TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles as catalysts for the Sabatier reaction N2 - Nanoparticles (NPs) have become important materials for a variety of chemical technologies. The enhanced surface-area-to-volume ratio of NPs, making them excellent for use as catalyst, in analytical assays, and for antimicrobial applications. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4, and could replace the rare earth elements such as Ru, PT, or Rh. In this work we describe the solvothermal synthesis of monometallic and bimetallic nickel nanoparticles. Monodisperse monometallic Ni NPs were synthesized using Oleylamin as solvent and reducing agent. The nanoparticles were investigated using small angle scattering (SAXS), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX), showing that the NPs are stable while the surface is not entirely covered. However, Ni has a high propensity to undergo oxidation, and becoming deactivated by coke formation. Hence, we further explore the preparation of bimetallic NPs, where a second metal is added to stabilize the Ni. Bimetallic Cu-Ni NPs were synthesized by simultaneous solvothermal reduction. These bimetallic NPs exhibit excellent catalytic properties are promising candidates to be used as catalysts for efficient energy storage. T2 - Adlershofer Forschungsforum 2019 CY - Berlin, Germany DA - 11.11.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles for catalysis N2 - We present the synthesis of monodisperse monometallic Ni nanoparticles (NPs) and bimetallic NiCu respectively NiCo NPs. The NPs were investigated using SAXS, STEM, EDX, and XANES, showing that the NPs are size tunable and stable while the surface is not entirely covered. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4. T2 - 11th Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 04.12.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bienert, Ralf A1 - Prinz, Carsten A1 - Emmerling, Franziska T1 - Synthesis of bimetallic nickel nanoparticles as catalysts for the Sabatier reaction N2 - Nanoparticles (NP) have become important materials for a variety of chemical technologies. The enhanced surface-area-to-volume ratio of NPs, making them excellent for use as catalyst, in analytical assays, and for antimicrobial applications. Nickel NPs have exhibited immense potential as important catalyst for the Sabatier reaction, i.e. converting waste to energy via transformation of CO2 into CH4, and could replace the rare earth elements such as Ru, PT, or Rh. In this work we describe the solvothermal synthesis of monometallic and bimetallic nickel nanoparticles. Monodisperse monometallic Ni NPs were synthesized using Oleylamin as solvent and reducing agent. The nanoparticles were investigated using small angle scattering (SAXS), scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX), showing that the NPs are stable while the surface is not entirely covered. However, Ni has a high propensity to undergo oxidation, and becoming deactivated by coke formation. Hence, we further explore the preparation of bimetallic NPs, where a second metal is added to stabilize the Ni. Bimetallic Cu-Ni NPs were synthesized by simultaneous solvothermal reduction. These bimetallic NPs exhibit excellent catalytic properties are promising candidates to be used as catalysts for efficient energy storage. T2 - 31. Tag der Chemie 2019 CY - Berlin, Germany DA - 11.07.2019 KW - Nanoparticles KW - Catalysis KW - Synthesis PY - 2019 AN - OPUS4-50171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Müller, Anja A1 - Heinrich, Thomas A1 - Kunz, Valentin A1 - Nymark, P. A1 - Radnik, Jörg T1 - Chemical characterization of nanoparticles by PCA-assisted ToF-SIMS: a) Core-shell character, b) transformation and c) grouping studies N2 - This talk was given within the scope of the SIMS-22 conference in October 2019 in Kyoto (Japan). It deals with the surface analytical investigation of nanoparticles by PCS-assisted ToF-SIMS. This technique is applicable to core-shell nanoparticles, in order to distinguish a complete encapsulation from an incomplete encapsulation of the core by the shell material. Furthermore, the depletion process of organic nanoparticle coatings caused by UV-weathering is investigated. Finally, the significance of grouping studies for nanomaterials research and risk assessment is demonstrated. T2 - The 22nd International Conference on Secondary Ion Mass Spectrometry (SIMS-22) CY - Kyoto, Japan DA - 20.10.2019 KW - Nanoparticles KW - ToF-SIMS KW - Principal component analysis (PCA) PY - 2019 AN - OPUS4-50075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. A1 - Goenaga-Infante, H. T1 - Challenges in Traceable Size Measurement of Non-Spherical, Non-Monodisperse Nanoparticles - nPSize N2 - Size measurement of nanoparticles (NP) becomes a challenging analytical problem when non-spherical shapes must be traceably measured. However, most industrial NPs have irregular shapes and broad size distribution making it often more complex to follow European regulatory to identify a material as a nanomaterial according to which accurate measurement of the smallest dimension and its size Distribution is necessary. The European research project nPSize - Improved traceability chain of nanoparticle size measurements aims to fill this gap by developing potential non-spherical reference nanoparticles, measurement procedures and physical modelling to improve the traceability chain, comparability and compatibility for NP size measurements between different methods. Therefore, new model NP with well-controlled shape has been synthesized and are supposed to be systematically characterized using the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following NP candidates are under investigation with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-100 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). In addition, sample preparation procedures as well as measurement analysis procedures with evaluation of appropriate measurands and descriptors for each material class and method are being developed to support standardization. To underpin the traceability of the size measurement of nonspherical NP, physical modelling of the signals in e.g. electron microscopy techniques will be used and in combination, the implementation of machine learning is aimed to facilitate measurement Analysis procedures, especially regarding the accurate thresholding/segmentation of the NPs.zeige mehr T2 - Nanoparticle Reference Materials - Production and Cerification Training Course CY - London, UK DA - 10.12.2019 KW - Nanoparticles KW - Traceability KW - Particle size distribution KW - Electron microscopy KW - Reference materials KW - Non-spherical shape PY - 2019 AN - OPUS4-50040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Yamamoto, K. A1 - Grulke, E. A. A1 - Maurino, V. ED - Bosse, H. ED - Buhr, E. ED - Dziomba, T. ED - Hodoroaba, Vasile-Dan ED - Klein, T. ED - Krumrey, M. T1 - Shape controlled TiO2 nanoparticles as candidates for nano-CRM’s – an ISO case study T2 - PTB-Bericht F-61 - NanoWorkshop 2018: Workshop on Reference Nanomaterials N2 - Extraction of true, 3D shape (and size) of non-spherical nanoparticles (NPs) is associated with Errors by conventional 2D electron microscopy using projection images. Significant efforts within the ISO technical committee TC 229 ‘Nanotechnologies’ are aimed at establishing accurate TEM and SEM measurement of NP size and shape as robust, standard procedures. Study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated titania nano-powder for which size and shape distribution of primary crystallites of irregular shape must be measured accurately. To be noticed is e. g. the fact that the measurement procedure allows only manual selection of the particles clearly distinguishable for analysis as well as manual definition of the contour of the imaged NPs. An inter-laboratory exercise on titania NPs (pure anatase, grown by hydrothermal synthesis) of well-defined non-spherical shape, i.e. bipyramidal, has been recently started within ISO/TC 229 under similar conditions as for the irregular shaped titania. In the TEM micrograph the particles tracked manually according to the measurement protocol. Overlapped particles were allowed to be considered, as long as they are clearly distinguishable. One decisive NP selection criterion was to analyze only those NPs with a roundness value below 0.7, i.e. the NPs laying on the support foil and, hence, with projection areas clearly deviating from perfect circles (R=1). The overall evaluation (for 15 labs) of the size descriptors (area, Feret, minFeret, perimeter) and shape descriptors (aspect ratio, roundness, compactness, extent) by analysis of variance is just to be finished and included in ISO/WD 21363 Nanotechnologies -- Protocol for particle size distribution by transmission electron microscopy. T2 - NanoWorkshop 2018: Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - Titanium dioxide KW - Nanoparticles KW - Shape-controlled KW - Electron microscopy PY - 2019 SN - 978-3-95606-440-1 DO - https://doi.org/https://doi.org/10.7795/110.20190412 SN - 0179-0609 VL - F-61 SP - 245 EP - 255 PB - Physikalisch-Technische Bundesanstalt CY - Braunschweig und Berlin AN - OPUS4-49990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grauel, Bettina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Haase, M. A1 - Homann, C. T1 - Progress report NaYF4:Yb,Er upconversion nanoparticles: determination of energy loss processes for the systematic enhancement of the luminescence efficiency N2 - A report on the progress of the PhD work on upconversion nanoparticles is given, showing lifetimes and quantum yields of single- and co-doped Yb,Er nanocrystals with and without inert shell. T2 - Arbeitsgruppenseminar Prof. Oliver Benson CY - Berlin, Germany DA - 23.10.2019 KW - Upconversion KW - Spectroscopy KW - Nanoparticles KW - Lifetime PY - 2019 AN - OPUS4-49754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, D. A1 - Büchner, T. A1 - Müller, L. A1 - Wanka, Antje A1 - Hösl, S. A1 - Ascher, Lena A1 - Cruz-Alonso, M. A1 - Pisonero, J. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Imaging of biological samples by LA-ICP-MS N2 - In recent years, elemental imaging of biological samples like tissue thin sections using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is gaining more and more importance. Improvements concerning spatial resolution as well as signal-to-background ratio due to low-dispersion sample chambers make LA-ICP-MS also interesting for single cell analysis. To evaluate the interaction of nanoparticles (NPs) with cells LA-ICP-MS was applied for the imaging of individual cells. Our findings show, that NP aggregates can be localized within cellular compartments. The uptake efficiency depends strongly on the physico-chemical properties of the nanostructures (size, chemical composition, surface modification), as well as on the incubation conditions (concentration, time). Moreover, LA-ICP-MS is increasingly becoming an important complementary technique in bioanalysis by using element-tagging strategies to determine biomolecules indirectly. Based on the specific binding between antibodies and their corresponding antigens, proteins and peptides can be detected in tissue or cells using tagged antibodies. As artificial tags metal chelates loaded with lanthanides, polymer-based elemental tags or metal-containing nanoparticles can be used. Thereby LA-ICP-MS is a sensitive detection tool for multiplexed immuno-histochemistry of tissue and cell samples. Our results demonstrate the potential of LA-ICP-MS to investigate the distribution of naturally occurring elements, administered agents as well as biomolecules by using metal-tagged antibodies. T2 - Workshop on tandem LIBS/LA-ICP-MS 2019 CY - Berlin, Germany DA - 18.11.2019 KW - Laser ablation KW - ICP-MS KW - Nanoparticles KW - Imaging PY - 2019 AN - OPUS4-49704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rühle, Bastian A1 - Nirmalananthan-Budau, Nithiya A1 - Roloff, Alexander A1 - Resch-Genger, Ute T1 - Surface Functional Group Quantification on Micro- and Nanoparticles N2 - Organic and inorganic micro- and nanoparticles are increasingly used as drug carriers, fluorescent sensors, and multimodal labels in the life and material sciences. Typically, these applications require further functionalization of the particles with, e.g., antifouling ligands, targeting bioligands, stimuli-responjsive caps, or sensor molecules. Besides serving as an anchor point for subsequent functionalization, the surface chemistry of these particles also fundamentally influences their interaction with the surrounding medium and can have a significant effect on colloidal stability, particle uptake, biodistribution, and particle toxicity in biological systems. Moreover, functional groups enable size control and tuning of the surface during the synthesis of particle systems. For these reasons, a precise knowledge of the chemical nature, the total number of surface groups, and the number of groups on the particle surface that are accessible for further functionalization is highly important. In this contribution, we will will discuss the advantages and limitiations of different approaches to quantify the amount of commonly used surface functional groups such as amino,[1,2] carboxy,[1,2] and aldehyde groups.[3] Preferably, the quantification is carried out using sensitive and fast photometric or fluorometric assays, which can be read out with simple, inexpensive instrumentation and can be validated by complimentary analytic techniques such as ICP-OES and quantitative NMR. T2 - NANAX Hamburg CY - Hamburg, Germany DA - 16.09.2019 KW - Microparticles KW - Nanoparticles KW - Quantitative Analysis KW - Surface KW - Funtional Groups PY - 2019 AN - OPUS4-49616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. T1 - New reference material candidates for traceable size measurement of non-spherical nanoparticles N2 - New model nanoparticles with well-controlled shape were synthesized within the EMPIR project nPSize - Improved traceability chain of nanoparticle size measurements. Their systematic characterization takes place by the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following reference nanoparticle candidates are under investigation with respect to their homogeneity and stability: titania nanoplatelets (10-15 nm x 50-100 nm), titania bipyramides (~60 nm x 40 nm), titania acicular particles (100 nm x 15-20 nm; aspect ratio 5.5/6), gold nanorods (~10 nm x 30 nm), and gold nanocubes (~55 nm x 55 nm x 55 nm). T2 - HyMET Workshop on optical surface analysis methods for nanostructured layers CY - Berlin, Germany DA - 10.10.2019 KW - Nanoparticles KW - Reference materials KW - Traceability KW - Particle size distribution PY - 2019 AN - OPUS4-49285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -