus A1 - Bang, O. T1 - Mechanical characterization of drawn Zeonex, Topas, polycarbonate and PMMA microstructured polymer optical fibres JF - Optical materials express N2 - The mechanical stress-strain behaviour of polymer optical fibres (POFs) drawn from various materials was measured, both before and after temperature annealing of the POFs. The POFs were drawn from PMMA (GEHR), Zeonex (480R), PC (Makrolon LED2245) and two different grades of Topas (8007S-04 and 5013S-04). With fibre drawing stresses at or above the elastic (uniaxial extensional) plateau modulus, the polymer chains in the POFs have a high degree of alignment, which has a large impact on fibre mechanical behaviour. The testing was performed at straining rates ranging from 0.011%/s, to 1.1%/s for the un-annealed fibres and a straining rate of 1.1%/s for the annealed ones. The elastic modulus of the tested POFs showed no sensitivity toward variation of straining rate. In the case of Topas 5013S-04 and PMMA, the producer-reported values are the same as the one obtained here for the POFs both before and after annealing. The drawn POFs made of Zeonex, PC, and Topas 8007S-04 exhibit larger elastic modulus than the respective materials in the bulk form. The elastic modulus of these fibres is reduced upon annealing by 10-15%, but still remains above the producer-reported values for the bulk polymers. In the nonlinear elastic region, only the PC POF is statistically unaffected by the changes in the straining rate, while Topas 8007S-04 POF shows insensitivity to the straining rate until 3% strain. All other changes affect the stress-strain curves. The annealing flattens all stress-strain curves, making the fibres more sensitive to yield. KW - Polymer optical fibres KW - Mechanical characterization KW - Stree-strain curve KW - PMMA KW - Topas KW - Polycarbonate KW - Zeonex PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-464163 DO - https://doi.org/10.1364/OME.8.003600 SN - 2159-3930 VL - 8 IS - 11 SP - 3600 EP - 3614 PB - Optical Society of America CY - Washington, DC AN - OPUS4-46416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kowarik, Stefan A1 - Pithan, L. A1 - Nabok, D. A1 - Cocchi, C. A1 - Beyer, P. A1 - Duva, G. A1 - Simbrunner, J. A1 - Rawle, J. A1 - Nicklin, C. A1 - Schäfer, P. A1 - Draxl, C. A1 - Schreiber, F. T1 - Molecular structure of the substrate-induced thin-film phase of tetracene JF - Journal of chemical physics N2 - We present a combined experimental and theoretical study to solve the unit-cell and molecular arrangement of the tetracene thin film (TF) phase. TF phases, also known as substrate induced phases (SIP), are polymorphs that exist at interfaces and decisively impact the functionality of organic thin films, e.g., in a transistor channel, but also change the optical spectra due to the different molecular packing. As SIPs only exist in textured ultrathin films, their structure determination remains challenging compared to bulk materials. Here, we use grazing incidence Xray diffraction and atomistic simulations to extract the TF unit-cell parameters of tetracene together with the atomic positions within the unit-cell. KW - X-ray DIFFRACTION KW - Tetracene KW - Semiconductor KW - Optoelectronics KW - Molecule PY - 2018 DO - https://doi.org/10.1063/1.5043379 VL - 149 IS - 14 SP - 144701-1 EP - 144701-5 PB - AIP Publishing AN - OPUS4-46399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duva, G. A1 - Pithan, L. A1 - Zeiser, C. A1 - Reisz, B. A1 - Dieterle, J. A1 - Hofferberth, B. A1 - Beyer, P. A1 - Bogula, L. A1 - Opitz, A. A1 - Kowarik, Stefan A1 - Hinderhofer, A. A1 - Gerlach, A. A1 - Schreiber, F. T1 - Thin-Film Texture and Optical Properties of Donor/Acceptor Complexes. Diindenoperylene/F6TCNNQ vs Alpha-Sexithiophene/ F6TCNNQ JF - The Journal of Physical Chemistry C N2 - In this work, two novel donor/acceptor (D/A) complexes, namely, diindenoperylene (DIP)/1,3,4,5,7,8-hexafluoro-tetracyanonaphthoquinodimethane (F6TCNNQ) and alpha-sexithiophene (6T)/F6TCNNQ, are studied. The D/A complexes segregate in form of π−π stacked D/A cocrystals and can be observed by X-ray scattering. The different conformational degrees of freedom of the donor molecules, respectively, seem to affect the thin-film crystalline texture and composition of the D/A mixtures significantly. In equimolar mixtures, for DIP/F6TCNNQ, the crystallites are mostly uniaxially oriented and homogeneous, whereas for 6T/F6TCNNQ, a mostly 3D (isotropic) orientation of the crystallites and coexistence of domains of pristine compounds and D/A complex, respectively, are observed. Using optical absorption spectroscopy, we observe for each of the two mixed systems a set of new, strong transitions located in the near-IR range below the gap of the pristine compounds: such transitions are related to charge-transfer (CT) interactions between donor and acceptor. The optical anisotropy of domains of the D/A complexes with associated new electronic states is studied by ellipsometry. We infer that the CT-related transition dipole moment is perpendicular to the respective π-conjugated planes in the D/A complex. KW - Optical properties KW - Molecular semiconductor KW - X-ray diffraction PY - 2018 DO - https://doi.org/10.1021/acs.jpcc.8b03744 SP - 18705 EP - 18714 PB - ACS AN - OPUS4-46400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bertovic, Marija T1 - Assessing and Treating Risks in Mechanised NDT: A Human Factors Study JF - ZfP-Zeitung N2 - Reliability of NDT is affected by human factors, which have thus far received the least amount of attention in the reliability assessments. With increased use of automation, in terms of mechanised testing (automation-assisted inspection and the corresponding evaluation of data), higher reliability standards are believed to have been achieved. However, human inspectors, and thus human factors, still play an important role throughout this process and the risks involved in this application are unknown. The aim of this study was to explore for the first time the risks associated with mechanised NDT and find ways of mitigating their effects on the inspection performance. Hence, the objectives were to identify and Analyse potential risks in mechanised NDT and devise measures against them. To address those objectives, a risk assessment in form of a Failure Modes and Effects Analysis (FMEA) was conducted. This analysis revealed potential for failure during both the acquisition and evaluation of NDT data that could be assigned to human, technology, and organisation. Since the existing preventive measures were judged to be insufficient to defend the system from identified failures, new preventive measures were suggested. KW - NDT KW - Human factors KW - Risk assessment KW - FMEA KW - Reliability KW - Human error PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-463325 SN - 1616-069X IS - 161 SP - 52 EP - 62 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-46332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilsch, Gerd A1 - Bohling, C. A1 - Molkenthin, A. T1 - Mobiles LIBS-Gerät (Laser Induced Breakdown Spectroscopy) JF - DGZfP-Zeitung N2 - Schädigungen durch Korrosion der Bewehrung von Stahlbetonbauwerken unserer Infrastruktur sind u. a. mit dem Eindringen von Chloriden aus Tausalzen oder Meereswasser verbunden. In den Regelwerken sind daher Grenzwerte für den maximal zulässigen Chlorid-Gehalt deiniert. Die Einhaltung dieser Grenzwerte wird in der Praxis über die Entnahme von Bohrmehl oder die Entnahme von Bohrkernen überwacht. Die Bohrkerne werden in Zylindersegmente von meist zwei cm Höhe geschnitten, dann gemahlen und mit Säure aufgeschlossen. Das Bohrmehl aus verschiedenen Tiefenabschnitten kann direkt mit Säure aufgeschlossen werden. Der Chlorid-Gehalt im Aufschluss wird dann meist mittels Potentiometrischer Titration bestimmt. Dieses Vorgehen ist mit einem hohen Zeit- und Personalaufwand verbunden. Die Information über die Heterogenität des Betons geht dabei aufgrund der Homogenisierung bei der Probenvorbereitung oder bei der Entnahme von Bohrmehl verloren. Der Chlorid-Gehalt wird in der homogenisierten Betonprobe (Zement, Wasser und Gesteinskörnung) analysiert und die Werte bezogen auf den Beton angegeben. Demgegenüber sind die Grenzwerte des maximal zulässigen Chlorid-Gehaltes auf den Zement bezogen. Da die Rezeptur des Betons fast nie verfügbar ist, wird die Umrechnung vom Gehalt bezogen auf den Beton zum Gehalt bezogen auf den Zement über eine zusätzliche Analyse oder durch Abschätzung durchgeführt. Als Ergänzung zum Standardverfahren wurde in der Bundesanstalt für Materialforschung und –prüfung das LIBS- Verfahren (Laser Induced Breakdown Spectroscopy) für die Untersuchung der chemischen Zusammensetzung von Baustofen im Labor seit einigen Jahren erfolgreich eingesetzt. In einem vom Bundeswirtschatsministerium geförderten Projekt sollten die sich ergänzenden Kompetenzen eines Forschungspartners (BAM), eines Geräteherstellers (SECOPTA analytics GmbH) und eines potentiellen Anwenders (Ingenieurbüro Specht, Kalleja und Partner) in die Entwicklung eines mobilen LIBS Gerätes (BauLIBS) eingehen. Dieser Artikel stellt das Messprinzip und seine wesentlichen Vorteile vor, gibt einen Überblick über das entwickelte mobile LIBS-Gerät und seine Leistungsparameter. Anschließend werden einige erfolgreiche Anwendungsbeispiele zur Untersuchung von Schädigungsprozessen direkt an der Beton-Infrastruktur vorgestellt und ein Ausblick auf zuküntige Entwicklungen gegeben. Das BauLIBS-Gerät liefert dem sachkundigen Planer Daten für die Bewertung des Istzustandes von Bauwerken unserer Infrastruktur durch die zweidimensionale Erfassung von Elementverteilungen. Typische Anwendungen sind die Erfassung von Chlor, Schwefel, Kohlenstof, Natrium, Kalium und Lithium in Beton oder als Qualitätssicherung der Nachweis der mit einem Marker versehenen Tiefenhydrophobierung. KW - Mobiles LIBS KW - Beton KW - Chloride KW - Sulfate KW - Schädigung PY - 2018 VL - 160 IS - Juni 2018 SP - 46 EP - 50 PB - DGZfP CY - Berlin AN - OPUS4-46806 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arlt, T. A1 - Kardjilov, N. A1 - Kupsch, Andreas A1 - Manke, I. A1 - Salvemini, F. A1 - Grazzi, F. T1 - Neutronen-Laminografie am Beispiel eines historischen Artefakts T1 - Neutron computed laminography on an ancient metal artifact JF - Materials Testing N2 - Die Computer-gestützte Laminografie (CL) wurde als komplementäre Methode zur Computertomografie für die dreidimensionale Bildgebung von lateral ausgedehnten Objekten entwickelt. Ursprünglich für medizinische Zwecke verwendet, wurde diese Methode kürzlich als zerstörungsfreie nicht-invasive Methode nicht nur in der Materialforschung, sondern auch mit steigendem Interesse für kunsthandwerkliche und historische Objekte eingesetzt. Hier wird die Computer-gestützten Laminografie mit polychromatischer Neutronenstrahlung an einer historischen Tsuba eingesetzt, einem Stichblatt eines japanischen Schwerts. Eine Analyse der Lötstellen gibt Rückschlüsse auf das Herstellungsverfahren. Zudem wurden unterschiedliche Materialsysteme gefunden, vermutlich um dem Tsuba lokal eine höhere Stabilität zu verleihen. Die Messungen wurden an der Imaging-Beamline CONRAD-2 an der Neutronenquelle BER 2 des Helmholtz-Zentrums Berlins (HZB) durchgeführt. KW - Neutronenlaminographie KW - Computertomographie PY - 2018 DO - https://doi.org/10.3139/120.111261 SN - 0025-5300 VL - 60 IS - 12 SP - 1209 EP - 1214 PB - Carl Hanser Verlag CY - München AN - OPUS4-46936 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Skrotzki, Birgit A1 - Stegemann, Robert A1 - Löwe, Peter A1 - Kreutzbruck, M. T1 - The role of surface topography on deformation-induced magnetization under inhomogeneous elastic-plastic deformation JF - Materials N2 - It is widely accepted that the magnetic state of a ferromagnetic material may be irreversibly altered by mechanical loading due to magnetoelastic effects. A novel standardized nondestructive testing (NDT) technique uses weak magnetic stray fields, which are assumed to arise from inhomogeneous deformation, for structural health monitoring (i.e., for detection and assessment of damage). However, the mechanical and microstructural complexity of damage has hitherto only been insufficiently considered. The aim of this study is to discuss the phenomenon of inhomogeneous “self-magnetization” of a polycrystalline ferromagnetic material under inhomogeneous deformation experimentally and with stronger material-mechanical focus. To this end, notched specimens were elastically and plastically deformed. Surface magnetic states were measured by a three-axis giant magnetoresistant (GMR) sensor and were compared with strain field (digital image correlation) and optical topography measurements. It is demonstrated that the stray fields do not solely form due to magnetoelastic effects. Instead, inhomogeneous plastic deformation causes topography, which is one of the main origins for the magnetic stray field formation. Additionally, if not considered, topography may falsify the magnetic signals due to variable lift-off values. The correlation of magnetic vector components with mechanical tensors, particularly for multiaxial stress/strain states and inhomogeneous elastic-plastic deformations remains an issue. KW - Magnetic stray fields KW - Magnetomechanical effect KW - Damage KW - Topography KW - Multiaxial deformation KW - Notch KW - Plastic deformation KW - Metal magnetic memory KW - Digital image correlation KW - Structural steel PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-457878 DO - https://doi.org/10.3390/ma11091518 SN - 1996-1944 VL - 11 IS - 9 SP - 1518, 1 EP - 26 PB - MDPI CY - Basel, Switzerland AN - OPUS4-45787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weise, Frank A1 - Millar, Steven A1 - Wilsch, Gerd T1 - Analyse des Tausalzeintrags in Fahrbahndeckenbetone mit neuartiger Prüftechnik T1 - Analysis of De-icing Salt in Concrete Pavement with a new type of Test Technology JF - Beton- und Stahlbetonbau N2 - In den letzten Jahren sind im deutschen Bundesautobahnnetz vermehrt AKR-Schäden an Betonfahrbahndecken aufgetreten. Ursächlich hierfür ist die Verwendung alkaliempfindlicher Gesteinskörnung. Dies führt bei gleichzeitiger Anwesenheit von Wasser infolge der Exposition der Fahrbahndecke und des alkalischen Milieus durch den Einsatz alkalireicher Portlandzemente bei der Betonherstellung zu einer Alkali-Kieselsäure-Reaktion (AKR). Zusätzlich wird der AKR-Schädigungsprozess in Betonfahrbahndecken durch den externen Tausalzeintrag (primär NaCl) im Winter begünstigt. Vor diesem Hintergrund kommt der Ermittlung des Tausalzeintrags in den Fahrbahndeckenbeton eine große Bedeutung zu. Die Analyse des Tausalzeintrags erfolgte bisher ausschließlich nasschemisch an gemahlenen Bohrkernsegmenten. Nachteilig sind hierbei der relativ hohe prüftechnische Aufwand und die eingeschränkte Ortsauflösung. Der alternative Einsatz von LIBS (Laser-induced breakdown spectroscopy) eröffnet in diesem Kontext neue Möglichkeiten. So wird in diesem Beitrag anhand von Bohrkernen aus einem repräsentativen AKR-geschädigten BAB-Abschnitt exemplarisch die Vorgehensweise bei der LIBS-Analyse zur Ermittlung der Na- und Cl-Verteilung an vertikalen Schnittflächen von Bohrkernen aufgezeigt. Da der Tausalzeintrag primär über den Zementstein erfolgt, wurde der verfälschende Na-Grundgehalt der Gesteinskörnung mittels eines Ausschlusskriteriums (Ca-Gehalt) eliminiert. Vergleichend durchgeführte Cl-Mappings mit Mikroröntgenfluoreszenzanalyse sowie nasschemische Analysen belegen die Güte der durchgeführten LIBS-Messungen. Allerdings bedarf es bei der quantitativen Ermittlung des Natriumgehaltes in der Betonfahrbahndecke noch weitergehender Untersuchungen. N2 - Analysis of the intrusion of de-icing salt into concrete pavements by a novel test method In recent years the German motorway network has seen an increase in the occurrence of damage in concrete pavements. This has been caused by the use of alkali-sensitive aggregates. Given the exposure of the concrete pavement to water and the alkaline environment caused by the use of Portland cement during concrete mixing, this environment can lead to an alkali-silica reaction (ASR) process. This ASR-damage process in concrete pavements is further exacerbated by the external application of de-icing salt in winter. Against this background, the evaluation of the intrusion of de-icing salt becomes of great importance. Until now, the analysis of the intrusion of de-icing salt was carried out in a wet-chemistry process on finely ground segments of drilling cores. The disadvantages of this method are the relatively arduous testing process and the limited depth resolution. The alternative application of LIBS (laser-induced breakdown spectroscopy) offers new possibilities in this context. In this paper, the procedure for the LIBS analysis of sodium and chloride distribution on vertical cut surfaces of drilling cores taken from representative ASR-damaged concrete pavements is presented. Because the intrusion of de-icing salt takes place primarily in the cement matrix, the distorting effect of the sodium content in the aggregates was eliminated by an exclusion criteria (namely, the calcium content). The comparable chloride mappings by micro X-ray fluorescence spectroscopy and wet-chemical analysis confirm the quality of the LIBS measurements. However, additional investigations are necessary for the quantitative analysis of sodium content in concrete pavements. KW - Betonfahrbahndecke KW - Alkali-Kieselsäure-Reaktion KW - Tausalz KW - LIBS KW - MRFA KW - Nasschemie KW - ZfP PY - 2018 DO - https://doi.org/10.1002/best.201800033 SN - 0005-9900 SN - 1437-1006 VL - 113 IS - 9 SP - 656 EP - 666 PB - Wilhelm Ernst & Sohn, Verlag für Architektur und technische Wissenschaften GmbH & Co. KG CY - Berlin AN - OPUS4-46171 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weise, Frank A1 - Kind, Thomas A1 - Stelzner, Ludwig A1 - Wieland, M. T1 - Dunkelfärbung der Betonfahrbahndecke im AKR-Kontext - Ursachenanalyse mit innovativer Prüftechnik T1 - Dark Dyeing of the Concrete Pavement in the AKR Context: Root Cause Analysis with innovative Testing Technology JF - Beton- und Stahlbetonbau N2 - Die AKR-Schadensevolution von Betonfahrbahndecken ist in der Anfangsphase durch eine Dunkelfärbung der Oberfläche im Fugenbereich gekennzeichnet. Es wird vermutet, dass eine erhöhte Durchfeuchtung der Betonrandzone ursächlich für diese Erscheinung ist. Vor diesem Hintergrund wurde exemplarisch eine Fahrbahnplatte eines repräsentativen Bundesautobahnabschnitts systematisch mit verschiedenartiger zerstörungsfreier Prüftechnik vor Ort untersucht. Die Ergebnisse der zunächst erfolgten großflächigen Durchmusterung mit Radar zeigen, dass in den Bereichen mit einer Dunkelfärbung der Betonfahrbahndecke erhöhte Laufzeiten der Radarimpulse zwischen der Oberfläche und der Rückseite der Betonfahrbahndecke auftreten, was auf eine erhöhte integrale Durchfeuchtung der Betonfahrbahndecke schließen lässt. Vertiefend durchgeführte NMR-Feuchtemessungen in der Betonrandzone zeigen eine gute Korrelation zwischen erhöhtem Feuchtegehalt und der dunkel gefärbten Fahrbahnoberfläche. Die Ergebnisse beider zerstörungsfreien Prüfmethoden lassen den Schluss zu, dass die Betonfahrbahndecke in der Nähe des Fugenkreuzes eine höhere Durchfeuchtung als im Bereich der Querscheinfuge aufweist. Die geringste Durchfeuchtung besitzt die Betonfahrbahndecke in der Plattenmitte. Die mit den zerstörungsfreien Prüfverfahren ermittelten Befunde stimmen prinzipiell gut mit den punktuell mittels Darr-Wäge-Verfahren an Bohrmehlproben gewonnenen Ergebnissen überein. N2 - Darkening of the surface within alkali-silica reaction context - Root cause analysis with non-destructive measurement methods The damage evolution in concrete pavements due to alkali-silica reaction is characterized in the initial phase by a darkening of the surface along joint regions. It is generally assumed that an increased moisture content of the concrete boundary zone is responsible for this visual appearance. Against this background, a concrete pavement slab of a representative German motorway section was systematically investigated in-situ using different non-destructive measurement methods. The results of the high-resolution, planar radar showed an increased time of flight of the radar pulse between the pavement surface and the base of the concrete slab in the darkened areas. This indicated that the overall moisture content is increased near joints in the slab. Additional NMR moisture measurements in the concrete boundary zone confirmed the correlation between increased moisture content and the dark-colored surface of the concrete pavement. The results of both non-destructive measurement methods indicated that the moisture content near the intersection of two joints was higher than the moisture content near the area around the transverse joint. The lowest moisture content was measured in the center of the concrete pavement slab. The results obtained with the two non-destructive testing methods were in overall good agreement with moisture measurements of boring dust analyzed using the gravimetric method. KW - Betonfahrbahndecke KW - Alkali-Kieselsäure-Reaktion KW - Feuchtemessung KW - Radar KW - Nuclear Magnetic Resonance KW - ZfP PY - 2018 DO - https://doi.org/10.1002/best.201800020 SN - 0005-9900 SN - 1437-1006 VL - 113 IS - 9 SP - 647 EP - 655 PB - Wilhelm Ernst & Sohn, Verlag für Architektur und technische Wissenschaften GmbH & Co. KG CY - Berlin AN - OPUS4-46173 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trofimov, A. A1 - Mishurova, Tatiana A1 - Lanzoni, L. A1 - Radi, E. A1 - Bruno, Giovanni A1 - Sevostianov, I. T1 - Microstructural analysis and mechanical properties of concrete reinforced with polymer short fibers JF - International journal of engineering science N2 - The paper focuses on the development of a methodology for quantitative characterization of a concrete containing polymer fibers and pores. Computed tomography (CT) characterization technique is used to provide input data for Finite Element Method (FEM) simulations and analytical modeling based on micromechanical homogenization via the compliance contribution tensor formalism. Effective elastic properties of reinforced concrete are obtained experimentally using compression testing, analytically in the framework of Non-Interaction approximation and numerically performing direct FEM simulations on specimen with reconstructed microstructure. It is shown that CT produces results suitable for implementation in numerical and analytical models. The results of analytical and numerical modeling are in a good agreement with experimental measurements providing maximum discrepancy of ∼ 2.5%. KW - Reinforced concrete KW - Computed tomography KW - Finite element method KW - Micromechanics KW - Homogenization PY - 2018 DO - https://doi.org/10.1016/j.ijengsci.2018.09.009 SN - 0020-7225 SN - 1879-2197 VL - 133 SP - 210 EP - 218 PB - Elsevier AN - OPUS4-46153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlichting, S. A1 - Hönig, Gerald A1 - Müßener, J. A1 - Hille, P. A1 - Grieb, T. A1 - Westerkamp, S. A1 - Teubert, J. A1 - Schörmann, J. A1 - Wagner, M.R. A1 - Rosenauer, A. A1 - Eickhoff, M. A1 - Hoffmann, A. A1 - Callsen, G. T1 - Suppression of the quantum-confined Stark effect in polar nitride heterostructures JF - Communications Physics N2 - Recently, we suggested an unconventional approach (the so-called Internal-Field-Guarded-Active-Region Design “IFGARD”) for the elimination of the quantum-confined Stark effect in polar semiconductor heterostructures. The IFGARD-based suppression of the Stark redshift on the order of electronvolt and spatial charge carrier separation is independent of the specific polar semiconductor material or the related growth procedures. In this work, we demonstrate by means of micro-photoluminescence techniques the successful tuning as well as the elimination of the quantum-confined Stark effect in strongly polar [000-1] wurtzite GaN/AlN nanodiscs as evidenced by a reduction of the exciton lifetimes by up to four orders of magnitude. Furthermore, the tapered geometry of the utilized nanowires (which embed the investigated IFGARD nanodiscs) facilitates the experimental differentiation between quantum confinement and Stark emission energy shifts. Due to the IFGARD, both effects become independently adaptable. KW - Nanophotonics KW - Photonic devices KW - Single photon and quantum effects PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-457884 UR - https://www.nature.com/articles/s42005-018-0044-1.epdf?author_access_token=TY108APMwI3Sy8_rbgAfMdRgN0jAjWel9jnR3ZoTv0Nca8yl_PwcuYy5S8D5-135dHiIk0H3cLNs57LA06d05O3lzyobDE7c_u32aHX8LlqxgvsOeicEftHVuupGzE3laWz-YTIw9mi-TlS8nsUOFQ%3D%3D DO - https://doi.org/10.1038/s42005-018-0044-1 SN - 2399-3650 VL - 1 SP - 48, 1 EP - 8 PB - Springer Nature AN - OPUS4-45788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stajanca, Pavol A1 - Chruscicki, Sebastian A1 - Homann, Tobias A1 - Seifert, Stefan A1 - Schmidt, Dirk A1 - Habib, Abdel Karim T1 - Detection of leak-induced pipeline vibrations using fiber-optic distributed acoustic sensing JF - Sensors N2 - In the presented work, the potential of fiber-optic distributed acoustic sensing (DAS) for detection of small gas pipeline leaks (<1%) is investigated. Helical wrapping of the sensing fiber directly around the pipeline is used to increase the system sensitivity for detection of weak leak-induced vibrations. DAS measurements are supplemented with reference accelerometer data to facilitate analysis and interpretation of recorded vibration signals. The results reveal that a DAS system using direct fiber application approach is capable of detecting pipeline natural vibrations excited by the broadband noise generated by the leaking medium. In the performed experiment, pipeline vibration modes with acceleration magnitudes down to single ug were detected. Simple leak detection approach based on spectral integration of time-averaged DAS signals in frequency domain was proposed. Potential benefits and limitations of the presented monitoring Approach were discussed with respect to its practical applicability. We demonstrated that the approached is potentially capable of detection and localization of gas pipeline leaks with leak rates down to 0.1% of the pipeline flow volume and might be of interest for monitoring of short- and medium-length gas pipelines. KW - Distributed acoustic sensing KW - DAS KW - Distributed vibration sensing KW - DVS KW - Fiber-optic sensors KW - Pipeline monitoring KW - Leak detection KW - Pipeline vibrations PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-457953 UR - http://www.mdpi.com/1424-8220/18/9/2841 DO - https://doi.org/10.3390/s18092841 SN - 1424-8220 VL - 18 IS - 9 SP - 2841, 1 EP - 18 PB - MDPI AN - OPUS4-45795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Cong A1 - Giovannelli, F. A1 - Delorme, F. T1 - Thermoelectric properties of Fe2-xTi1+xO5 solid solutions: Influence of microcracking and Nb substitution JF - Ceramics International N2 - The synthesis route and thermoelectric characterization of n-type Fe2-xTi1+xO5 (0 ≤ x ≤ 0.5) and Fe1.75(Ti1-yNby)1.25O5 (0 ≤ y ≤ 0.05) are presented. Their electrical conductivity obeys the small polaron model and their Seebeck coefficient is weakly dependent on temperature. The carrier concentration is increased with increasing Ti content in Fe2-xTi1+xO5, thus improving the electrical conductivity and decreasing the absolute values of the Seebeck coefficient. The composition with x = 0.5 shows reduced electrical conductivity contradicting the change in the carrier concentration, as it contains more microcracks than the other compositions. Fe2-xTi1+xO5 exhibits extremely low thermal conductivity. Fe2-xTi1+xO5 with x = 0.25 exhibits the highest ZT, ~ 0.014 at 1000 K. Therefore, a limited extent microcracks are beneficial to thermoelectric properties; however, when they are too extended they can be detrimental. On the contrary to Fe2TiO5, Nb substitution into Fe1.75Ti1.25O5 does not obviously improve its thermoelectric properties. KW - Thermoelectric KW - Pseudobrookite KW - Fe2TiO5 PY - 2018 DO - https://doi.org/10.1016/j.ceramint.2018.08.282 SN - 0272-8842 SN - 1873-3956 VL - 44 IS - 17 SP - 21794 EP - 21799 PB - Elsevier CY - Amsterdam AN - OPUS4-46299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strangfeld, Christoph A1 - Prinz, Carsten A1 - Hase, Felix A1 - Kruschwitz, Sabine T1 - Data of embedded humidity sensors, sample weights, and measured pore volume distribution for eight screed types JF - Data in Brief N2 - Four cement-based and four calcium-sulphate-based screed types are investigated. The samples have a diameter of 300 mm and a height of 35 or 70 mm. Up to ten humidity sensors are embedded directly during the concreting of the screed samples. Thus, the humidity over the sample height is monitored during hardening, hydration, evaporation, and oven drying. Furthermore, the screed samples are weighed during every measurement to determine the total mass and the corresponding moisture loss. To define the pore system precisely, mercury intrusion porosimetry as well as gas adsorption is performed. According to the data, the entire pore volume distribution is known. The measured pore diameters range from 0.8 nm to 100 µm and the total porosity of the examined screeds ranges between 11% and 22%. Based on these measurement data, moisture transport, pore saturation as well as sorption isotherms and their hysteresis may be calculated quantitatively as described in “Monitoring of the absolute water content in porous materials based on embedded humidity sensors” (Strangfeld and Kruschwitz, 1921). KW - Concrete and screed KW - Embedded humidity sensors KW - Pore volume distribution KW - Material moisture PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-462339 DO - https://doi.org/10.1016/j.dib.2018.09.020 SN - 2352-3409 VL - 21 SP - 8 EP - 12 PB - Elsevier CY - Amsterdam AN - OPUS4-46233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vahlsing, Thorsten A1 - Delbeck, S. A1 - Leonhardt, S. A1 - Heise, H.M. T1 - Noninvasive monitoring of blood glucose using color-coded photoplethysmographic images of the illuminated fingertip within the visible and near-infrared range: Opportunities and questions JF - Journal of Diabetes Science and Technology N2 - Noninvasive blood glucose assays have been promised for many years and various molecular spectroscopy-based methods of skin are candidates for achieving this goal. Due to the small spectral signatures of the glucose used for direct physical detection, moreover hidden among a largely variable background, broad spectral intervals are usually required to provide the mandatory analytical selectivity, but no such device has so far reached the accuracy that is required for self-monitoring of blood glucose (SMBG). A recently presented device as described in this journal, based on photoplethysmographic fingertip images for measuring glucose in a nonspecific indirect manner, is especially evaluated for providing reliable blood glucose concentration predictions. KW - Color sensing KW - Noninvasive glucose sensing KW - Plethysmographic skin imaging KW - Skin tissue spectroscopy KW - Visible/near-infrared spectroscopy PY - 2018 DO - https://doi.org/10.1177/1932296818798347 SN - 1932-2968 VL - 12 IS - 6 SP - 1169 EP - 1177 PB - Sage Publishing AN - OPUS4-46715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiede, Tobias A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Nadammal, N. A1 - Kromm, Arne A1 - Bode, Johannes A1 - Haberland, C. A1 - Bruno, Giovanni T1 - Residual stress in selective laser melted Inconel 718: Influence of the removal from base plate and deposition hatch length JF - Materials, Performance & Characterization N2 - The residual stress distribution in IN718 elongated prisms produced by Selective Laser Melting was studied by means of neutron (bulk) and laboratory X-ray (surface) diffraction. Two deposition hatch lengths were considered. A horizontal plane near the top surface (perpendicular to the building direction) and a vertical plane near the lateral surface (parallel to the building direction) were investigated. Samples both in as-built (AB) condition and removed (RE) from the base plate were characterized. While surface stress fields seem constant for AB condition, X-ray diffraction shows stress gradients along the hatch direction in the RE condition. The stress profiles correlate with the distortion maps obtained by tactile probe measurements. Neutron diffraction shows bulk stress gradients for all principal components along the main sample directions. We correlate the observed stress patterns with the hatch length, i.e. with its effect on temperature gradients and heat flow. The bulk stress gradients partially disappear after removal from the baseplate. KW - Residual stress KW - Additive manufacturing KW - Neutron diffraction KW - Selective laser melting KW - Laboratory X-ray diffraction KW - Coordinate measurement machine KW - IN718 PY - 2018 DO - https://doi.org/10.1520/MPC20170119 SN - 2379-1365 VL - 7 IS - 4 SP - 717 EP - 735 PB - ASTM International CY - USA, West Conshohocken AN - OPUS4-46673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst A1 - Wang, Xin A1 - Mierschke, Vivien A1 - Bertschat, Anja Sophie T1 - Concepts from seismic interferometry transferred to sonic and ultrasonic concrete inspection and monitoring JF - The e-journal of nondestructive testing & ultrasonics N2 - Seismic interferometry (SI) deals either with the sensible detection of changes in the subsurface or with the reconstruction of virtual signals between two receivers by crosscorrelation of signals from diffuse sources. These concepts can be applied in NDT in civil engineering for various purposes, e. g. to detect changes in bridges. Here it is demonstrated using data from a reference structure on our test site. Practical applications can be expected in the very near future. T2 - 12th European Conference on Non-Destructive Testing (ECNDT 2018) CY - Gothenburg, Sweden DA - 11.6.2018 KW - Ultrasound KW - Concrete KW - Monitoring KW - Coda KW - Interferometry PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-468465 UR - http://www.ndt.net/?id=22760 SN - 1435-4934 VL - 23 IS - 8 SP - 1 EP - 2 PB - NDT.net CY - Kirchwald AN - OPUS4-46846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst T1 - Ultrasonic monitoring of concrete constructions using embedded transducers JF - The e-journal of nondestructive testing & ultrasonics N2 - Ultrasonic transmission measurements are used to monitor concrete elements mostly on a laboratory scale since decades. Recently, coda wave interferometry, a technique adapted from seismology, has been introduced to civil Engineering experiments. It can be used to reveal subtle changes in concrete samples and even large construction elements without having a transducer directly at the location where the change is taking place. The methodology works best with embedded transducers to avoid coupling issues or excessive environmental influence. These transducers can be used for newly built and existing structures. Recently, large concrete beams have been equipped with a network of transducers and loaded until failure. Using code wave interferometry, it was possible to visualize stress fields and damaged areas. T2 - International Symposium on Structural Health Monitoring and Nondestructive Testing CY - Saarbrücken, Germany DA - 4.10.2018 KW - Ultrasound KW - Monitoring KW - Concrete PY - 2018 UR - http://www.ndt.net/?id=23542 SN - 1435-4934 VL - 23 IS - 12 SP - 1 EP - 6 PB - NDT.net CY - Kirchwald AN - OPUS4-46842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vössing, Konrad A1 - Gaal, Mate A1 - Niederleithinger, Ernst T1 - Air‑coupled ferroelectret ultrasonic transducers for nondestructive testing of wood‑based materials JF - Wood Science and Technology N2 - Air-coupled ultrasound (ACU) is used in through transmission to detect delamination, rot, and cracks in wood without altering the structure permanently. Novel ferroelectret transducers with a high signal-to-noise ratio enable high-precision structure recognition. Transducers made of cellular polypropylene are quite suitable for ACU testing due to their extremely low Young’s modulus and low density resulting in a favorable acoustic impedance for the transmission of ultrasonic waves between the transducer and air. Thus, structures with great dimensions, with a thickness of up to 300 mm and material densities below 500 kg/m3, can be inspected. Promising results were obtained under laboratory conditions with frequencies ranging from 90 to 200 kHz. The advantage of ACU transducers is that they do not equire contact to the sample; they are accurate and cost-effective. Ultrasonic quality assurance for wood is an important avenue to increase the acceptance of wooden structures and toward sustainability in civil engineering in general. KW - Ultrasound KW - Wood KW - Defect KW - Air-coupled PY - 2018 DO - https://doi.org/10.1007/s00226-018-1052-8 VL - 52 IS - 6 SP - 1527 EP - 1538 PB - Springer AN - OPUS4-46653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Küttenbaum, Stefan A1 - Maack, Stefan A1 - Taffe, A. T1 - Structural safety referring to ultrasound on concrete bridges JF - Beton- und Stahlbetonbau N2 - Measuring means knowing. The structural engineer’s Knowledge about structures is vitally important for the assessment of their structural safety. This contribution shows, how non-destructive testing methods can be used to collect valuable Information about existing structures. This value is expressed in this paper by the usability in probabilistic assessments and thus by the reliability of the information. The development of non-destructive testing methods in civil-engineering allows the realistic measurement and visualization of inner constructions of concrete components with a minimum of destructive interventions. The evaluation of the quality of measurement data is of fundamental importance for quantitative measurements in order to ensure the objectivity of testing and evaluation and to assess the reliability of the knowledge acquired. Both systematic and random deviations must be identified, quantified and taken into account to obtain statistically sound data. The Focus of this contribution is on the methodical path, how displayed measurement data can be processed into reliable knowledge. It is not about developing assessment methods but about providing necessary knowledge to increase their operational usability. T2 - 16th International Probabilistic Workshop CY - Vienna, Austria DA - 12.09.2018 KW - NDT KW - Reassessment KW - Probabilistic KW - Non-destructive testing in civil engineering PY - 2018 DO - https://doi.org/10.1002/best.201800034 SN - 1437-1006 VL - 113 IS - S2 SP - 7 EP - 13 PB - Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG CY - Berlin AN - OPUS4-46143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stegemann, Robert A1 - Cabeza, Sandra A1 - Pelkner, Matthias A1 - Lyamkin, Viktor A1 - Pittner, Andreas A1 - Werner, Daniel A1 - Wimpory, R. A1 - Boin, M. A1 - Kreutzbruck, Marc A1 - Bruno, Giovanni T1 - Influence of the microstructure on magnetic stray fields of low-carbon steel welds JF - Journal of Nondestructive Evaluation N2 - This study examines the relationship between the magnetic mesostructure with the microstructure of low carbon steel tungsten inert gas welds. Optical microscopy revealed variation in the microstructure of the parent material, in the heat affected and fusion zones, correlating with distinctive changes in the local magnetic stray fields measured with high spatial resolution giant magneto resistance sensors. In the vicinity of the heat affected zone high residual stresses were found using neutron diffraction. Notably, the gradients of von Mises stress and triaxial magnetic stray field modulus follow the same tendency transverse to the weld. In contrast, micro-X-ray fluorescence characterization indicated that local changes in element composition had no independent effect on magnetic stray fields. KW - TIG-welding KW - GMR sensors KW - Magnetic stray field KW - Neutron diffraction KW - Residual stress KW - Microstructure KW - Low carbon steel PY - 2018 DO - https://doi.org/10.1007/s10921-018-0522-0 SN - 0195-9298 SN - 1573-4862 VL - 37 IS - 3 SP - 66,1 EP - 18 PB - Springer US CY - New York AN - OPUS4-45855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tschirschwitz, Rico A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Krüger, Simone A1 - Neumann, Patrick P. A1 - Rudolph, Michael A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz T1 - Experimental investigation of consequences of LPG vehicle tank failure under fire conditions JF - Journal of Loss Prevention in the Process Industries N2 - In case of a vehicle fire, an installed LPG (liquefied petroleum gas) tank with a malfunctioning safety device poses severe hazards. To investigate the consequences in case of tank failure, we conducted 16 tests with toroidal shaped LPG vehicle tanks. Three tanks were used for a Hydraulic Burst Test under standard conditions. Another three tanks were equipped with a statutory safety device and were subjected to a gasoline pool fire. The safety device prevented tank failure, as intended. To generate a statistically valid dataset on tank failure, ten tanks without safety devices were exposed to a gasoline pool fire. Five tanks were filled to a level of 20 %; the re-maining five were filled to a level of 100 %. In order to gain information on the heating process, three tem-perature readings at the tank surface, and three nearby flame temperatures were recorded. At distances of l = (7; 9; 11) m to the tank, the overpressure of the shock wave induced by the tank failure and the unsteady tem-peratures were measured. All ten tanks failed within a time of t < 5 min in a BLEVE (boiling liquid expanding vapor explosion). Seven of these resulted directly in a catastrophic failure. The other three resulted in partial failure followed by catastrophic failure. A near field overpressure at a distance of l = 7 m of up to p = 0.27 bar was measured. All ten tests showed massive fragmentation of the tank mantle. In total, 50 fragments were found. These 50 fragments make-up 88.6 % of the original tank mass. Each fragment was georeferenced and weighed. Fragment throwing distances of l > 250 m occurred. For the tanks with a fill level of 20 %, the average number of fragments was twice as high as it was for the tanks that were filled completely. KW - Blast wave KW - BLEVE KW - Consequences KW - Explosion KW - LPG PY - 2018 UR - https://authors.elsevier.com/a/1XnFv_Ld32ewKu DO - https://doi.org/10.1016/j.jlp.2018.09.006 SN - 0950-4230 VL - 56 SP - 278 EP - 288 PB - Elsevier CY - Kidlington - Oxford AN - OPUS4-46238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, Simon A1 - Bernegger, Raphael A1 - Krankenhagen, Rainer T1 - Absorption coefficient dispersion in flash thermography of semitransparent solids JF - International Journal of Thermophysics N2 - Pulse and flash thermography are experimental techniques which are widely used in the field of non-destructive testing for materials characterization and defect detection. We recently showed that it is possible to determine quantitatively the thickness of semitransparent polymeric solids by fitting of results of an analytical model to experimental flash thermography data, for both transmission and reflection configuration. However, depending on the chosen experimental configuration, different effective optical absorption coefficients had to be used in the model to properly fit the respective experimental data, although the material was always the same. Here, we show that this effect can be explained by the wavelength dependency of the absorption coefficient of the sample material if a polychromatic light source, such as a flash lamp, is used. We present an extension of the analytical model to describe the decay of the heating irradiance by two instead of only one effective absorption coefficient, greatly extending its applicability. We show that using this extended model, the experimental results from both measurement configurations and for different sample thicknesses can be fitted by a single set of parameters. Additionally, the deviations between experimental and modeled surface temperatures are reduced compared to a single optimized effective absorption coefficient. T2 - 19th International Conference on Photoacoustic and Photothermal Phenomena CY - Bilbao, Spain KW - Absorptance KW - Dispersion KW - Flash thermography KW - Infrared thermography KW - NDT KW - Semitransparency PY - 2018 DO - https://doi.org/10.1007/s10765-018-2474-0 SN - 0195-928X SN - 1572-9567 VL - 40 IS - 1 SP - 13, 1 EP - 13 PB - Springer Nature AN - OPUS4-47105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernegger, Raphael A1 - Altenburg, Simon A1 - Roellig, Mathias A1 - Maierhofer, Christiane T1 - Applicability of a 1D analytical model for pulse thermography of laterally heterogeneous semitransparent materials JF - International Journal of Thermophysics N2 - Pulse thermography (PT) has proven to be a valuable non-destructive testing method to identify and quantify defects in fiber-reinforced polymers. To perform a quantitative defect characterization, the heat diffusion within the material as well as the material parameters must be known. The heterogeneous material structure of glass fiber-reinforced polymers (GFRP) as well as the semitransparency of the material for optical excitation sources of PT is still challenging. For homogeneous semitransparent materials, 1D analytical models describing the temperature distribution are available. Here, we present an analytical approach to model PT for laterally inhomogeneous semitransparent materials.We show the validity of the model by considering different configurations of the optical heating source, the IR camera, and the differently coated GFRP sample. The model considers the lateral inhomogeneity of the semitransparency by an additional absorption coefficient. It includes additional effects such as thermal losses at the samples surfaces, multilayer systems with thermal contact resistance, and a finite duration of the heating pulse. By using a sufficient complexity of the analytical model, similar values of the material parameters were found for all six investigated configurations by numerical fitting. KW - Absorption coefficient KW - Analytical model KW - GFRP KW - Heterogeneous KW - Pulse thermography KW - Semitransparent PY - 2018 DO - https://doi.org/10.1007/s10765-018-2362-7 SN - 0195-928X SN - 1572-9567 VL - 39 IS - 3 SP - Article 39, ICPPP 19, 1 EP - 17 PB - Springer International Publishing AG AN - OPUS4-44003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krankenhagen, Rainer A1 - Altenburg, Simon A1 - Eisenkrein, Helena T1 - Photothermische Schichtdickenmessung an Betonbeschichtungen - unter Laborbedingungen und auf der Baustelle JF - The e-journal of nondestructive testing & ultrasonics N2 - Bei der Realisierung von Oberflächen-Schutz-System (OSS) auf Betonflächen ist die tatsächlich erreichte Dicke der Beschichtung ein wesentlicher Parameter, der über die Funktionalität und Langzeitstabilität der aufgetragenen Schicht entscheidet. Die Firma IBOS und die BAM haben in den letzten Jahren gemeinsam einen funktionstüchtigen Prototyp eines Messgeräts zur zerstörungsfreien Schichtdickenmessung für Bodenbeschichtungen entwickelt. Hierin wird die Abkühlkurve eines vorher erwärmten Bereichs berührungslos mit einer IR-Kamera erfasst und mit einem Modell verglichen, was die Bestimmung der Schichtdicke ermöglicht. Im Rahmen dieses Beitrags wird die Umsetzung der Methode unter Laborbedingungen und in der Praxis auf der Baustelle erläutert und diskutiert. T2 - DGZfP-Jahrestagung CY - Leipzig, Germany DA - 07.05.2018 KW - Betonbeschichtung KW - Oberflächenschutzsystem KW - Schichtdickenmessung KW - Zerstörungsfreie Prüfung KW - Photothermisch PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-449433 UR - https://www.ndt.net/?id=23060 SN - 1435-4934 VL - 23 IS - 9 SP - 1 EP - 8 PB - NDT.net CY - Kirchwald AN - OPUS4-44943 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, Simon A1 - Chien, M. A1 - Bavendiek, F. A1 - Krankenhagen, Rainer T1 - Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie T1 - Thickness determination of surface Protection systems for concrete by means of impulse thermography JF - Materials Testing N2 - Im Bauwesen werden Polymerbeschichtungen auf Beton häufig eingesetzt um zum einen, ein bestimmtes Aussehen zu schaffen und zum anderen, das Bauteil vor Alterung, Verschleiß und Schädigung zu schützen. Für praktisch alle Ziele ist die Wirkung von der eigens dafür definierten Schichtdicke der Polymerbeschichtung abhängig. Daher wird die Dicke der Beschichtung nach erfolgtem Schichtauftrag überprüft. Für den in diesem Zusammenhang anspruchsvollen mineralischen Untergrund Beton stehen bislang allerdings nur zerstörende Prüfverfahren zur Verfügung. Aus diesem Grund wurden im Rahmen des Projektes IRKUTSK ein auf aktiver Thermografie basierendes Verfahren sowie ein Gerät für den vor-Ort-Einsatz entwickelt, mit dessen Hilfe eine zerstörungsfreie Schichtdickenbestimmung möglich ist. Hier wird ein kurzer Einblick in das zur Schichtdickenbestimmung entwickelte Thermografieverfahren gegeben. Die Besonderheiten bei der quantitativen Auswertung, die durch die Teiltransparenz der Polymerbeschichtungen auftreten, werden erläutert. Die Funktion des Verfahrens für einlagige Systeme wird anhand von Labormessungen mit verschiedenen optischen Quellen zur thermischen Anregung illustriert. KW - Beton KW - Oberflächenschutzsystem KW - Schichtdickenbestimmung KW - Thermografie PY - 2018 DO - https://doi.org/10.3139/120.111210 SN - 0025-5300 VL - 60 IS - 7-8 SP - 759 EP - 764 PB - Hanser Verlag CY - München, Deutschland AN - OPUS4-45566 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin A1 - Stephan, Ina A1 - Huebert, Thomas A1 - Kemnitz, E. T1 - Nano metal fluorides for wood protection against fungi JF - ACS Applied Nano Materials N2 - Wood treated with nano metal fluorides is found to resist fungal decay. Sol−gel synthesis was used to synthesize MgF2 and CaF2 nanoparticles. Electron microscopy images confirmed the localization of MgF2 and CaF2 nanoparticles in wood. Efficacy of nano metal fluoride-treated wood was tested against brown-rot fungi Coniophora puteana and Rhodonia placenta. Untreated wood specimens had higher mass losses (∼30%) compared to treated specimens, which had average mass loss of 2% against C. puteana and 14% against R. placenta, respectively. Nano metal fluorides provide a viable alternative to current wood preservatives. KW - Brown-rot fungi KW - Coniophora puteana KW - Fluoride nanoparticles KW - Fluorolytic sol−gel KW - Rhodonia placenta KW - SEM wood characterization KW - Wood protection PY - 2018 DO - https://doi.org/10.1021/acsanm.8b00144 SN - 2574-0970 VL - 2018 SP - 1 EP - 6 PB - American Chemical Society (ACS) CY - Washington DC, US AN - OPUS4-44730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Küttenbaum, Stefan A1 - Maack, Stefan A1 - Braml, T. A1 - Taffe, A. A1 - Haslbeck, M. T1 - Bewertung von Bestandsbauwerken mit gemessenen Daten. Teil 1: Konzept, Messungen und Leistungsfähigkeit der ZfP‐Verfahren JF - Beton- und Stahlbetonbau N2 - Gegenüber dem Neubauentwurf können bei der Bewertung von bestehender Bausubstanz Sicherheitsreserven genutzt werden, da Unsicherheiten, die beim Bau auftreten können, besser bekannt oder nicht mehr vorhanden sind. Können solche Unsicherheiten genauer bewertet werden, z. B. durch die Feststellung der genauen Lage der Spannglieder bei einer Spannbetonbrücke, so können Sicherheitsbeiwerte reduziert werden, ohne dass es dabei zu Auswirkungen auf das normativ festgelegte Zuverlässigkeitsniveau kommt. Mittlerweile sind Prüfmethoden an Bauwerken wirtschaftlich einsetzbar und auch so leistungsfähig, dass die für die Tragfähigkeit und Gebrauchstauglichkeit wesentlichen Parameter identifiziert werden können. Ein wesentlicher Punkt ist hierbei die Integration derartiger Messergebnisse in Rechenmodelle, die für die Nachrechnung des Bauwerks verwendet werden. Dies können sowohl semiprobabilistische Rechenmodelle als auch vollprobabilistische Modelle sein. Bei semiprobabilistischen Methoden können aus den Messergebnissen Teilsicherheitsbeiwerte berechnet und abgeleitet werden, die dann in den bekannten Nachweisformaten gemäß den Eurocodes und der Nachrechnungsrichtlinie berücksichtigt werden. Bei vollprobabilistischen Nachweisen können die Messdaten in Form von Verteilungsdichtefunktionen mit gemessenen Variationskoeffizienten direkt in das Rechenmodell eingehen. In einer dreiteiligen Aufsatzreihe werden die Messverfahren und die Nutzung der Ergebnisse bei der Nachrechnung vorgestellt. Der vorliegende Teil 1 zeigt die Möglichkeiten des Einsatzes von zerstörungsfreien Prüfverfahren und bewertet deren Leistungsfähigkeit. Messen heißt wissen. Dieses Wissen spiegelt die Realität wider und soll den Tragwerksplaner bei der Entscheidungsfindung über die Sicherheit und Zuverlässigkeit von Bestandsbauwerken unterstützen. KW - Nachrechnung KW - Zerstörungsfreie Prüfung KW - Messunsicherheit KW - Brücken KW - Beton PY - 2019 DO - https://doi.org/10.1002/best.201900002 SN - 1437-1006 VL - 114 IS - 6 SP - 370 EP - 382 PB - Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG CY - Berlin AN - OPUS4-48156 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wosniok, Aleksander A1 - Krebber, Katerina T1 - Smart Geosynthetics Based on Distributed Fiber Optic Sensors in Geotechnical Engineering JF - Geotechnical engineering N2 - Smart geosynthetics with embedded optical fibers as distributed sensors provide solutions both for applications in geotechnical engineering and for cost-effective monitoring of critical infrastructures. The incorporation of glass or polymer optical fibers (GOFs or POFs) in geotextiles and geogrids allows early detection of mechanical deformations, temperature and humidity. This paper presents selected examples of smart geosynthetics based on Brillouin and Rayleigh scattering effects in incorporated fiber optic sensors for monitoring of large geotechnical structures like dikes, dams, railways, embankments or slopes. The focus of the presented work is on real field tests of measurement capability with respect to the chosen measurement principle and used fiber type. KW - Polymer optical fiber (POF) KW - Smart geosynthetics KW - Fiber optic sensor KW - Distributed sensing KW - Glass optical fiber (GOF) PY - 2019 SN - 0046-5828 SP - 91 EP - 95 PB - Southeast Asian Geotechnical Society CY - Bangkok AN - OPUS4-48068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Neitzel, F. A1 - Kadoke, Daniel A1 - Fischer, Michael A1 - Kohlhoff, Harald ED - Pastramă, Ştefan Dan ED - Constantinescu, Dan Mihai T1 - A Small-Scale Test Bridge for Measurement and Model-based Structural Analysis JF - Materials Today: Proceedings N2 - The Measurement- and Model-based Structural Analysis (MeMoS) integrates a finite element model into least squares adjustment and thus allows to evaluate a mechanical model and measurements in a combined analysis. To examine the capability to detect and localise damage using this integrated analysis MeMoS, a small-scale truss bridge made of aluminium profiles is built as a test specimen for this purpose. T2 - 35th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Structural analysis KW - Damage detection and localisation KW - Finite element method KW - Photogrammetry KW - Adjustment calculation PY - 2019 UR - http://www.sciencedirect.com/science/article/pii/S2214785319304894 DO - https://doi.org/10.1016/j.matpr.2019.03.130 SN - 2214-7853 VL - 12 IS - 2 SP - 319 EP - 328 PB - Elsevier Ltd. AN - OPUS4-48053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias ED - Pastramă, Ş. D. ED - Constantinescu, D. M. T1 - Concept of a gas-sensitive nano aerial robot swarm for indoor air quality monitoring JF - Materials Today: Proceedings N2 - In this paper, we introduce a nano aerial robot swarm for indoor air quality monitoring applications such as occupational health and safety of (industrial) workplaces. The concept combines a robotic swarm composing of nano Unmanned Aerial Vehicles (nano UAVs), based on the Crazyflie 2.0 quadrocopter, and small lightweight metal oxide gas sensors for measuring the Total Volatile Organic Compound (TVOC) in ppb and estimating the eCO2 (equivalent calculated carbon-dioxide) concentration in ppm. TVOC is a measure for the indoor air quality. An indoor localization and positioning system will be used to estimate the absolute 3D position of the swarm like GPS. Based on this novel indoor air quality monitoring concept, the development and validation of new algorithms in the field of Mobile Robot Olfaction (MRO) are planned, namely gas source localization and gas distribution mapping. A test scenario will be built up to validate and optimize the gas-sensitive nano aerial robot swarm for the intended applications. T2 - 35th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - Nano aerial robot KW - UAV KW - Swarm KW - Indoor air quality KW - Monitoring KW - Concept PY - 2019 DO - https://doi.org/10.1016/j.matpr.2019.03.151 SN - 2214-7853 VL - 12 IS - 2 SP - 470 EP - 473 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-48055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kowarik, Stefan A1 - Bogula, A1 - Boitano, A1 - Carla, A1 - Pithan, A1 - Schafer, A1 - Wilming, A1 - Zykov, A1 - Pithan, T1 - A novel 3D printed radial collimator for x-ray diffraction JF - Review of Scientific Instruments N2 - We demonstrate the use of a 3D printed radial collimator in X-ray powder diffraction and surface sensitive grazing incidence X-ray diffraction. We find a significant improvement in the overall Signal to background ratio of up to 100 and a suppression of more than a factor 3⋅10⁵ for undesirable Bragg reflections generated by the X-ray “transparent” windows of the sample environment. The background reduction and the removal of the high intensity signals from the windows, which limit the detector’s dynamic range, enable significantly higher sensitivity in experiments within sample environments such as vacuum chambers and gas- or liquid-cells. Details of the additively manufactured steel collimator geometry, alignment strategies using X-ray fluorescence, and data analysis are also briefly discussed. The flexibility and affordability of 3D prints enable designs optimized for specific detectors and sample environments, without compromising the degrees of freedom of the diffractometer. KW - 3D printing PY - 2019 DO - https://doi.org/10.1063/1.5063520 SN - 0034-6748 VL - 90 IS - 3 SP - 035102, 1 EP - 8 PB - AIP AN - OPUS4-48171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kowitz, Astrid A1 - Wu, Cheng-Chieh A1 - Helmerich, Rosemarie A1 - Hille, Falk A1 - Kadoke, Daniel A1 - Gründer, Klaus-Peter A1 - Hauser, S. A1 - Schwarzinger, H. ED - Bland, S. T1 - Impact on a micro-reinforced UHPC: Experimental studies versus numerical modeling JF - Materials Today: Proceedings N2 - Within the presented research project, experimental and numerical investigations were performed to develop a thin-shelled, modular, mobile element system made of a micro-reinforced ultra-high-performance ductile concrete (DUCON®). Material parameters were experimentally determined to adapt the material model within the numerical analysis applying the Drucker-Prager relationship. Afterwards, for validation of the numerical models, quasi-static and high-velocity impact tests were performed on plate-like structures. Finally, a suitable geometry of transportable barrier elements will be designed, which provides a maximum of resistance against impact by a minimum of weight and a maximum of mobility. KW - UHPC KW - Impact KW - DUCON® KW - Quasi-static and dynamic tests KW - Micro-reinforcement KW - Ductility KW - Mobile elements KW - Numerical modeling KW - Stereo photogrammetry KW - Compressive strength KW - E-modulus PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S2214785319305115?dgcid=author DO - https://doi.org/10.1016/j.matpr.2019.03.152 SN - 2214-7853 VL - 12 IS - 2 SP - 474 EP - 483 PB - Elsevier Ltd CY - Amsterdam AN - OPUS4-48181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zheng, H. A1 - Ertel, Jens-Peter A1 - Kourmpetis, M. A1 - Kanfoud, J. A1 - Niederleithinger, Ernst A1 - Gan, T.-H. T1 - Integrity testing of cast in situ concrete piles based on an impulse response function method using sine‑sweep excitation by a shaker JF - Journal of Nondestructive Evaluation N2 - In this study, an Impulse Response Function analysis of pile response to sine-sweep excitation by a low cost, portable Shaker was used to identify defects in piles. In straightforward impact-echo methods, echoes from the pile toe and defects are visible in the time domain measurements. However, these echoes are not present in the time domain records of piles subjected to sine-sweep excitations, due to interactions between the input and output signals. For this reason, the impulse response function in the time domain has been calculated and is able to identify the echoes from pile impedance changes. The proposed methodology has been evaluated both numerically and experimentally. A one-dimensional pile-soil interaction system was developed, and a finite difference method used to calculate the pile response to sine-sweep excitation. The numerical simulations indicate that impulse response measurements with a synthesized logarithmic, sine-sweep excitation could be an effective tool for detecting defects in piles. The methodology was further tested with field trials on 6 cast in situ concrete test piles including 1 intact pile and 5 defective piles subjected to sine-sweep excitations by a shaker. In 5 of the 6 cases the echoes from the pile toe could be identified in the deconvoluted waveforms—the impulse Response functions. Damage detection is more difficult and dependent on the selection of the optimal regularization parameter. Further research and optimization of the deconvolution process is needed to evaluate the effectiveness compared to standard pile integrity testing methods. KW - Pile testing KW - Shaker KW - Deconvolution PY - 2019 DO - https://doi.org/10.1007/s10921-019-0595-4 SN - 0195-9298 SN - 1573-4862 VL - 38 IS - 2 SP - 55, 1 EP - 18 PB - Springer CY - Cham, Switzerland AN - OPUS4-48185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wosniok, Aleksander A1 - Skoczowsky, Danilo A1 - Schukar, Marcus A1 - Pötzsch, Sina A1 - Pötschke, Samuel A1 - Krüger, Simone T1 - Fiber optic sensors for high-temperature measurements on composite tanks in fire JF - Journal of Civil Structural Health Monitoring N2 - For the purpose of increasing payload and reduce freight cost, lightweight composite tank containers used for Transportation have been progressively developed during the last years. Compared to conventionally produced cylindrical steel tanks, the fiber-reinforced solutions allow greater flexibility in the tank design. Despite a number of further material-related benefits of fiber-reinforced composites as non-conductive and non-magnetic behavior as well as corrosion resistance and high strength, the optimization of their thermal degradation properties during combustion is still a challenge. To improve the fire performance of lightweight composite containers, special intumescent fire protection coatings can be applied onto the outside tank surface. This paper presents fire tests on glass-fiber-reinforced plastic transport tanks with complex geometries sheltered with different surface-applied fire protection systems. To evaluate the fire resistance of the tank structures, a fiber optic monitoring system was developed. This system is based on distributed temperature measurements using high-Resolution optical backscatter reflectometry and pointwise reference measurements using fiber Bragg gratings. Thereby, all the fiber optic sensors were directly integrated in the composite layer structure of the tanks. The focus of the presented work is on the demonstration of capability of fiber optic monitoring system in such high-temperature application. Moreover, the fiber optic measurements provide new insights into the efficiency of intumescent coating applied for fire protection of fiber-reinforced plastic transport tanks. KW - Fire resistance KW - Composite material KW - Glass-fiber-reinforced plastic transport tank KW - Distributed fiber optic sensing KW - Optical backscatter reflectometry KW - Fiber optic sensor PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481972 DO - https://doi.org/10.1007/s13349-019-00338-7 SN - 2190-5452 SN - 2190-5479 SP - 1 EP - 8 PB - Springer Nature AN - OPUS4-48197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Hentschel, Manfred P. A1 - Niebergall, Ute A1 - Böhning, Martin A1 - Bruno, Giovanni ED - Erdmann, Maren T1 - Diesel-induced transparency of plastically deformed high-density polyethylene JF - Journal of Materials Science N2 - High-density polyethylene becomes optically transparent during tensile drawing when previously saturated with diesel fuel. This unusual phenomenon is investigated as it might allow conclusions with respect to the material behavior. Microscopy, differential scanning calorimetry, density measurements are applied together with two scanning X-ray scattering techniques: wide angle X-ray scattering (WAXS) and X-ray refraction, able to extract the spatially resolved crystal orientation and internal surface, respectively. The sorbed diesel softens the material and significantly alters the yielding characteristics. Although the crystallinity among stretched regions is similar, a virgin reference sample exhibits strain whitening during stretching, while the diesel-saturated sample becomes transparent. The WAXS results reveal a pronounced fiber texture in the tensile direction in the stretched region and an isotropic orientation in the unstretched region. This texture implies the formation of fibrils in the stretched region, while spherulites remain intact in the unstretched parts of the specimens. X-ray refraction reveals a preferred orientation of internal surfaces along the tensile direction in the stretched region of virgin samples, while the sample stretched in the diesel-saturated state shows no internal surfaces at all. Besides from stretching saturated samples, optical transparency is also obtained from sorbing samples in diesel after stretching. KW - PE-HD Sorption KW - Cavitation KW - Diesel Fuel KW - X-ray refraction KW - WAXS KW - Internal Surfaces KW - Crystal Texture PY - 2019 DO - https://doi.org/10.1007/s10853-019-03700-8 SN - 1573-4803 SN - 0022-2461 VL - 54 IS - 17 SP - 11739 EP - 11755 PB - Springer US CY - US AN - OPUS4-48226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Caetano, D. M. A1 - Rabuske, T. A1 - Fernandes, J. A1 - Pelkner, Matthias A1 - Fermon, C. A1 - Cardoso, S. A1 - Ribes, B. A1 - Franco, F. A1 - Paul, J. A1 - Piedade, M. A1 - Freitas, P. P. T1 - High-Resolution Nondestructive Test Probes Based on Magnetoresistive JF - IEEE Transaction on Industrial Electronics N2 - This paper discloses two high-sensitivity probes for Eddy Current Nondestructive Test (NDT) of buried and surface defects. These probes incorporate eight and 32 magnetoresistive sensors, respectively, which are optimized for high sensitivity and spatial resolution. The signal processing and interfacing are carried out by a full-custom application-specific integrated circuit (ASIC). The ASIC signal chain performs with a thermal input-referred noise of 30 nV/√Hz at 1 kHz, with 66 mW of power consumption, in a die with 3.7 × 3.4 mm 2 . NDT results are presented, showing that there is an increase in spatial resolution of surface defects when contrasted to prior art, enabling the probes to resolve defects with diameters of 0.44 mm, pitches of 0.6 mm, and minimum edge distance as low as 0.16 mm. The results also show that the probe for buried defects is a good all-round tool for detection of defects under cladding and multiple-plate flat junctions. KW - ASIC KW - Magnetoresistive sensor KW - Nondestructive testing KW - Eddy current testing KW - High resolution PY - 2019 DO - https://doi.org/10.1109/TIE.2018.2879306 VL - 66 IS - 9 SP - 7326 EP - 7337 PB - IEEE AN - OPUS4-48239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -