TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska A1 - Akhmetova, Irina A1 - Kulla, Hannes A1 - Rademann, K. T1 - Insights into the mechanochemical Knoevenagel condensation N2 - Mechanochemistry paves the way to simple, fast, and green syntheses, but there is a lack in understanding of the underlying mechanisms. Here, we present a universal strategy for simultaneous real-time in situ analysis, combining X-ray diffraction, Raman spectroscopy, and thermography. T2 - Bessy User Meeting 2019 CY - Berlin, Germany DA - 05.12.2019 KW - Mechanochemistry PY - 2019 AN - OPUS4-50122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska A1 - Akhmetova, Irina A1 - Kulla, H. A1 - Rademann, K. T1 - Insights into mechanochemical Knoevenagel condensations N2 - Mechanochemistry paves the way to simple, fast, and green syntheses. Despite considerable effort, there is a lack in understanding of the underlying mechanisms. In situ investigations help to understand these mechanisms, which occur during a mechanochemical reaction. Here we present a universal strategy for simultaneous real-time in situ analysis, combining X-ray diffraction, Raman spectroscopy, and thermography. The potential of of our approach is shown for diffrent model reactions. T2 - Adlershofer Forschungsforum 2019 CY - Berlin, Germany DA - 11.11.2019 KW - Mechanochemistry KW - In situ KW - Knoevenagel condensation PY - 2019 AN - OPUS4-49694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haferkamp, Sebastian A1 - Paul, Andrea A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Unexpected polymorphism during a catalyzed mechanochemical Knoevenagel condensation JF - Beilstein Journal of Organic Chemistry N2 - The transformation of a base-catalyzed, mechano-assisted Knoevenagel condensation of mono-fluorinated benzaldehyde derivatives (p-, m-, o-benzaldehyde) with malonodinitrile was investigated in situ and in real time. Upon milling, the para-substituted product was found to crystallize initially into two different polymorphic forms, depending on the quantity of catalyst used. For low catalyst concentrations, a mechanically metastable phase (monoclinic) was initially formed, converting to the mechanically stable phase (triclinic) upon further grinding. Instead, higher catalyst concentrations crystallize directly as the triclinic product. Inclusion of catalyst in the final product, as evidenced by mass spectrometric analysis, suggests this complex polymorphic pathway may be due to seeding effects. Multivariate analysis for the in situ Raman spectra supports this complex formation pathway, and offers a new approach to monitoring multi-phase reactions during ball milling. KW - Ball milling KW - C-C coupling KW - In situ KW - Mechanochemistry KW - Multivariate data analysis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481872 DO - https://doi.org/10.3762/bjoc.15.110 SN - 1860-5397 VL - 15 SP - 1141 EP - 1148 PB - Beilstein Insitut CY - Frankfurt am Main AN - OPUS4-48187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska A1 - Akhmetova, Irina A1 - Kulla, Hannes A1 - Rademann, K. T1 - In situ investigations of mechanochemical reactions N2 - Mechanochemistry paves the way to simple, fast, and green syntheses. Despite considerable effort, there remains a lack in understanding of the underlying mechanisms. In situ investigations help to understand these mechanisms, which occur during a mechanochemical reaction. Here we present a universal strategy for simultaneous real-time in situ analysis, combining X-ray diffraction, Raman spectroscopy, and thermography. The potential of our approach is shown for different model reactions. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - In situ KW - Mechanochemistry KW - Milling PY - 2019 AN - OPUS4-47701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -