TY - CONF A1 - Niederleithinger, Ernst T1 - Ultrasonic methods for concrete: To boldly see, what we have not seen before N2 - This keynote talk at NDE 2019 discusses specific progress in ultrasonic testing of concrete structures. A deep penetration instrument (LAUS) is introduced as well as advanced imaging methods adopted from geophysics and new approaches to ultrasonic monitoring. T2 - NDE 2019 CY - Bangalore, India DA - 05.12.2019 KW - NDT KW - Concrete KW - Ultrasound KW - Imaging KW - Monitoring PY - 2019 AN - OPUS4-50170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - NDE of foundations N2 - This talk teaches the basic princioles and applications of NDT methods for deep foundations, sprecifically piles. A variety of testing methods are discussed (integrity testing, ultrasonic crosshole logging, parallel seismic and others). Capabilities and limitations are given as well as specific hints for practical use. T2 - NDE 2019 Pre-Conference Tutorial PCT 4 CY - Bangalore, India DA - 03.12.2019 KW - NDT KW - Foundation KW - Pile KW - Integrity testing PY - 2019 AN - OPUS4-50169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Recent advances in NDE of concrete structures at BAM N2 - This talk gives an introduction to BAM and its NDT-CE division. Specific challenges in NDT-CE are discussed as well as recent research results. T2 - NDE 2019 Pre-Conference Tutorial PCT 4 CY - Bangalore, India DA - 03.12.2019 KW - NDT KW - Civil engineering PY - 2019 AN - OPUS4-50168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vössing, Konrad A1 - Gaal, Mate A1 - Niederleithinger, Ernst ED - Ross, R. ED - Sauter, U. T1 - Contactless testing of wood-based materials with novel air-coupled ultrasonic transducers N2 - The detection of delamination, rot and cracks causing a decrease of strength in wooden construction elements is a key task for nondestructive testing (NDT). Air-coupled ultrasound (ACU) is used to detect flaws without having to provide contact to the surface or otherwise affect the object. Novel ferroelectric transducers with a high signal-to-noise ratio enable an accurate flaw detection. Transducers made of cellular polypropylene (PP) are suitable for characterizing wood-based materials (WBM) because their extremely low Young’s modulus and low density mean a favorable acoustic impedance for the transmission of ultrasonic waves between the transducer and air. The transducers can be applied during the production of WBM and during its service life. The device enables a fast in-situ recognition of defects with frequencies between 90 kHz and 250 kHz. Measurements can be performed in through transmission for a high resolution or in pulse-echo technique in case of one-sided access at the expense of reduced signal strength. Ultrasonic quality assurance for wood is an important attempt to increase the acceptance of wooden structures and towards sustainability in civil engineering in general. T2 - 21. International Nondestructive Testing and evaluation of Wood Symposium CY - Freiburg, Germany DA - 24.09.2019 KW - Air-coupled ultrasound KW - Defect detection KW - Nondestructive Testing KW - Timber PY - 2019 SP - 100 PB - FVA CY - Freiburg AN - OPUS4-49169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Effner, Ute A1 - Behrens, Matthias A1 - Smith, Sean A1 - Büttner, C. A1 - Friedrich, C. A1 - Mauke, R. T1 - Application of ultrasonic techniques for quality assurance of salt concrete engineered barriers: Shape, cracks and delamination N2 - The closure of underground nuclear waste disposal facilities requires reliable gas- and watertight engineered barriers. In Germany, barriers made from salt concrete have been evaluated in full scale. While the barriers seem to fulfill the requirements regarding permeability, some unexpected cracks have been detected at the surface and at depth. In cooperation between the Federal Company for Radioactive Waste Disposal (BGE) and the Federal Institute for Materials Research and Testing (BAM), several experiments have been carried out to evaluate the applicability for ultrasonic measurements in crack detection and general quality assurance. Both commercial instruments and specially developed devices have been tested on site. Using commercial ultrasonic echo devices designed for concrete inspection it was possible to detect cracks and object in salt concrete up to a depth of 2 m. The check for delamination in shotcrete is another field of application. A unique device available at BAM, the wide aperture, deep penetration instrument LAUS, was able to locate cracks and objects up to a depth of 8 m so far, which is thought to be a record for ultrasonic echo measurements in concrete. Adapted imaging procedures, partly adopted from geophysics, helped to reveal 3D structure at depth. In addition, we have developed ultrasonic probes to be deployed in boreholes, currently at up to 20 m depth. They can collect information on cracks and other features in a radius of about 1.5 m around the borehole in the current version and might be used in echo or transmission mode. Evaluation experiments have been performed at an experimental barrier at the ERAM site in Morsleben, Germany. The results showed several empty and injected cracks as well as built in instrumentation. The results have been verified using borehole endoscopy as well as core examination and will be used to set up a reliable quality assurance system for engineered barriers. All instruments are based on ultrasonic shear wave transducers with a frequency range between 25 kHz and 100 kHz. Current research focuses on the improvement of the hardware (e. g. optimization of array characteristics) and imaging techniques as Reverse Time Migration, both aiming at the improvement of depth of penetration, resolution and probability of detection. T2 - Modern 2020, 2nd International Conference about Monitoring in Geological Disposal of Radioactive Wast CY - Paris, France DA - 09.04.2019 KW - REverse Time Migration (RTM) KW - Engineered Barrier System (EBS) KW - Non-Destructive Testing KW - Ultrasonic Echo KW - Large Aperture Ultrasonic System (LAUS) KW - Synthetic Aperture Focusing Technique (SAFT) PY - 2019 AN - OPUS4-48974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Maak, Stefan A1 - Mielentz, Frank A1 - Effner, Ute A1 - Strangfeld, Christoph A1 - Timofeev, Juri T1 - Review of recent developments in ultrasonic echo testing of concrete N2 - Ultrasonic methods are used in concrete investigations since decades. While being limited to transmission testing in the laboratory for a while, in-situ echo measurements for structural investigations and condition assessment have made their way into practical application in the past 20 years. However, several challenges remain. On one side, there are technical issues as limitations in depth of penetration, resolution and imaging capabilities. On the other side there are still gaps in validation, standardization and certification, which are limiting the applicability in condition/load capacity assessment. This review reports a couple of developments which will help to overcome these issues. This includes technical developments as new devices which are easier to handle on site or giving a much deeper penetration depth (e.g. the LAUS device at BAM) as well as improvements in imaging by hardware update (e. g. air coupled ultrasound or coded signals) or new software (e. g. RTM imaging). To foster the application in real world projects we are as well working on standardization by developing new reference specimen with international partners which will ensure world-wide comparability of ultrasonic and other methods and quality assurance codes. Further, non-destructive methods are being used to update probabilistic models used for the reassessment of existing structures to support the structural engineer’s decisions. T2 - SMAR 2019 CY - Potsdam, Germany DA - 27.08.2019 KW - Engineered Barrier System (EBS) KW - Ultraschall KW - NDT KW - Re-assessment of exiting bridges PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-489686 SP - 1 EP - 6 AN - OPUS4-48968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Al-Neshawy, F. A1 - Ferreira, M. A1 - Bohner, E. A1 - Ojala, T. A1 - Sjöblom, V. A1 - Niederleithinger, Ernst A1 - Effner, Ute A1 - Puttonen, J. T1 - Design, Construction and NDT of a Mock-up for Reinforced Concrete Walls in NPP N2 - Construction methods, environmental stressors, and aging factors are the main causes for defects of reinforced concrete in nuclear power plants (NPP). These defects are typically occurred as corrosion of reinforcement steel, delamination, cracks, malfunction of post-tensioning or steel composite systems etc. Some of the challenges for assessing the performance of these structures by nondestructive testing methods (NDT) are that the assessment could be performed only during the annual overhauls when testing is time-limited and uncertainty of the accuracy and reliability of the available NDT testing devices combined with the lack of the international uniformity of the methods used for NDT tests. To overcome these challenges, a mock-up wall representing a section of the concrete containment of the NPP was built. The mock-up wall included simulated defects, which mimic the most common types of defects in NPP concrete structures such as dimensional errors, honeycombing, delamination, defects adjacent to the steel liner and voids in grouted tendon ducts for the post-tensioned structures. This paper introduces the design and construction of the wall including the concrete properties, reinforcement, tendon ducts and the types of the simulated defects. The paper also introduces the NDT methods and techniques that are suitable for assessing the condition of the mock-up wall under the real environmental conditions. These techniques include mechanical methods as rebound hammer, ultrasonic and electromagnetic methods. This mock-up wall will enable to investigate reliably available NDT methods and experts’ skills providing also an important and very much need educational platform for future NDE experts. T2 - SMIRT-25 CY - Charlotte, NC, USA DA - 04.08.2019 KW - NDE KW - Defects KW - Thick-walled KW - Concrete KW - Deterioration KW - Steel liner PY - 2019 SP - 1 EP - 12 AN - OPUS4-48965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Ertel, Jens-Peter T1 - PileInspect N2 - The EC funded project PileInspect (2013-2016) has tried to improve the traditional low strain pile integrity test by using a shaker instead of a hamm and sophisticated higher order spectra analysis methods to provide automated, reliable interpretation. However, the results, even if promising, have not seen full validation yet. A second module, providing depth information by regularized deconvolution, was developed and tested successfully, but doesn't deliver additional information compared tomteh traditioanl test. T2 - DFI Seminar Pile Integrity Testing CY - Bruxelles, Belgium DA - 12.09.2019 KW - Pile integrity testing KW - Shaker KW - Higher order spectra KW - Deconvolution PY - 2019 AN - OPUS4-48948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Niederleithinger, Ernst A1 - Niederleithinger, Ernst A1 - Katzenbach, R. A1 - Hillmann, S. A1 - Schallert, M. A1 - Unseld, H. A1 - Willmes, M. ED - Bullock, P. ED - Verbeek, G. ED - Paikowsky, S. ED - Tara, D. T1 - A Framework for Nondestructive Testing Used in Foundation Reuse Projects N2 - The reuse of existing foundations is considered in various construction Projects to save time and costs while avoiding unnecessary interference with other underground objects. Because the design and as-built drawings might not be complete and questions may arise regarding the condition of the foundations, a detailed investigation is a prerequisite for the planning process in most cases. Nondestructive testing (NDT) techniques are a core part of this endeavor. The processes and procedure for foundation reuse planning are not yet standardized, and the possibilities and limitations of NDT methods are not known to many planners and stakeholders. The German research Project REFUND (2014–2016) has developed charts for the planning and Investigation process that consider available standards and the current state of the art in NDT. These charts are separately available for single and strip, slab, and pile foundations. Available NDT methods have been compiled and evaluated for specific tasks at these foundation types, including their respective limitations. The procedures have been successfully tested in two real-world projects. The results from these projects enable planners to improve the reliability of the process while potentially saving significant resources. This paper discusses the procedures for pile foundations and demonstrates the use of various NDT methods in a project on the reuse of electrical tower foundations. KW - Foundation reuse KW - Pile integrity testing KW - Parallel seismic PY - 2019 SN - 978-0-8031-7667-6 U6 - https://doi.org/10.1520/STP161120170159 VL - 1611 SP - 238 EP - 253 PB - ASTM International CY - West Conshohoken, PA, USA AN - OPUS4-48795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ertel, Jens-Peter A1 - Niederleithinger, Ernst ED - Bullock, P. ED - Verbeek, G. ED - Paikowsky, S. ED - Tara, D. T1 - Impulse Response Measurement for Pile Integrity Testing Using a Shaker as Excitation Source and Regularized Deconvolution N2 - Concrete piles are used as a foundation when the load capacity of the soil is insufficient or when the sustainable soil is found at a higher depth. Among other impact factors, the load capacity depends on the pile’s integrity and length. Therefore, verifying these parameters using adequate methods is recommended. The most common procedure is the low-strain integrity test using the hammer impact method. Developed and established in the 1970s, this method uses stress waves induced by a hammer impact at the pile head and its reflections at impedance changes (length, defects, geometry changes) to estimate the length and defect locations. Although this method is widely used due to its low cost and fast conduction in situ, one disadvantage is its inability to classify the exact type of defect, i.e., crack, change in diameter, or concrete quality. Furthermore, very long and slender piles are difficult to test and small defects cannot be detected. In addition, it is necessary for the test engineer to hold a high level of experience and expertise in this field. The European Union–funded PileInspect project (2013–2016) aimed to compensate for these disadvantages by using a low-cost shaker as the excitation source and sophisticated artificial intelligence algorithms for damage detection (higher-order spectra method). Because this technology lacks the capacity to localize damages and verify the pile length, an additional impulse response (IR) measurement technique was developed using vibrational excitation and regularized deconvolution to extract the depth information from the data in a similar manner as the hammer method. Simulations and subsequent experiments conducted at a test facility on 90-cm-diameter bored piles 11 m in length and containing cracks at approximately 4 m below the pile head confirmed the capacity to determine the pile length. Damage diagnosis and localization, however, are more difficult than for the hammer method. Although the damaged piles could be distinguished from the intact piles, in a blind test, this method might lead to misinterpretations caused by perturbations arising from the deconvolution process. The results also indicated that the low-cost shaker used for these measurements might be inappropriate for the transferal of sufficient energy. Although the IR method cannot compensate for the disadvantages of the hammer method by itself, it may enable the possibility of using long and fully controllable and repeatable signals (chirp, synthetic impacts, even noise, etc.) for pile integrity testing in the future. KW - Pile integrity testing KW - L-curve KW - Tikhonov regularization KW - NDT PY - 2019 SN - 978-0-8031-7667-6 U6 - https://doi.org/10.1520/STP161120170162 VL - 1611 SP - 184 EP - 204 PB - ASTM International CY - West Conshohoken, PA, USA AN - OPUS4-48794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -