TY - RPRT A1 - Bettge, Dirk A1 - Bäßler, Ralph A1 - Le, Quynh Hoa A1 - Kranzmann, Axel T1 - Abschlussbericht des Projektteils CLUSTER - BAM: Werkstoffauswahl und Festlegung von Obergrenzen für Verunreinigungen in variierenden CO2-Strömen auf Grund von realitätsnahen Korrosionsexperimenten - FKZ 03ET7031C - im Projektverbund CLUSTER: Auswirkungen der Begleitstoffe in den abgeschiedenen CO2‐Strömen unterschiedlicher Emittenten eines regionalen Clusters auf Transport, Injektion und Speicherung N2 - Nachdem im Verbundprojekt COORAL das Hauptaugenmerk auf überkritisches CO2 gelegt wurde, d. h. Transport über kurze Strecken bei erhöhter Temperatur, wurde in CLUSTER ein größeres lokales Transport-Netzwerk betrachtet, bei dem CO2 bei geringeren Temperaturen, also vorwiegend im flüssigen Zustand transportiert wird. Wurden in COORAL die CO2-Ströme von Kohlekraftwerken untersucht, ging es in CLUSTER zusätzlich um die Emissionen von relevanten Industrien, deren CO2-Emissionen nicht ohne Weiteres vermieden werden können. Aufgrund der Erfahrungen in COORAL konnte eine Auswahl von kommerziellen Werkstoffen getroffen werden, die für einen konkreten Einsatz für CCS zur Verfügung stünden. Die gemischten und fluktuierenden CO2-Zusammensetzungen sind bei geeigneten Begrenzungen der Begleit¬stoffe im CO2 bezüglich Korrosionsvorgänge beherrschbar. Die Machbarkeit eines lokalen CCS-Clusters erscheint daher gegeben, soweit dies die Anlagen für Kompression, Transport und Injektion betrifft. KW - CCS KW - Korrosion KW - CO2-Speicherung KW - Pipelines PY - 2019 SP - 1 EP - 67 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-50249 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bäßler, Ralph T1 - Advanced ceramic and metallic coating and thin film materials for energy and environmental applications (Book review) T2 - Materials and Corrosion N2 - This book provides a state‐of‐the‐art overview on the processing, characterization, and modelling of metallic and ceramic materials used for energy and environmental applications. 17 scientists show a collection of current knowledge in 8 chapters. This book fulfills its intention to provide a reference book containing a collection of publications on thin films and coatings made of ceramic and metals used for energy and environmental applications. It covers a broad range of this topic and provides a comprehensive insight. Graduate and undergraduate students of materials science and mechanical engineering can find an overview on this topic to step in this interesting field of engineering. KW - Ceramic KW - Coating KW - Thin film KW - Energy PY - 2019 DO - https://doi.org/10.1002/maco.201970034 SN - 0947-5117 SN - 1521-4176 VL - 70 IS - 03 SP - 567 EP - 568 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-47517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bäßler, Ralph T1 - Conjugated polymers: Perspective, theory, and new materials (Book review) T2 - Materials and Corrosion N2 - In this also completely rewritten and reorganized second part of the two‐volume set 45 international experts comprise the current knowledge of conjugated polymers. In addition to part one on properties, processing characterization and morphology, 16 chapters cover perspectives, theory and new materials. Finally, it can be concluded that this 4th edition of this handbook fulfills, like the first part, its intention, to be the definitive resource on the topic of conducting polymers. This is assured by the updated and added contributions of all authors, which consider the significant developments both in fundamental understanding, progress and applications since publication of the previous edition. So, it can be recommended to everyone, who wants to get a comprehensive overview on conjugated polymers, not just to researchers, advanced students, and industry professionals working in materials science and engineering. KW - Polymer KW - Testing PY - 2019 DO - https://doi.org/10.1002/maco.201970094 SN - 1521-4176 SN - 0947-5117 VL - 70 IS - 9 SP - 1727 PB - WILEY‐VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-48886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Le, Quynh Hoa A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk T1 - Corrosion Aspects for Materials to be Used in CC(U)S Applications T2 - Proceedings of 1st International Conference on Corrosion Protection and Application N2 - This contribution provides current findings regarding materials susceptibility for carbon capture, utilization and storage (CCUS) applications. Basing on results gathered in 2 German long-term projects (COORAL and CLUSTER) suitable materials are introduced as well as dominating impurities of the CO2-stream and corrosion mechanisms. Investigations cover the whole CCUS process chain and provide material recommendations for certain parts. T2 - 1st International Conference on Corrosion Protection and Application CY - Chongqing, China DA - 09.10.2019 KW - Carbon KW - Capture KW - Storage KW - Utilization KW - CCS KW - CCU KW - CO2 KW - Corrosion KW - Steel PY - 2019 SP - Paper 31 PB - Chinese Society for Corrosion and Protection CY - Chongqing/China AN - OPUS4-49301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Le, Quynh Hoa A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk T1 - Corrosion Aspects for Materials to be Used in CC(U)S Applications N2 - This contribution provides current findings regarding materials susceptibility for carbon capture, utilization and storage (CCUS) applications. Basing on results gathered in 2 German long-term projects (COORAL and CLUSTER) suitable materials are introduced as well as dominating impurities of the CO2-stream and corrosion mechanisms. Investigations cover the whole CCUS process chain and provide material recommendations for certain parts. T2 - 1st International Conference on Corrosion Protection and Application CY - Chongqing, China DA - 09.09.2019 KW - Carbon KW - Capture KW - Storage KW - Utilization KW - CCS KW - CCU KW - CO2 KW - Corrosion PY - 2019 AN - OPUS4-49302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munasir, A1 - Triwikantoro, A1 - Zainuri, M. A1 - Bäßler, Ralph A1 - Darminto, T1 - Corrosion Polarization Behavior of Al-SiO2 Composites in 1M NaCl and Related Microstructural Analysis JF - International Journal of Engineering N2 - The composites combining aluminum and silica nanoparticles with the addition of tetramethylammonium hydroxide (Al-SiO2(T)) and butanol (Al-SiO2(B)) as mixing media have been successfully fabricated. Corrosion behavior of Al-SiO2 composites before and after exposure in 1M NaCl solution was examined using potentiodynamic polarization (Tafel curve analysis). The study was also equipped with scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) investigations. Before exposure, Al-SiO2(T) exhibited the best corrosion resistance. Performance improvement was indicated by Al-SiO2(B) up to 10 times better than Al-SiO2(T) after exposure. The increased SiO2 content did not significantly enhance the corrosion resistance of the composites. The Al-SiO2 composites with 5% SiO2 content showed very high corrosion resistance (as the optimum composition). Furthermore, pitting corrosion was observed in the Al-SiO2 composites, indicated by the formation of corrosion products at grain boundaries. The product was affected by the presence of SiO2 in the Al matrix and the NaCl environment at 90 °C (approach to synthetic geothermal media: Na+, Cl, H+, OH-). Our study revealed the presence of γ-Al2O3, γ-Al(OH)3, and Al(OH)2Cl as the dominant corrosion products. KW - Al-Composite KW - Corrosion KW - Corrosion rate KW - SiO2 Nanoparticle KW - Tafel Plot PY - 2019 DO - https://doi.org/10.5829/ije.2019.32.07a.11 SN - 1025-2495 SN - 1735-9244 VL - 7 IS - 32 SP - 982 EP - 990 PB - Materials and Energy Research Center AN - OPUS4-48742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bäßler, Ralph T1 - Dictionary of Metallurgy and Metal Processing - English-German – German-English (Book review) T2 - Materials and Corrosion N2 - The first issue of this classic dictionary contains highly specialized terms, not only of the area of metallurgy but also of welding, soldering and corrosion. Special attention was paid by the author to a correct reference of each term according to the field of application. Finally, this book fulfills the intension of its author, to collect relevant terms with the correct pendant from a huge variety of sources and applications. It provides the user a foundation for correct terminology and communication for international contacts. KW - Metallurgy KW - Processing PY - 2019 DO - https://doi.org/10.1002/maco.201970104 SN - 1521-4176 SN - 0947-5117 VL - 70 IS - 11 SP - 1919 PB - WILEY‐VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-49304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Bäßler, Ralph T1 - Effect of CO2 gas on carbon steel corrosion in an acidic-saline based geothermal fluid T2 - Electronic Proceedings Eurocorr 2019 N2 - Geothermal energy is one of the most promising energy resources to replace fossil fuel. To extract this energy, hot fluids of various salts and gases are pumped up from a geothermal well having a certain depth and location. Geothermal wells in volcanic regions often contain highly corrosive CO2 and H2S gases that can be corrosive to the geothermal power-plants, which are commonly constructed of different steels, such as carbon steel. This research focuses on the corrosion behaviour of carbon steel exposed to an artificial geothermal fluid containing CO2 gas, using an artificial acidic-saline geothermal brine as found in Sibayak, Indonesia. This medium has a pH of 4 and a chloride content of 1,500 mg/L. Exposure tests were conducted for seven days at 70 °C and 150 °C to simulate the operating temperatures for low and medium enthalpy geothermal sources. Surface morphology and cross-section of the specimens from the above experiments were analysed using scanning electron microscope (SEM) and energy dispersive X-ray (EDX). Electrochemical tests via open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) were performed to understand the corrosion processes of carbon steel in CO2-containing solution both at 70 °C and 150 °C. Localized corrosion was observed to a greater extent at 70 °C due to the less protectiveness of corrosion product layer compared to that at 150 °C, where FeCO3 has a high corrosion resistance. However, a longer exposure test for 28 days revealed the occurrence of localized corrosion with deeper pits compared to the seven-day exposed carbon steel. In addition, corrosion product transformation was observed after 28 days, indicating that more Ca2+ cations incorporate into the FeCO3 structure. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Carbon steel KW - CO2 KW - EIS KW - Geothermal KW - Corrosion PY - 2019 SP - Paper 200245, 1 EP - 5 CY - Madrid, Spain AN - OPUS4-49099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Bäßler, Ralph T1 - Electrochemical deposition of polyaniline on carbon steel for corrosion study in geothermal solution JF - Materials Science Forum N2 - Polyaniline has been widely developed for many applications, e.g. sensor, supercapacitor components, electrochromic devices, and anticorrosion pigments. Although the addition of polyaniline pigment in organic coatings has been an alternative for corrosion protection in industrial applications, the protection mechanism is still not fully understood. Herein in this study, as a part of the development of polyaniline/silicon dioxide coating for geothermal application, polyaniline has been deposited electrochemically on carbon steel surface in oxalic acid medium and tested in geothermal solution to understand the contribution of polyaniline to the corrosion protection of a polyaniline-based composite in the geothermal system. To observe the surface/interface reaction between the electrolyte and electrode surface during the electrochemical polymerization, electrochemical impedance spectroscopy (EIS) was applied after each cycle. For corrosion study in the geothermal application, an artificial geothermal solution was used with the composition of 1,500 mg/l Cl⁻, 20 mg/l SO₄²⁻, 15 mg/l HCO₃⁻, 200 mg/l Ca²⁺, 250 mg/l K⁺, and 600 mg/l Na⁺, and pH 4 to simulate a geothermal brine found in Sibayak, Indonesia. An electrochemical measurement was performed by monitoring the open circuit potential over seven days, with the interruption by EIS every 22 hours. The experiments were performed at room temperature and 150 °C (1 MPa) in an oxygen-free environment. Impedance spectra showed a reduction of the total impedance value of approximately 10 times for specimens measured at 150 °C compared to the specimens measured at room temperature, suggesting a less stable layer at high temperature. KW - Corrosion KW - Electrochemical deposition KW - Polyaniline PY - 2019 DO - https://doi.org/10.4028/www.scientific.net/MSF.966.107 SN - 1662-9752 VL - 966 SP - 107 EP - 115 PB - Trans Tech Publications Ltd CY - Zürich AN - OPUS4-48776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - Kratzig, Andreas A1 - Knauer, S. T1 - Factors Influencing Droplet Corrosion in Dense Phase CO2 T2 - Proceedings NACE International Corrosion Conference 2019 N2 - Recent studies have shown that even at a very low concentration of impurities (less than 100 ppmv of SO2, NO2, O2 and H2O) the droplet formation and condensation of sulfuric and nitric acids in dense phase CO2 are possible and observable. To reveal the mechanism of droplet corrosion in dense phase CO2 at high pressure and low temperature, further studies on factors that affect wettability and resulting corrosion behaviors of transport pipeline steels are needed. In this study, effects of surface morphology were investigated by varying surface roughness of carbon steel coupons exposed to CO2 stream containing impurities to measure the wettability by contact angle and to observe the condensation as well as possible droplet corrosion that followed. Other considered factors were: pH of the droplet, temperature, droplet volume, and exposure time. T2 - NACE International Corrosion Conference 2019 CY - Nashville, TN, USA DA - 24.03.2019 KW - CCUS KW - Dense phase KW - CO2 KW - Droplet KW - Corrosion KW - Condensation KW - Carbon steel PY - 2019 SP - 13017-1 EP - 13017-13 PB - NACE International CY - Houston AN - OPUS4-47915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -