TY - JOUR A1 - Timofeev, Juri A1 - Azari, H. A1 - Satyanarayana, R. T1 - Controlled Creating of Delaminations in Concrete for Nondestructive Testing JF - Journal of Nondestructive Evaluation N2 - Locating and sizing delaminations is a common inspection task in the maintenance and quality control of construction and rehabilitation. Their detection is an important area of application of nondestructive testing in civil engineering (NDT-CE). To improve this application, NDT test systems and test solutions must be compared, for which specimens containing well-defined delaminations are needed to serve as a reference. Currently, there are no widely accepted procedures available for creating such flaws locally and reproducibly. This study presents procedures for creating artificial delaminations repeatably and as close as possible to natural delaminations. To produce the discontinuities only substances were used which can occur in concrete components and do not affect the application of NDT-CE methods. Ultrasonic pulse-echo (UPE) was used to test the flaws in the specimens. The delaminations were created by applying expansive mortar in prepared through holes. Three specimens with two delaminations each were built and tested using UPE. KW - Concrete KW - Reference KW - Delamination KW - Test specimen KW - Non-destructive testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595201 DO - https://doi.org/10.1007/s10921-023-01044-7 SN - 0195-9298 VL - 43 IS - 1 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-59520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - Fluidic Ultrasound Generation for Non‐Destructive Testing JF - Advanced Materials N2 - AbstractAir‐coupled ultrasonic testing (ACU) is a pioneering technique in non‐destructive testing (NDT). While contact testing and fluid immersion testing are standard methods in many applications, the adoption of ACU is progressing slowly, especially in the low ultrasonic frequency range. A main reason for this development is the difficulty of generating high amplitude ultrasonic bursts with equipment that is robust enough to be applied outside a laboratory environment. This paper presents the fluidic ultrasonic transducer as a solution to this challenge. This novel aeroacoustic source uses the flow instability of a sonic jet in a bistable fluidic switch to generate ultrasonic bursts up to 60 kHz with a mean peak pressure of 320 Pa. The robust design allows operation in adverse environments, independent of the operating fluid. Non‐contact through‐transmission experiments are conducted on four materials and compared with the results of conventional transducers. For the first time, it is shown that the novel fluidic ultrasonic transducer provides a suitable acoustic signal for NDT tasks and has potential of furthering the implementation of ACU in industrial applications.This article is protected by copyright. All rights reserved KW - Aeroacoustics KW - Air-coupled ultrasound KW - Fluidics KW - Harsh environment KW - Laser Doppler vibrometer KW - Non-destructive testing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594273 DO - https://doi.org/10.1002/adma.202311724 SN - 0935-9648 SP - 1 EP - 14 PB - Wiley AN - OPUS4-59427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Bühling, Benjamin A1 - Borchardt-Giers, Kerstin A1 - Aßmann, Norman A1 - Niederleithinger, Ernst T1 - Low frequency ultrasonic pulse-echo datasets for object detection and thickness measurement in concrete specimens as testing tasks in civil engineering JF - Data in Brief N2 - The dataset contains raw data gathered with the ultrasonic pulse-echo method on concrete specimens. The surfaces of the measuring objects were automatically scanned point by point. Pulse-echo measurements were performed at each of these measuring points. The test specimens represent two typical testing tasks in construction industry: the detection of objects and the determination of dimensions to describe the geometry of components. By automating the measurement process, the different test scenarios are examined with a high repeatability, precision and measuring point density. Longitu- dinal and transversal waves were used and the geometrical aperture of the testing system was varied. The low-frequency probes operate in a range of up to approximately 150 kHz. In addition to the specification of the geometrical dimensions of the individual probes, the directivity pattern and the sound field characteristics are provided. The raw data are stored in a universally readable format. The length of each time signal (A-scan) is two milliseconds and the sampling rate is two mega-samples per second. The provided data can be used for comparative studies in signal analysis, imag- ing and interpretation as well as for evaluation pur- poses in different, practically relevant testing scenarios. KW - Validation KW - Puls-echo method KW - Ultrasonic KW - Non-destructive testing KW - SAFT KW - Reconstruction algorithm PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575185 DO - https://doi.org/10.1016/j.dib.2023.109233 SN - 2352-3409 VL - 48 SP - 1 EP - 16 PB - Elsevier Inc. AN - OPUS4-57518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Azari, H. A1 - Shams, S. A1 - Köpp, Christian A1 - Timofeev, Juri A1 - Niederleithinger, Ernst T1 - Development of reference specimens for nondestructive evaluation of concrete bridge decks JF - Proceedings of the Institution of Civil Engineers - Forensic Engineering N2 - Decades of non-destructive evaluation (NDE) for the quality assurance of concrete bridges revealed the necessity of developing procedures for building reference specimens for different defects. External objects have been widely used in specimen construction to represent defects. However, embedded materials can alter the actual defect characteristics, interrupting the NDE responses. This study proposes new approaches to fabricating reference specimens for reinforced concrete that feature substantial defects, including cracks, delamination, honeycombing and rebar corrosion, without external objects. As a result, realistic responses can be acquired to identify promising NDE methods for characterising actual deteriorations. The procedures were produced with the intent of being reproducible in any laboratory. Destructive and non-destructive testing methods were performed to verify the effectiveness of the processes in creating defects. This study provides research laboratories with techniques for fabricating reference specimens for characterising defects and assessing the performance of NDE technologies. KW - Concrete structures KW - Reference KW - Specimen KW - Non-destructive testing KW - Laboratory tests PY - 2023 DO - https://doi.org/10.1680/jfoen.21.00030 SN - 2043-9911 SP - 1 EP - 12 PB - ICE Publishing AN - OPUS4-56957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scherr, J. F. A1 - Kollofrath, J. A1 - Popovics, J. S. A1 - Bühling, Benjamin A1 - Grosse, C. U. T1 - Detection of Delaminations in Concrete Plates Using a Laser Ablation Impact Echo Technique JF - Journal of Nondestructive Evaluation N2 - This study investigates the non-destructive detection of delaminations in concrete plates using non-contact laser ablation, instead of the conventional hammer excitation, as part of the impact echo method. We performed tests on five concrete specimens of different sizes, two of which contained artificial delaminations. A range of steel ball hammers was used as reference impulse sources, the responses of which were compared with wave excitation generated by a 7 ns pulsed 1064 nm Nd:YAG laser with 150 mJ pulse energy. Signals were recorded by surface-mounted accelerometers and two contactless methods: microphones and a laser Doppler vibrometer. The laser generates frequencies across a broad range of frequencies (0 to 150 kHz) but with much less energy than the hammers' narrower frequency spectra; the laser pulse energy transferred into the specimen is 0.07 mJ, corresponding to about 0.5 ‰ of the impulse source energy. Because of this, the thick intact plates' characteristic thickness stretch resonance frequency can be reliably detected by the hammer excitations but not when using laser excitation. However, the laser can excite low-frequency flexural vibration modes over a shallow delamination at 3 cm depth. The low-frequency flexural vibration results are verified by numerical natural frequency analysis. KW - Concrete testing KW - Defect detection KW - Lamb waves KW - Impact echo KW - Non-destructive testing KW - Vibration PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567932 DO - https://doi.org/10.1007/s10921-022-00921-x SN - 0195-9298 VL - 42 IS - 1 SP - 1 EP - 14 PB - Springer AN - OPUS4-56793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Bühling, Benjamin A1 - Hauke, M. A1 - Schweitzer, T. A1 - Maack, Stefan T1 - Frequency modulated, air-coupled ultrasound generated by fluidic oscillators T2 - Proceedings of the IEEE International Ultrasonics Symposium N2 - The majority of ultrasonic devices used for non-destructive testing in civil engineering require contact with the surface of the concrete (specimen), which significantly increases the time required for the measurement. This makes it impractical for extensive investigation of large-scale structures such as bridge decks, foundations, or tunnels. In a pioneering approach, fluidic oscillators are used as contact free ultrasonic sources to overcome the aforementioned limitations. These robust and cost-effective actuators require only pressurised air and are ideally suited for harsh environments. At a constant supply pressure, they generate a continuous mono-frequent actuation signal. Further, varying the supply pressure via a fast pressure regulator was found to generate a frequency modulated signal which enabled time-of-flight measurement with an added advantage of increased signal to noise ratio. To demonstrate the feasibility of this novel idea of non-contact ultrasound, the results of the initial tests are presented. T2 - IEEE International Ultrasound Symposium CY - Venice, Italy DA - 11.10.2022 KW - Air-coupled ultrasound KW - Frequency modulation KW - Non-destructive testing KW - Civil engineering KW - Building materials KW - Fluidic oscillators PY - 2022 DO - https://doi.org/10.1109/IUS54386.2022.9958740 SP - 1 EP - 4 AN - OPUS4-56073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Bühling, Benjamin A1 - Niederleithinger, Ernst T1 - Low frequency ultrasonic dataset for pulse echo object detection in an isotropic homogeneous medium as reference for heterogeneous materials in civil engineering JF - Data in Brief N2 - The dataset presented contains ultrasonic data recorded in pulse echo mode. The investigated specimen is made of the isotropic homogeneous material polyamide and has a drill hole of constant diameter running parallel to the surface, which was scanned in a point grid using an automatic scanner system. At each measuring position, a pitch-catch measurement was performed using a sampling rate of 2 MHz. The probes used are arrays consisting of a spatially separated receiving and in-phase transmitting unit. The transmitting and receiving sides each consist of 12 point-shaped single probes. These dry-point contact (DPC) probes operate according to the piezoelectric principle at nominal frequencies of 55 kHz (shear waves) and 100 kHz (longitudinal waves), respectively, and do not require a coupling medium. The measurements are performed with longitudinal (100 kHz) and transverse (55 kHz) waves with different geometric orientations of the probe on the measurement surface. The data presented in the article provide a valid source for evaluating reconstruction algorithms for imaging in the low-frequency ultrasound range. KW - Non-destructive testing KW - Ultrasound KW - Pulse-echo method KW - Reference material KW - Reconstruction algorithm KW - Validation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547326 DO - https://doi.org/10.1016/j.dib.2022.108235 VL - 42 SP - 1 EP - 11 PB - Elsevier Inc. AN - OPUS4-54732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Küttenbaum, Stefan A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - Development of an Accurate and Robust Air-Coupled Ultrasonic Time-of-Flight Measurement Technique JF - Sensors N2 - Ultrasonic time-of-flight (ToF) measurements enable the non-destructive characterization of material parameters as well as the reconstruction of scatterers inside a specimen. The time-consuming and potentially damaging procedure of applying a liquid couplant between specimen and transducer can be avoided by using air-coupled ultrasound. However, to obtain accurate ToF results, the waveform and travel time of the acoustic signal through the air, which are influenced by the ambient conditions, need to be considered. The placement of microphones as signal receivers is restricted to locations where they do not affect the sound field. This study presents a novel method for in-air ranging and ToF determination that is non-invasive and robust to changing ambient conditions or waveform variations. The in-air travel time was determined by utilizing the azimuthal directivity of a laser Doppler vibrometer operated in refracto-vibrometry (RV) mode. The time of entry of the acoustic signal was determined using the autocorrelation of the RV signal. The same signal was further used as a reference for determining the ToF through the specimen in transmission mode via cross-correlation. The derived signal processing procedure was verified in experiments on a polyamide specimen. Here, a ranging accuracy of <0.1 mm and a transmission ToF accuracy of 0.3μs were achieved. Thus, the proposed method enables fast and accurate non-invasive ToF measurements that do not require knowledge about transducer characteristics or ambient conditions. KW - Air-coupled ultrasound KW - Laser Doppler vibrometer KW - Refracto-vibrometry KW - Acousto-optic effect KW - Time-of-flight measurements KW - In-air ranging KW - Non-destructive testing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544711 DO - https://doi.org/10.3390/s22062135 VL - 22 IS - 6 SP - 1 EP - 17 PB - MDPI CY - Basel, Switzerland AN - OPUS4-54471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kruschwitz, Sabine A1 - Oesch, T. A1 - Mielentz, Frank A1 - Meinel, Dietmar A1 - Spyridis, P. T1 - Non-Destructive Multi-Method Assessment of Steel Fiber Orientation in Concrete JF - Applied Sciences N2 - Integration of fiber reinforcement in high-performance cementitious materials has become widely applied in many fields of construction. One of the most investigated advantages of steel Fiber reinforced concrete (SFRC) is the deceleration of crack growth and hence its improved sustainability. Additional benefits are associated with its structural properties, as fibers can significantly increase the ductility and the tensile strength of concrete. In some applications it is even possible to entirely replace the conventional reinforcement, leading to significant logistical and environmental benefits. Fiber reinforcement can, however, have critical disadvantages and even hinder the Performance of concrete, since it can induce an anisotropic material behavior of the mixture if the fibers are not appropriately oriented. For a safe use of SFRC in the future, reliable non-destructive testing (NDT) methods need to be identified to assess the fibers’ orientation in hardened concrete. In this study, ultrasonic material testing, electrical impedance testing, and X-ray computed tomography have been investigated for this purpose using specially produced samples with biased or random Fiber orientations. We demonstrate the capabilities of each of these NDT techniques for fiber orientation measurements and draw conclusions based on these results about the most promising areas for future research and development. KW - Spectral induced polarization KW - Steel fiber reiniforced concrete KW - Fiber orientation KW - Non-destructive testing KW - Micro-computed tomography KW - Ultrasound PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543520 DO - https://doi.org/10.3390/app12020697 VL - 12 IS - 2 SP - 1 EP - 14 PB - MDPI CY - Basel Switzerland AN - OPUS4-54352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - Using sonic crystals to separate the acoustic from the flow field of a fluidic transducer JF - Applied acoustics N2 - Ultrasonic testing is a widely applied measurement method in materials research and medicine. Commonly, a transducer is coupled to the specimen directly or via a liquid coupling agent. While reducing acoustic transmission losses significantly, this procedure is time-consuming and cannot be used for sensitive specimens. Air-coupled ultrasound is a viable alternative in such cases, although suffering from very high acoustic transmission losses between transducer, air and specimen. The recently introduced fluidic transducer (FT) generates ultrasound by utilizing the instability of a supersonic air jet switched inside a fluidic amplifier. Since only air is used as the working medium and no vibrating surfaces are used for ultrasound generation, the transducer is able to efficiently generate large acoustic pressure amplitudes. The resulting acoustic field shares its directivity with the ejected high-velocity air jet. Thus, the acoustic energy needs to be redirected from the jet axis in order to make the fluidic transducer applicable to sensitive specimens. In this study, the effectivity of using sonic crystals (SCs) for this redirection is investigated using acoustic and flow measurements. SCs are air-permeable while being reflective to large acoustic frequency bands. It was shown that both a defect waveguide and a mirroring strategy successfully redirected the acoustic field from the air jet. Furthermore, the interaction of flow and SC showed strong acoustic quenching if the SC was placed too close to the FT outlet. Blockage of the jet entrainment due to the SC may result in slightly higher off-axis flow velocities locally, which should be considered in sensitive applications. KW - Air-coupled ultrasound KW - Sonic crystal KW - Fluidics KW - Non-destructive testing KW - Metamaterial KW - Bandgap quenching PY - 2022 DO - https://doi.org/10.1016/j.apacoust.2021.108608 SN - 0003-682X VL - 189 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-54205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Schönsee, Eric A1 - Schweitzer, Thorge A1 - Strangfeld, Christoph T1 - Acoustic and flow data of fluidic and piezoelectric ultrasonic transducers JF - Data in brief N2 - This data article presents characteristic acoustic and flow data of a fluidic ultrasonic transducer as well as acoustic data of a commercial piezoelectric ultrasonic transducer used in non-destructive testing for civil engineering. The flow data has been acquired using hot-wire anemometry and a Pitot tube. The three-dimensional acoustic data of both devices has been acquired using a calibrated microphone. The distribution of characteristic acoustic properties of both transducers are extracted and given in addition to the raw data. The data presented in the article will be a valuable source for reference and validation, both for developing fluidic and alternate ultrasound generation technologies. Furthermore, they will give additional insight into the acoustic-flow interaction phenomena of high speed switching devices. This article is accompanying the paper Experimental Analysis of the Acoustic Field of an Ultrasonic Pulse Induced by a Fluidic Switch (Bühling et al., 2021) published in The Journal of the Acoustical Society of America, where the data is interpreted in detail and the rationale for characteristic sound properties of the fluidic transducer are given. KW - Ultrasound KW - Non-destructive testing KW - Air-coupled ultrasound KW - Fluidics KW - Acoustic-flow interaction KW - Piezoelectric transducer PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531308 DO - https://doi.org/10.1016/j.dib.2021.107280 VL - 38 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-53130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schweitzer, T. A1 - Hörmann, M. A1 - Bühling, Benjamin A1 - Bobusch, B. T1 - Switching Action of a Bistable Fluidic Amplifier for Ultrasonic Testing JF - Fluids N2 - Air-coupled ultrasonic testing is widely used in the industry for the non-destructive testing of compound materials. It provides a fast and efficient way to inspect large concrete civil infrastructures for damage that might lead to catastrophic failure. Due to the large penetration depths required for concrete structures, the use of traditional piezoelectric transducer requires high power electric systems. In this study, a novel fluidic transducer based on a bistable fluidic amplifier is investigated. Previous experiments have shown that the switching action of the device produces a high-power broadband ultrasonic signal. This study will provide further insight into the switching behaviour of the fluidic switch. Therefore, parametric CFD simulations based on compressible supersonic RANS simulations were performed, varying the inlet pressure and velocity profiles for the control flow. Switching times are analyzed with different methods, and it was found that These are mostly independent of the slope of the velocity profile at the control port. Furthermore, it was found that an inversely proportional relationship exists between flow velocity in the throat and the switching time. The results agree with the theoretical background established by experimental studies that can be found in the literature. KW - Ultrasound KW - Non-destructive testing KW - Fluidic devices KW - Computational fluid dynamics KW - Concrete KW - Bistable fluidic amplifier PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525115 DO - https://doi.org/10.3390/fluids6050171 SN - 2311-5521 VL - 6 IS - 5 SP - 171 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Strangfeld, Christoph A1 - Maack, Stefan A1 - Schweitzer, T. T1 - Experimental analysis of the acoustic field of an ultrasonic pulse induced by a fluidic switch JF - The Journal of the Acoustical Society of America N2 - Ultrasonic inspection is a common tool for non-destructive testing in civil engineering (NDT-CE). Currently, transducers are coupled directly to the specimen surface, which makes the inspection time-consuming. Air-coupled ultrasound (ACU) transducers are more time-efficient but need a high pressure amplitude as the impedance mismatch between the air and the concrete is high and large penetration depth is needed for the inspection. Current approaches aim at eliminating the impedance mismatch between the transducer and the air to gain amplitude; however, they hardly fulfill the NDT-CE requirements. In this study, an alternative approach for ultrasound generation is presented: the signal is generated by a fluidic switch that rapidly injects a mass flow into the ambience. The acoustic field, the flow field, and their interaction are investigated. It is shown that the signal has dominant frequencies in the range of 35–60 kHz, and the amplitude is comparable to that of a commercial ACU transducer. KW - Air-coupled ultrasound KW - Non-destructive testing KW - Ultrasonic transducer KW - Acoustic-flow interaction PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523862 DO - https://doi.org/10.1121/10.0003937 VL - 149 IS - 4 SP - 2150 EP - 2158 AN - OPUS4-52386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -