TY - CONF A1 - Böhning, Martin A1 - Yin, Huajie A1 - Chua, Yeong Zen A1 - Yang, Bin A1 - Schick, Christoph A1 - Schönhals, Andreas T1 - The glass transition temperature of Polymers of Intrinsic Microporosity (PIMs) as determined by fast scanning calorimetry N2 - Polymers of intrinsic microporosity (PIMs) have recently emerged as novel materials for a broad range of high-performance applications from gas separation to electronic devices. The very rigid, contorted polymer chains show only limited molecular mobility and therefore pack inefficiently giving rise to intrinsic microporosity with pore sizes generally smaller than 1 nm resulting in BET surface areas larger than 700 m2/g. Using conventional thermal analysis techniques, no glass transition temperature (Tg) of PIMs could be unambiguously detected up to now. Employing fast scanning calorimetry (FSC) based on a one chip sensor, decoupling the time scales responsible for the glass transition and the thermal decomposition is a reliable strategy to overcome this limitation. The FSC device is capable to heat and cool a small sample (ng-range) with ultrafast rates of several ten thousand K/s. Evidence of a glass transition is obtained for a series of PIMs with different chain rigidities. Local small-scale fluctuations are held responsible for the glass transition of highly rigid PIMs rather than segmental motions as in conventional polymers. T2 - International Polymer Processing Society (PPS) - Europe-Africa 2019 Regional Conference (PPS2019) CY - Pretoria, South Africa DA - 18.11.2019 KW - Polymers KW - Polymers of intrinsic microporosity KW - Glass transition KW - Fast scanning calorimetry PY - 2019 AN - OPUS4-49957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - B, Yang A1 - Chua, Y. Z. A1 - Szymoniak, Paulina A1 - Carta, M A1 - Malpass-Evans, R A1 - McKeown, N A1 - Harrison, W A1 - Budd, P A1 - Schick, C A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Effect of backbone rigidity on the glass transition of polymers of in-trinsic microporosity probed by fast scanning calorimetry N2 - Polymers of Intrinsic Microporosity (PIMs) of high performance have developed as materials with a wide application range in gas separation and other energy-related fields. Further optimization and long-term behavior of devices with PIMs require an understanding of the structure-property relationships including physical aging. In this context the glass transi-tion plays a central role, but with conventional thermal analysis a glass transition is usually not detectable for PIMs be-fore their thermal decomposition. Fast scanning calorimetry provides evidence of the glass transition for a series of PIMs, as the time scales responsible for thermal degradation and for the glass transition are decoupled by employing ultrafast heating rates of tens of thousands K s-1. The investigated PIMs were chosen considering the chain rigidity. The estimated glass transition temperatures follow the order of the rigidity of the backbone of the PIMs. KW - Polymers of intrinsic microporosity KW - Fast scanning calormetry PY - 2019 U6 - https://doi.org/10.1021/acsmacrolett.9b00482 SN - 2161-1653 VL - 8 IS - 8 SP - 1022 EP - 1028 PB - ACS Publications AN - OPUS4-48617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Musil, B. A1 - Böhning, Martin A1 - Johlitz, M. A1 - Lion, A. T1 - On the inhomogenous chemo-mechanical ageing behaviour of nitrile rubber: experimental investigations, modelling and parameter identification N2 - Elastomers are used in almost all areas of industrial applications, such as tires, engine mounts, bridge bearings, seals or coatings. During their use in operation, they are exposed to different environmental influences. These include, in particular, climatic factors such as air oxygen, high temperatures, light (UV radiation) and the influence of media (e.g. oils, fuels). A very important result of these factors is the chemical ageing of elastomers. In this case, the elastomer degenerates and changes its chemical structure in the aged regions, which leads to an irreversible change in the material properties in connection with the reduction in its usability. In this paper, chemical ageing of nitrile butadiene rubber (NBR) is investigated. Especially in case of thermo-oxidative ageing at elevated operating temperatures, the ageing processes run inhomogeneously. These effects are known as diffusion-limited oxidation (DLO) and are associated with the diffusion–reaction behaviour of atmospheric oxygen with the elastomer network. For these reasons, NBR samples are artificially aged in air and subjected to different experimental methods, which are presented and discussed. Additional results from inhomogeneous mechanical tests and permeation tests indicate the causes of the DLO-effect, show the influence of chemical ageing and are subsequently used for parameter identification in relation to the diffusion–reaction equation. A continuum-mechanical modelling approach is also presented here, which describes the finite hyperelasticity, diffusion–reaction processes as well as chemical degradation and reformation of the elastomer network. This multifield problem leads to a system of partial and ordinary differential equations and constitutive equations and is solved within the finite element method. KW - Rubber KW - Ageing KW - Gas permeability KW - DLO KW - NBR PY - 2019 U6 - https://doi.org/10.1007/s00161-019-00791-1 SN - 0935-1175 SN - 1432-0959 VL - 32 IS - 1 SP - 127 EP - 146 PB - Springer CY - Heidelberg AN - OPUS4-48560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Hentschel, Manfred P. A1 - Niebergall, Ute A1 - Böhning, Martin A1 - Bruno, Giovanni ED - Erdmann, Maren T1 - Diesel-induced transparency of plastically deformed high-density polyethylene N2 - High-density polyethylene becomes optically transparent during tensile drawing when previously saturated with diesel fuel. This unusual phenomenon is investigated as it might allow conclusions with respect to the material behavior. Microscopy, differential scanning calorimetry, density measurements are applied together with two scanning X-ray scattering techniques: wide angle X-ray scattering (WAXS) and X-ray refraction, able to extract the spatially resolved crystal orientation and internal surface, respectively. The sorbed diesel softens the material and significantly alters the yielding characteristics. Although the crystallinity among stretched regions is similar, a virgin reference sample exhibits strain whitening during stretching, while the diesel-saturated sample becomes transparent. The WAXS results reveal a pronounced fiber texture in the tensile direction in the stretched region and an isotropic orientation in the unstretched region. This texture implies the formation of fibrils in the stretched region, while spherulites remain intact in the unstretched parts of the specimens. X-ray refraction reveals a preferred orientation of internal surfaces along the tensile direction in the stretched region of virgin samples, while the sample stretched in the diesel-saturated state shows no internal surfaces at all. Besides from stretching saturated samples, optical transparency is also obtained from sorbing samples in diesel after stretching. KW - PE-HD Sorption KW - Cavitation KW - Diesel Fuel KW - X-ray refraction KW - WAXS KW - Internal Surfaces KW - Crystal Texture PY - 2019 U6 - https://doi.org/10.1007/s10853-019-03700-8 SN - 1573-4803 SN - 0022-2461 VL - 54 IS - 17 SP - 11739 EP - 11755 PB - Springer US CY - US AN - OPUS4-48226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Böhning, Martin A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Characterization of high-performance membrane polymers for gas separation using broadband dielectric spectroscopy N2 - In recent years superglassy polymers exhibiting intrinsic microporosity established a new perspective for a number of applications, especially for gas separation membranes as These polymers Combine extremely high permeabilities with attractive selectivities. The essential factor governing the structure Formation in the solid film or layer is either a contorted rigid Backbone (polymers of intrinsic microporosity - PIMs) or extremely bulky side groups (polynorbornenes and polytricyclonenenes). For a deeper understanding of both types of such high-Performance polymers for gas separation membranes and their further development broadband dielectric spectroscopy (BDS) can provide a substantial contribution. BDS addresses molecular relaxations characterizing the dynamics of the solid polymer as a major factor determining the gas transport properties but also the physical aging behavior which is an essential issue for such polymers. BDS is applied on PIMs where fluctuations of molecular dipoles connected to the backbone can be directly monitored. Furthermore, also polynorbornenes were investigated which carry no dipole moment in their repeat unit - the high resolution of modern equipment allows for the detailed analysis also for very small dielectric losses originating from partially oxidized moieties or marginal catalyst residues. Additionally, from interfacial polarization phenomena, such as Maxwell-Wagner-Sillars (MWS) polarization due to blocking of charge carriers at internal interfacial boundaries on a mesoscopic length scale, valuable information on the intrinsic microporosity and its changes induced by physical aging can be obtained. Finally, also conductivity can be characterized in detail in such polymeric systems revealing contributions of interactions of aromatic moieties (π-π-stacking) or the drift motion of charge carriers. These features also determine the structure formation in the solid state. T2 - 257th ACS National Meeting - Symposium "Transport in Polymer Membranes" CY - Orlando, FL, USA DA - 31.03.2019 KW - polymers KW - gas separation membranes KW - polynorbornenes KW - polymers of intrinsic microporosity KW - dielectric spectroscopy KW - molecular mobility PY - 2019 AN - OPUS4-48142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Chapala, P. A1 - Bermeshev, M. A1 - Pauw, Brian Richard A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Influence of Trimethylsilyl Side Groups on the Molecular Mobility and Charge Transport in Highly Permeable Glassy Polynorbornenes N2 - Superglassy polymers with a large fractional free volume have emerged as novel materials with a broad range of applications, especially in the field of membrane separations. Highly permeable addition-type substituted polynorbornenes with high thermal resistance and chemical stability are among the most promising materials. The major obstacle for extending the practical membrane application is their strong tendency to physical aging, leading to a partial decline in their superior transport performance over time. In the present study, broadband dielectric spectroscopy with complementary X-ray scattering techniques were employed to reveal changes in microporous structure, molecular mobility, and conductivity by systematic comparison of two polynorbornenes with different numbers of trimethylsilyl side groups. Their response upon heating (aging) was compared in terms of structure, dynamics, and charge transport behavior. Furthermore, a detailed analysis of the observed Maxwell−Wagner−Sillars polarization at internal interfaces provides unique information about the microporous structure in the solid films. The knowledge obtained from the experiments will guide and unlock potential in synthesizing addition-type polynorbornenes with versatile properties. KW - Dielectric spectroscopy KW - Molecular mobility KW - Electrical conductivity KW - Gas separation membranes PY - 2019 U6 - https://doi.org/10.1021/acsapm.9b00092 SN - 2637-6105 VL - 1 IS - 4 SP - 844 EP - 855 PB - ACS CY - Washington DC AN - OPUS4-47838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Böhning, Martin A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Schartel, Bernhard ED - Yaragalla, S. ED - Kumar Mishra, R. ED - Thomas, S. ED - Kalarikkal, N. ED - Maria, H. J. T1 - Multilayer Graphene/Elastomer Nanocomposites N2 - Elastomers are usually reinforced by large amount of fillers like carbon black (CB) or silica in order to improve various mechanical properties, such as Young’s modulus, hardness, tear resistance, abrasion resistance, and gas barrier properties. In recent years, such improvements were also obtained by using nanoparticles at significantly lower filler loadings. Graphene is a twodimensional (2D) sheet of a thickness in the atomic scale, composed of a honeycomb structure of sp2 carbon atoms. Besides significant mechanical reinforcement, graphene harbors the potential to be used as a multifunctional filler, as it can also increase the conductivity and weathering stability of elastomer matrices. Ultraviolet (UV) irradiation and oxidative agents can lead to the degradation of elastomers due to a multistep photooxidative process, including the formation of radicals. Carbon-based fillers have an influence on these reactions, as they can absorb UV radiation and act as radical scavengers. This chapter summarizes the results of our larger project on multilayer graphene (MLG)/elastomer nanocomposites, previously published, which present a comprehensive case study of MLG as a multifunctional nanofiller in elastomer/graphene nanocomposites. Different elastomeric matrices are compared in order to demonstrate the outstanding impact of MLG as a general benefit. The dependency of this effect on concentration is discussed in detail. Taking into account the key role of dispersion, different mixing procedures are compared, evaluating a facile implementation of graphene nanocomposites into conventional rubber processing. Finally, the most probable commercial uses of MLG nanofillers in combination with conventional CB are studied. The nanocomposites were prepared in the kg scale in order to obtain enough specimens to investigate various properties of the uncured and vulcanized rubbers at the highest quality level, including rheology, curing, morphology, several mechanical properties, abrasion, conductivity, gas permeation, burning behavior, and weathering stability. The structure property relationships are asserted and questioned, for example, by investigating the radical scavenging ability or aspect ratio of the MLG. This chapter illustrates the state of the art of graphene/rubber nanocomposites targeted for commercial mass applications. KW - Nanocomposite KW - Graphene KW - Rubber KW - Reinforcement KW - Durability KW - Masterbatch KW - Gas Barrier Properties KW - Conductivity PY - 2019 SN - 978-0-12-817342-8 SP - 139 EP - 200 PB - Elsevier AN - OPUS4-47408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Böhning, Martin A1 - Niebergall, Ute T1 - Physical and chemical effects of biodiesel storage on high-density polyethylene: Evidence of co-oxidation N2 - The physical and chemical effects of diesel and biodiesel fuels on two high-density polyethylene (PE-HD) types were investigated. Both semi-crystalline PE-HD are common thermoplastic materials for container and storage tank applications. Biodiesel, a composition of unsaturated fatty acid esters from renewable resources, was chosen as it is regarded a possible green alternative to fossil fuels. The study aims at identifying significant differences between biodiesel and conventional diesel fuels based on the differences in the chemical nature of the two. The physical effects of the fuels on the polymer at first comprises the sorption behavior, i.e. kinetics and final equilibrium concentration. Not only are both fuels absorbed by the amorphous phase of the semi-crystalline PE-HD, they also induce a plasticization effect that modifies the molecular mobility and therefore also the characteristic yielding properties, manifest in the obtained stress-strain curves. The chemical effects related to degradation phenomena is investigated by a long-term storage scenario using partially immersed tensile test specimens in diesel and biodiesel. We were able to confirm the proposed co-oxidation mechanism by Richaud et al. for polyethylene-unsaturated penetrant systems on a larger scale based on practical tensile tests. One of the investigated polyethylene grades subjected to tensile drawing showed a significant loss of plastic deformation and the onset of premature failure after 150 days of storage in biodiesel. Further biodiesel storage showed a systematically reduced elongation at break before necking. None of these effects were observed in diesel. Oxidation of fuels and polymer after progressing storage times were analyzed by the evolution of carbonyl species in FT-IR/ATR spectroscopy. KW - Biodiesel KW - Degradation KW - Long-term storage KW - Sorption KW - Diesel PY - 2019 U6 - https://doi.org/10.1016/j.polymdegradstab.2019.01.018 SN - 0141-3910 VL - 161 IS - 1 SP - 139 EP - 149 PB - Elsevier CY - Amsterdam AN - OPUS4-47268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -