TY - JOUR A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Lammers, Marco A1 - Rethmeier, Michael T1 - PA position full penetration high power laser beam welding of up to 30 mm thick AlMg3 plates using electromagnetic weld pool support JF - Science and technology of welding and joining N2 - Full penetration 15 kW Yb fibre laser butt welding of thick AlMg3 (AW 5754) plates was performed in PA position. A contactless inductive electromagnetic weld pool support system was used to prevent gravity dropout of the melt. The welding speed needed to achieve 20 mm penetration was ~0·5 m min-1. An ac power supply of ~244 W at 460 Hz was necessary to completely suppress gravity dropout of the melt and eliminate sagging of the weld pool root side surface. The oscillating magnetic field can suppress the Marangoni convection in the lower part of the weld pool. The system was also successfully used in the full penetration welding of 30 mm thick AlMg3 plates. KW - High power laser beam welding KW - Electromagnetic weld pool support KW - Full penetration PY - 2012 DO - https://doi.org/10.1179/1362171811Y.0000000085 SN - 1362-1718 SN - 1743-2936 VL - 17 IS - 2 SP - 128 EP - 133 PB - Maney CY - London AN - OPUS4-25888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Avilov, Vjaceslav A1 - Schneider, André A1 - Lammers, Marco A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Electromagnetic control of the weld pool dynamics in partial penetration laser beam welding of aluminium alloys JF - Journal of iron and steel research international N2 - The main characteristic feature of deep penetration laser beam welding is a large temperature difference between the plasma cavity (keyhole) in the centre of the weld pool and the melting/solidification front. Large temperature gradients in the weld pool result in a very intensive thermocapillary (Marangoni) convection. The weld pool surface width becomes very large and unstable. However, an externally applied oscillating magnetic field can stabilize the surface of the melt (the Garnier-Moreau effect, 1983). In the present work this technology was used to stabilize the surface of the weld pool in partial penetration 4.4 kW Nd:YAG laser beam welding of AW-5754 alloyin PA position. The AC magnet was mounted on the laser welding head. The oscillating magnet field was oriented perpendicular to the welding direction. It was found that the AC magnet field can drastically reduce the surface roughness of welds. The analysis of the x-ray images shows a rastic reduction of porosity content in the welds. This effect can be explained as a result of electromagnetic ectification of the melt. KW - Electromagnetically controlled laser beam welding KW - Weld pool stabilization KW - Porosity prevention PY - 2012 SN - 1006-706X SN - 1001-0963 VL - 19 IS - Suppl. 1 SP - 233 EP - 236 PB - Ed. Board CY - Beijing AN - OPUS4-26833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avilov, Vjaceslav A1 - Schneider, André A1 - Lammers, Marco A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Electromagnetic control of the weld pool dynamics in partial penetration laser beam welding of aluminium alloys T2 - ICALEO 2012 - 31st International congress on applications of lasers & electro-optics (Proceedings) N2 - An oscillating (AC) magnet field was used to suppress porosity formation and to stabilize the surface of the weld pool in bead-on-plate partial penetration 4.4 kW Nd:YAG laser beam welding of AW-5754 plates in PA position. The magnet was mounted on the laser welding head. The magnet field (up to 0.4 T and 10 kHz) was oriented perpendicular the welding direction. The analysis of the weld cross-sections and x-ray images shows a drastic reduction (up to 90%) of porosity contents in the welds. The observed effects can be explained in terms of electromagnetically (EM) induced 'Archimedes' forces as well as the EM stirring flow in the weld pool. Moreover, usage of AC magnetic fields results in a significant reduction (up to 50%) of the surface roughness of the welds. This effect can be explained in terms of electromagnetic (EM) contribution to the surface tension (the Garnier-Moreau effect) T2 - ICALEO 2012 - 31st International congress on applications of lasers & electro-optics CY - Anaheim, CA, USA DA - 23.09.2012 PY - 2012 IS - Paper 701 SP - 250 EP - 256 AN - OPUS4-27257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Babu, N. K. A1 - Brauser, S. A1 - Rethmeier, Michael A1 - Cross, C.E. T1 - Characterization of microstructure and deformation behaviour of resistance spot welded AZ31 magnesium alloy JF - Materials science and engineering A N2 - Resistance spot welds were prepared on 3 mm thick sheets of continuous cast and rolled AZ31 magnesium alloy. The microstructure and composition analysis of weld nugget, heat affected zone (HAZ) and base metal were examined using optical and scanning electron microscopy (HR-SEM and EDS/X). The resistance spot welded magnesium alloy joints consist mainly of weld nugget and HAZ. The nugget contains two different structures, i.e. the cellular-dendritic structure at the edge of the nugget and the equiaxed dendritic structure in the centre of the nugget. The structure transition is attributed to the changes of solidification conditions. In the HAZ, grain boundary melting occurred and grain boundaries became coarse. It has been shown that hardness reduction in the weld nugget and HAZ compared with base metal is evident due to dendritic microstructure and grain growth, respectively. The results showed that spot welded joints have failed in interfacial mode under torsion and tensile–shear loading conditions. Digital image correlation during tensile–shear testing showed that low surface strains occur in the interfacial failure mode, because fracture and deformation happened primarily in the nugget area. KW - Resistance spot welding KW - AZ31 magnesium alloy KW - Microstructure KW - Hardness KW - Torsion KW - Tensile–shear PY - 2012 DO - https://doi.org/10.1016/j.msea.2012.04.021 SN - 0921-5093 SN - 1873-4936 VL - 549 SP - 149 EP - 156 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-25924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Numerical simulation of full-penetration laser beam welding of thick aluminium plates with inductive support JF - Journal of Physics D N2 - A three-dimensional laminar steady-state numerical model was developed to investigate the influence of an alternating current (ac) magnetic field during high-power full-penetration laser welding on the weld pool dynamics and weld cross section of a 20 mm thick aluminium plate in flat position. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved iteratively with the commercial finite element software COMSOL Multiphysics using temperature-dependent material properties up to evaporation temperature. Thermocapillary convection at the weld pool surfaces, natural convection and latent heat of solid–liquid phase transition were taken into account in this model. Solidification was modelled by the Carman–Kozeny equation for porous media morphology. The ac magnet was mounted on the root side of the weld specimen. The magnetic field was aligned perpendicular to the welding direction. The flow pattern in the melt and thus also the temperature distribution were significantly changed by the application of oscillating magnetic fields. It was shown that the application of an ac magnetic field to laser beam welding allows for a prevention of the gravity drop-out. The simulation results are in good qualitative agreement with the experimental observations. KW - Electromagnetic weld pool support KW - Laser beam welding KW - Lorentz force KW - Marangoni stresses KW - Natural convection PY - 2012 DO - https://doi.org/10.1088/0022-3727/45/3/035201 SN - 0022-3727 SN - 1361-6463 VL - 45 IS - 3 SP - 035201-1 - EP - 035201-13 PB - IOP Publ. CY - Bristol AN - OPUS4-25286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Simulation of an inductive weld pool support for deep penetration laser beam welding of metal parts JF - Journal of iron and steel research international N2 - three-dimensional laminar steady state numerical model was used to investigate the influence of an altemating current (ac) magnetic field during single pass high power laser beam keyhole welding of 20 mm thick aluminum. The three-dimensional heat transfer, fluid dynamics and electromagnetic field equations were solved with the commercial finite element package COMSOL Multiphysics. Dominant physical effects of the process were taken into account: Thermo-capillary (Marangoni) convection at the upper and lower weld pool surfaces, natural convection due to the gravity influence and the latent heat of solid-liquid phase transition. Simulations were conducted for several magnetic field strengths and it was found that the gravity drop-out associated with welding of thick plates due to the hydrostatie pressure can be prevented by the application of an ac magnetic field below the weld specimen of around 70 mT (rms) at an oscillation frequency of 450 Hz. The inductive support System allows for single-pass laser beam welding of thick aluminum plates. The flow pattem in the molten zone and the temperature distributions are significantly changed by the application of the electromagnetic forces in the weld pool. KW - Electromagnetic weld pool support KW - Laser beam welding KW - Lorentz force KW - Marangoni stresses KW - Natural convection PY - 2012 SN - 1006-706X SN - 1001-0963 VL - 19 IS - Suppl. 1 SP - 114 EP - 117 PB - Ed. Board CY - Beijing AN - OPUS4-26913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Fluid flow simulation of the influence of a steady magnetic field on the weld pool dynamics in deep penetration laser beam welding of aluminium JF - Journal of iron and steel research international N2 - A multi-physics numerical model was developed to investigate the influence of a steady magnetic field during partial penetration keyhole laser beam welding of an aluminum plate in flat position. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved with the finite element differential equation solver COMSOL Multiphysics. The magnetic field was aligned perpendicularly to the welding direction. The main objective of these simulations was to estimate the critical value of the magnetic field needed to suppress convective flows in the weld pool during high-power (up to 20 kW) laser beam welding of aluminum alloys with up to 20 mm deep weld pool. It reveals that steady magnetic fields with corresponding Hartmann numbers Ha^2 ~ 10^4 based on the half-width of the weld pool can effectively suppress convective flows in the weld pool. Moreover, the typically occurring wineglass-shape of the weld cross section caused by thermo-capillary flow is weakened. KW - Laser beam welding KW - Lorentz force KW - Marangoni stresses KW - Natural convection KW - Hartmann effect PY - 2012 SN - 1006-706X SN - 1001-0963 VL - 19 IS - Suppl. 1 SP - 467 EP - 470 PB - Ed. Board CY - Beijing AN - OPUS4-26914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Multi-physics process simulation of static magnetic fields in high power laser beam welding of aluminium T2 - COMSOL Conference 2012 (Proceedings) N2 - A three-dimensional turbulent steady state numerical model was used to investigate the influence of a stationary magnetic field during partial penetration high power laser beam keyhole welding of thick aluminum parts. COMSOL Multiphysics was used to calculate the three-dimensional heat transfer, fluid dynamics and electromagnetic field equations. Thermo-capillary (Marangoni) convection at the upper weld pool surface, natural convection due to gravity and latent heat of solid-liquid phase transition were taken into account. It shows that the application of steady magnetic fields produces a braking Lorentz force in the melt based on the Hartmann effect. The flow pattern in the weld pool and also the temperature distribution and associated weld pool geometry thus change significantly. Convective flows in the melt can effectively be suppressed and the influence of thermo-capillary flow is diminished to a thin surface layer. T2 - COMSOL Conference 2012 CY - Milan, Italy DA - 10.10.2012 KW - Electromagnetic weld pool control KW - Laser beam welding KW - Lorentz force KW - Marangoni convection KW - Buoyancy PY - 2012 SN - 978-0-9839688-7-0 SP - 1 EP - 7 AN - OPUS4-26993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brauser, Stephan A1 - Rethmeier, Michael A1 - Pepke, Lutz-Alexander A1 - Weber, Gert T1 - Influence of production-related gaps on strength properties and deformation behaviour of spot welded trip steel HCT690T JF - Welding in the world N2 - In this study, the influence of production-related gaps on the shear tension strength and fatigue performance was investigated for resistance spot welded TRIP steel HCT690. Furthermore, the local strain distribution in shear tension test was calculated by the digital image correlation technique (DIC). The static shear tension strength was found to be almost independent of gaps up to 3 mm. The maximum local strain in the spot weld region however decreases depending on which sample side (deformed or undeformed) is considered. In addition, it has been ascertained that gaps of 3 mm lead to a significant drop in fatigue life compared to gap-free shear tension samples. This fact could be attributed to decreased stiffness, higher transverse vibration and higher rotation (θ) between the sheets as well as increased local stress calculated by 2 dimensional FE simulation. KW - Deformation KW - Fatigue life KW - Finite element analysis KW - Gap KW - Resistance spot welding KW - Shear strength PY - 2012 SN - 0043-2288 SN - 1878-6669 VL - 56 IS - 03-04 SP - 115 EP - 125 PB - Springer CY - Oxford AN - OPUS4-27590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brauser, Stephan A1 - Schwenk, Christopher A1 - Rethmeier, Michael A1 - Noack, T. A1 - Jüttner, S. T1 - Einfluss von schweißbedingten Rissen auf die Schwingfestigkeit von Widerstandspunktschweißverbindungen aus hochfestem austenitischen Stahl JF - Schweißen und Schneiden : Fachzeitschrift für Schweißen und verwandte Verfahren N2 - Unter den rauen Bedingungen in der Automobilkarosseriefertigung lassen sich schweißbedingte Imperfektionen wie Risse beim Widerstandspunktschweißen von hochfesten Stählen nicht immer vermeiden. Dabei ist der Einfluss solcher Risse auf die Schwingfestigkeit insbesondere von modernen hochfesten austenitischen Stählen derzeit nicht hinreichend bekannt. Im Rahmen dieser Arbeit wurde daher der Einfluss von Schweißrissen verschiedener Lage und Ausbildung untersucht. Dabei konnte durch die Analyse der normierten Steifigkeitsverläufe von Proben sowie durch die Gegenüberstellung der Versagensschwingspielzahlen nachgewiesen werden, dass die spritzerfrei erzeugten Oberflächenrisse im Zentrum, im Übergangsbereich sowie im Randbereich der Schweißlinse keinen negativen Einfluss auf die Schwingfestigkeit des hier untersuchten hochfesten austenitischen Werkstoffs haben. Proben, die mit Schweißspritzern hergestellt wurden und Risse im Randbereich aufweisen, zeigen deutliche höhere Versagensschwingspielzahlen als rissfreie Referenzproben. ---------------------------------------------------------------------------------------------------------------------------------------------- In the rough conditions in the fabrication of automobile bodies, it is not always possible to avoid welding-induced imperfections such as cracks during the resistance spot welding of highstrength steels. In this respect, the influence of such cracks on the fatigue strength particularly of modern high-strength austenitic steels is not sufficiently well-known at present. The influence of welding cracks with various positions and formations was therefore investigated within the framework of this paper. In this case, the analysis of the standardised stiffness courses of specimens and the comparison of the numbers of failure stress cycles served to prove that the surface cracks produced without any spatter in the centre, interfacial region and peripheral region of the weld nugget do not have any negative influence on the fatigue strength of the high-strength austenitic material investigated here. Specimens which were manufactured with welding spatter and exhibit cracks in the peripheral region show considerably higher numbers of failure stress cycles than crack-free reference specimens. KW - Festigkeit KW - Hochfester Stahl KW - Rissbildung KW - Widerstandspressschweißen KW - Werkstofffragen KW - Fahrzeugbau PY - 2012 SN - 0036-7184 VL - 64 IS - 1-2 SP - 28 EP - 31 PB - Verl. für Schweißen u. Verwandte Verfahren, DVS-Verl. CY - Düsseldorf AN - OPUS4-25623 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -