TY - JOUR A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Localized dispersing of TiB2 and TiN particles via pulsed laser radiation for improving the tribological performance of hot stamping tools N2 - The aim of this study is to increase the tribological performance of hot stamping tools by using a laser implantation process. This technique allows the fabrication of separated, elevated and dome-shaped microfeatures on the tool surface in consequence of a localized dispersing of ceramic particles via pulsed laser radiation. Hence, the topography and material properties of the tool are modified, which influences the tribological interactions at the blank-die interface. However, an appropriate selection of ceramic particles is an essential prerequisite, in order to obtain tailored and highly wear resistant surface features. In this regard, different titanium-based hard particles (TiB2 and TiN) were laser-implanted on hot working tool specimens and subsequently tested by means of a modified pin-on-disk test regarding to their wear and friction behavior. KW - Surface modification KW - Tribology KW - Laser implantation KW - Hot working tool steel KW - Hot stamping PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-514171 VL - 94 SP - 901 EP - 904 PB - Elsevier B.V. AN - OPUS4-51417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Localized Laser Dispersing of Titanium-Based Particles for Improving the Tribological Performance of Hot Stamping Tools N2 - Within the scope of this work, a new surface engineering technology named laser implantation has been investigated, in order to improve the tribological performance of hot stamping tools. This technique is based on manufacturing highly wear-resistant, separated, and elevated microfeatures by embedding hard ceramic particles into the tool surface via pulsed laser radiation. Hence, the topography and material properties of the tool are modified, which influences the thermal and tribological interactions at the blank-die interface. To verify these assumptions and to clarify the cause–effect relations, different titanium-based particles (TiB2, TiC, TiN) were laser-implanted and subsequently analyzed regarding to their geometrical shape and mechanical properties. Afterwards, quenching tests as well as tribological experiments were carried out by using titanium-diboride as the most promising implantation material for reducing the tribological load due to high hardness value of the generated implants. Compared to conventional tooling systems, the modified tool surfaces revealed a significantly higher wear resistance as well as reduced friction forces while offering the possibility to adjust the thermal interactions at the blank-die interface. Based on these results, a tailored tool surface modification can be pursued in future research work, in order to enhance the effectiveness of the hot stamping technology. KW - Hot stamping KW - Tribology KW - Surface modification KW - Localized laser dispersing PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-510981 VL - 4 IS - 3 SP - 68 PB - MDPI AN - OPUS4-51098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spranger, Felix A1 - Schirdewahn, S. A1 - Kromm, Arne A1 - Merklein, M. A1 - Hilgenberg, Kai T1 - On the influence of TiB2, TiC, and TiN hard particles on the microstructure of localized laser dispersed AISI D2 tool steel surfaces N2 - The control of friction and wear is a major concern in many industrial applications. A promising method for tailored surface modification is the so-called laser implantation technique. This method combines surface texturing and material optimization in one processing step by a localized dispersing of hard ceramic particles using pulsed laser radiation. Wear resistant, protruding micrometric features (implants) with defined geometry can be created in a deterministic pattern where needed on highly stressed surfaces, i.e., on forming or cutting tools. However, in order to maintain the implants over the tool’s lifetime, a suitable selection of hard ceramic particles is a prerequisite. They must provide a defect-free metal matrix composite with a high share of homogeneously distributed particles and, especially, high implant hardness. In this study, TiN, TiC, and TiB2 hard particles were compared as implant materials for the first time. By a systematic variation of pulse power and pulse duration, their dispersing behavior and influence on the material properties of AISI D2 tool steel were investigated. Although all powder materials had grain sizes smaller than 10 μm, it was possible to disperse them by pulsed laser radiation and to obtain defect-free protruding implants. The highest share of dispersed particles (∼64%) was observed for TiB2. By scanning electron microscopy and energy dispersive x-ray spectroscopy, it was also shown that a significant share of the preplaced particles was dissolved by the laser beam and precipitated as nanometer sized particles within the matrix during solidification. These in situ formed particles have a decisive influence on the material properties. While the TiN and TiC implants have shown maximum hardness values of 750 and 850 HV1, the TiB2 implants have shown the highest hardness values with more than 1600 HV1. By x-ray diffraction, it was possible to ascribe the lower hardness values of TiC and TiN implants to high amounts of retained austenite in the metal matrix. By implanting TiB2, the formation of retained austenite was successfully suppressed due to the in situ formation of TiC particles, which was proven by electron backscatter diffraction. In conclusion, all the implant materials are basically suitable for laser implantation on AISI D2 tool steel. However, TiB2 has shown the most promising results. T2 - ICALEO 2019 CY - Orlando, FL, USA DA - 07.10.2019 KW - Laser implantation KW - Surface texturing KW - AISI D2 KW - TiB2 KW - TiN KW - TiC KW - Retained Austenite KW - Localized laser dispersing PY - 2020 U6 - https://doi.org/10.2351/7.0000059 VL - 32 IS - 2 SP - 022028 EP - 022028-9 PB - AIP Publishing AN - OPUS4-50712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -