TY - JOUR A1 - Orts Gil, Guillermo A1 - Natte, Kishore A1 - Thiermann, Raphael A1 - Girod, Matthias A1 - Rades, Steffi A1 - Kalbe, Henryk A1 - Thünemann, Andreas A1 - Maskos, M. A1 - Österle, Werner T1 - On the role of surface composition and curvature on biointerface formation and colloidal stability of nanoparticles in a protein-rich model system N2 - The need for a better understanding of nanoparticle–protein interactions and the mechanisms governing the resulting colloidal stability has been emphasised in recent years. In the present contribution, the short and long term colloidal stability of silica nanoparticles (SNPs) and silica–poly(ethylene glycol) nanohybrids (Sil–PEG) have been scrutinised in a protein model system. Well-defined silica nanoparticles are rapidly covered by bovine serum albumin (BSA) and form small clusters after 20 min while large agglomerates are detected after 10 h depending on both particle size and nanoparticle–protein ratio. Oppositely, Sil–PEG hybrids present suppressive protein adsorption and enhanced short and long term colloidal stability in protein solution. No critical agglomeration was found for either system in the absence of protein, proving that instability found for SNPs must arise as a consequence of protein adsorption and not to high ionic environment. Analysis of the small angle X-ray scattering (SAXS) structure factor indicates a short-range attractive potential between particles in the silica-BSA system, which is in good agreement with a protein bridging agglomeration mechanism. The results presented here point out the importance of the nanoparticle surface properties on the ability to adsorb proteins and how the induced or depressed adsorption may potentially drive the resulting colloidal stability. KW - Nanoparticles KW - Protein corona KW - Biointerface KW - BSA KW - PEG KW - Colloidal stability PY - 2013 U6 - https://doi.org/10.1016/j.colsurfb.2013.02.027 SN - 0927-7765 SN - 1873-4367 VL - 108 SP - 110 EP - 119 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-30100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - INSTANT technology for detection of nanoparticles T2 - Public workshop "Detection of Nanoparticles" at the Brandenburg University of Technology Cottbus-Senftenberg CY - Senftenberg, Germany DA - 2013-11-29 PY - 2013 AN - OPUS4-29674 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - Structures, drug-uptake and drug-release determination of micelles, vesicles, and polymeric nanoparticles with small-angle X-ray scattering T2 - Sino-German Symposium "Nanomaterials for Biomedical Applications" CY - Hangzhou, China DA - 2013-10-27 PY - 2013 AN - OPUS4-29433 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stefaniak, A.B. A1 - Hackley, V.A. A1 - Roebben, G. A1 - Ehara, K. A1 - Hankin, S. A1 - Postek, M.T. A1 - Lynch, I. A1 - Fu, W.-E. A1 - Linsinger, T.P.J. A1 - Thünemann, Andreas T1 - Nanoscale reference materials for environmental, health and safety measurements: needs, gaps and opportunities N2 - The authors critically reviewed published lists of nano-objects and their physico-chemical properties deemed important for risk assessment and discussed metrological challenges associated with the development of nanoscale reference materials (RMs). Five lists were identified that contained 25 (classes of) nano-objects; only four (gold, silicon dioxide, silver, titanium dioxide) appeared on all lists. Twenty-three properties were identified for characterisation; only (specific) surface area appeared on all lists. The key themes that emerged from this review were: 1) various groups have prioritised nano-objects for development as 'candidate RMs' with limited consensus; 2) a lack of harmonised terminology hinders accurate description of many nano-object properties; 3) many properties identified for characterisation are ill-defined or qualitative and hence are not metrologically traceable; 4) standardised protocols are critically needed for characterisation of nano-objects as delivered in relevant media and as administered to toxicological models; 5) the measurement processes being used to characterise a nano-object must be understood because instruments may measure a given sample in a different way; 6) appropriate RMs should be used for both accurate instrument calibration and for more general testing purposes (e.g., protocol validation); 7) there is a need to clarify that where RMs are not available, if '(representative) test materials' that lack reference or certified values may be useful for toxicology testing and 8) there is a need for consensus building within the nanotechnology and environmental, health and safety communities to prioritise RM needs and better define the required properties and (physical or chemical) forms of the candidate materials. KW - Engineered nanomaterials KW - Nano-objects KW - Nanoparticles KW - Nanotechnology KW - Reference materials KW - Characterisation KW - Physico-chemical properties KW - Exposure KW - Risk PY - 2013 U6 - https://doi.org/10.3109/17435390.2012.739664 SN - 1743-5390 SN - 1743-5404 VL - 7 IS - 8 SP - 1325 EP - 1337 PB - Informa Healthcare CY - London AN - OPUS4-29343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tyagi, R. A1 - Malhotra, S. A1 - Thünemann, Andreas A1 - Sedighi, A. A1 - Weber, M. A1 - Schäfer, A. A1 - Haag, R. T1 - Investigations of host-guest interactions with shape-persistent nonionic dendritic micelles N2 - The interaction of self-assembled dendritic amphiphiles with drugs and dyes in aqueous solutions is of great significance for designing and optimizing shape-persistent delivery systems. Here we present deeper insight for two examples of low molecular weight (LMW) nonionic dendritic amphiphiles as host molecules and a series of selected aromatic guest model molecules (benzene, naphthalene, biphenyl, terphenyl, anthracene, and pyrene). Aromatic guest molecules were incorporated into the self-assemblies of dendritic nanocarriers, and the resultant complexes were studied by a combination of UV, NMR, computational simulation, and small-angle X-ray-scattering (SAXS) techniques in order to determine the loading capacity, localization, and specific interactions in dendritic amphiphiles with guest molecules. Our findings revealed that the localization of guest molecules in the hydrophobic region and the loading capacity of guest molecules are dependent on their size and the arrangement of aromatic rings instead of the loading amount. Furthermore, the shape of self-assembled host molecules was found to be ellipsoidal and highly persistent even after loading the guest molecules. To the best of our knowledge, this is the first systematic host–guest study, particularly with low molecular weight nonionic dendritic amphiphilies and aromatic guest molecules. Thus, this study opens new possibilities and ways to explore the transport behavior of aromatic drugs with such nanocarriers. KW - Nanotechnology PY - 2013 U6 - https://doi.org/10.1021/jp401503y SN - 1932-7447 SN - 1089-5639 VL - 117 IS - 23 SP - 12307 EP - 12317 PB - Soc. CY - Washington, DC AN - OPUS4-28710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niehoff, A. A1 - Mantion, Alexandre A1 - McAloney, R. A1 - Huber, Alexandra A1 - Falkenhagen, Jana A1 - Goh, C.M. A1 - Thünemann, Andreas A1 - Winnik, M. A. A1 - Menzel, H. T1 - Elucidation of the structure of poly(gamma-benzyl-L-glutamate) nanofibers and gel networks in a helicogenic solvent N2 - The synthesis, characterization, self-assembly, and gel formation of poly(γ-benzyl-L-glutamate) (PBLG) in a molecular weight range from ca. 7,000–100,000 g/mol and with narrow molecular weight distribution are described. The PBLG is synthesized by the nickel-mediated ring-opening polymerization and is characterized by size-exclusion chromatography coupled with multiple-angle laser light scattering, NMR, and Fourier transform infrared spectroscopy. The self-assembly and thermoreversible gel formation in the helicogenic solvent toluene is investigated by transmission electron microscopy, atomic force microscopy, small-angle X-ray scattering, and synchrotron powder X-ray diffraction. At concentrations significantly below the minimum gelation concentration, spherical aggregates are observed. At higher concentrations, gels are formed, which show a 3D network structure composed of nanofibers. The proposed self-assembly mechanism is based on a distorted hexagonal packing of PBLG helices parallel to the axis of the nanofiber. The gel network forms due to branching and rejoining of bundles of PBLG nanofibers. The network exhibits uniform domains with a length of 200±42 nm composed of densely packed PBLG helices. KW - Poly(gamma-benzyl-L-glutamate) (PBLG) KW - Nickel-mediated NCA polymerization KW - Thermoreversible gel formation KW - Physical/supramolecular organogel KW - Nanofiber KW - Self-assembly KW - Alpha-helix KW - Nanotechnology KW - Small-angle X-ray scatering KW - SAXS PY - 2013 U6 - https://doi.org/10.1007/s00396-012-2866-9 SN - 0303-402X SN - 1435-1536 VL - 291 IS - 6 SP - 1353 EP - 1363 PB - Springer CY - Berlin AN - OPUS4-28615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - Specific Surface Areas at the Nanoscale T2 - Trends in Colloids and Interface Science CY - Potsdam, Germany DA - 2013-05-30 PY - 2013 AN - OPUS4-28604 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - Synthesis and Analysis of Polymeric Nanostructures T2 - Advanced Functional Polymers for Medicine CY - Bad Honnef, Germany DA - 2013-05-27 PY - 2013 AN - OPUS4-28602 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - Structure of (bio)polymers in solution T2 - Helmholtz Graduate School Macromolecular Bioscience: PhD Workshop 2013 CY - Teltow, Germany DA - 2013-04-29 PY - 2013 AN - OPUS4-28308 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Noskov, Sergey A1 - Scherer, Christian A1 - Maskos, Michael A1 - Thünemann, Andreas T1 - Determination of Hamaker constants of polymeric nanoparticles in organic solvents by asymmetrical flow field-flow fractionation N2 - Interaction forces between all objects are either of repulsive or attractive nature. Concerning attractive interactions, the determination of dispersion forces are of special interest since they appear in all colloidal systems and have a crucial influence on the properties and processes in these systems. One possibility to link theory and experiment is the description of the London–Van der Waals forces in terms of the Hamaker constant, which leads to the challenging problem of calculating the van der Waals interaction energies between colloidal particles. Hence, the determination of a Hamaker constant for a given material is needed when interfacial phenomena such as adhesion are discussed in terms of the total potential energy between particles and substrates. In this work, the asymmetrical flow field-flow fractionation (AF-FFF) in combination with a Newton algorithm based iteration process was used for the determination of Hamaker constants of different nanoparticles in toluene. KW - Hamaker constant KW - Asymmetrical flow field flow fractionation KW - Lifshitz KW - Van der Waals KW - London KW - Thermodynamic KW - Interaction PY - 2013 U6 - https://doi.org/10.1016/j.chroma.2012.12.001 SN - 0021-9673 VL - 1274 SP - 151 EP - 158 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-27625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -