TY - JOUR A1 - Heinze, Christoph A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Numerical calculation of residual stress development of multi-pass gas metal arc welding JF - The journal of constructional steel research N2 - In various applications, welding-induced residual stresses have a substantial impact on the integrity of welded constructions. Tensile residual stress can promote stress-corrosion cracking, brittle fracture, and reduces the fatigue life in service, as well as influences component design due to critical stress concentrations within the component. In the present paper, a six bead multi-pass gas metal arc weld of 20 mm thick structural steel S355J2+N is experimentally and numerically investigated. The studies include transient 2D and 3D numerical calculations which consider temperature-dependent material properties, phase transformations, 'thermal' tempering, transformation plasticity, volume change due to phase transformation, an elastic–plastic material model, and isotropic strain hardening. The experimentally determined and calculated residual stresses are in a good agreement. Furthermore, the influence of the preheat and interpass temperature on welding-induced residual stresses is shown in the present investigation. KW - Welding simulation KW - Gas metal arc welding KW - Welding-induced residual stress KW - Multi-pass welding KW - Sensitivity analysis PY - 2012 DO - https://doi.org/10.1016/j.jcsr.2011.08.011 SN - 0143-974x VL - 72 SP - 12 EP - 19 PB - Elsevier CY - Oxford AN - OPUS4-25629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinze, Christoph A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - The effect of tack welding on numerically calculated welding-induced distortion JF - Journal of materials processing technology N2 - A single-layer pulsed gas metal arc weld of structural steel S355J2+N with a thickness of 5 mm is experimentally and numerically investigated. Two tack welds are considered in the numerical simulation into two different ways. First, the tack welds are represented by elements belonging to the initial material. This implies that the 'tack weld material' was not exposed to any thermal load or phase transformation before actual welding was performed. The weld seam is shortened and there is an influence on the stiffness of the whole structure affecting the calculation result. Secondly, the tack welds were simulated as conducted in the experimental welding procedure. The cases considering tack welding are compared to a simulation neglecting tack welding and to the experimental results. The influence of tack welds on the calculated welding-induced distortion is clarified and a contribution to an improved simulation-based prediction of welding-induced distortion is possible by modeling tack welding according to the realistic fabrication procedure. KW - Welding simulation KW - Welding-induced distortion KW - Gas metal arc welding KW - Tack welding PY - 2012 DO - https://doi.org/10.1016/j.jmatprotec.2011.09.016 SN - 0924-0136 SN - 1873-4774 VL - 212 IS - 1 SP - 308 EP - 314 PB - Elsevier CY - Amsterdam AN - OPUS4-24820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -