TY - CONF A1 - Schumacher, T. A1 - Murtuz, A. K. M. G. A1 - Hafiz, A. A1 - Dusicka, P. A1 - Niederleithinger, Ernst ED - Gabrijel, I. ED - Grosse, C. ED - Skazlić, M. T1 - Post-earthquake damage evaluation of concrete structures using ultrasonic monitoring: A proof-of concept laboratory study T2 - Proceedings of the International Conference on Sustainable Materials, Systems and Structures (SMSS2019) Novel Methods for Characterization of Materials and Structures N2 - In earthquake-prone regions such as the Pacific Northwest, damage assessment tools are needed to enable safety evaluations to support recovery. Currently, damage assessment is performed primarily by visual inspection and is often impossible for structural members that are inaccessible, such as deep foundations or interior members hidden by cladding. This study explores the possibility of using embedded ultrasonic transducers to monitor reinforced concrete members for damage progression under earthquake loading. A novel methodology is proposed where changes in the member condition due to an increase in the earthquake-type loading of a full-scale column-foundation specimen are correlated with changes in the recorded ultrasonic waveforms. The discussed preliminary analysis of the ultrasonic signals is based on wave propagation velocity, changes in the coda wave portion, and maximum amplitude of the signals. Three embedded transducers were used to continuously monitor the laboratory specimen during destructive testing. This paper provides an overview of the proposed methodology, outlines the laboratory experiment, and discusses some preliminary observations. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.3.2019 KW - Concrete KW - Monitoring KW - Ultrasound KW - earthquake PY - 2019 SN - 978-2-35158-227-5 DO - https://doi.org/10.1007/978-3-031-07258-1_84 SP - 112 EP - 119 PB - RILEM Publications S.A.R.L. CY - Paris, France AN - OPUS4-47679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hafiz, A. A1 - Schumacher, T. A1 - Dusicka, P. A1 - Niederleithinger, Ernst T1 - Post-earthquake damage evaluation of concrete strucutres using ultrasonic monitoring: A proof-of concept laboratory study N2 - In earthquake-prone regions such as the Pacific Northwest, damage assessment tools are needed to enable safety evaluations to support recovery. Currently, damage assessment is performed primarily by visual inspection and is often impossible for structural members that are inaccessible, such as deep foundations or interior members hidden by cladding. This study explores the possibility of using embedded ultrasonic transducers to monitor reinforced concrete members for damage progression under earthquake loading. A novel methodology is proposed where changes in the member condition due to an increase in the earthquake-type loading of a full-scale column-foundation specimen are correlated with changes in the recorded ultrasonic waveforms. The discussed preliminary analysis of the ultrasonic signals is based on wave propagation velocity, changes in the coda wave portion, and maximum amplitude of the signals. Three embedded transducers were used to continuously monitor the laboratory specimen during destructive testing. This paper provides an overview of the proposed methodology, outlines the laboratory experiment, and discusses some preliminary observations. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.3.2019 KW - Concrete KW - Ultrasound KW - Monitoring KW - Earthquake PY - 2019 AN - OPUS4-47678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -