TY - JOUR A1 - Quiroz Penaranda, Vanessa A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Comparison between CO2- and Nd: YAG-laser beam welding of high-strength CrMnNi steels for the automotive industry N2 - IIW-2326 Austenitic and austenitic-ferritic CrMnNi-stainless steels are suitable materials in the transport and automotive industry due to their high corrosion resistance and high strength that allows weight and cost savings. This study focuses on the laser weldability of a commercial lean duplex and an austenitic high manganese stainless steel. The impact of different laser sources, i.e. a 5 kW CO2- and a 4 kW Nd:YAG-laser, and of the main process parameters on the resulting weld quality will be investigated. One important aspect will concern the appearance of weld defects such as pores and hot cracks. The factors causing such internal imperfections will be analysed in order to find effective methods for preventing them. Weld microstructure and the associated corrosion and mechanical properties will be assessed with different techniques and adequate process parameters for high quality welds will be determined. The advantages and limitations of the applied welding processes will be evaluated for future applications. KW - Laser beam welding KW - Stainless steel KW - Austenitic KW - Duplex KW - Weld microstructure KW - Pores KW - Cracks KW - Corrosion KW - Tensile strength PY - 2012 SN - 0043-2288 SN - 1878-6669 VL - 56 IS - 11/12 SP - 129 EP - 142 PB - Springer CY - Oxford AN - OPUS4-27911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Polami, S.M. A1 - Rethmeier, Michael A1 - Schmid, A. T1 - Friction welding of drive pinions for heavy-duty trucks T2 - 5. VDI-Fachtagung Welle-Nabe-Verbindungen CY - Nürtingen, Germany DA - 2012-09-25 PY - 2012 SN - 978-3-18-092176-1 SN - 0083-5560 N1 - Serientitel: VDI-Berichte – Series title: VDI-Berichte VL - 2176 SP - 211 EP - 219 PB - VDI-Verl. CY - Düsseldorf AN - OPUS4-27749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weber, Gert A1 - Brauser, Stephan A1 - Gaul, Holger A1 - Rethmeier, Michael T1 - Study of fatigue behavior for spot welded tensile shear specimens of advanced high strength steels N2 - For automotive body-in-white applications the influence of manufacture-related gaps between the steel sheets and also of manufacture-related surface cracks on the fatigue behavior of tensile shear specimens for spot welded TRIP steel was analyzed. It was shown that gaps between the steel sheets reduce the fatigue strength, whereas the fatigue behavior is neither influenced by cracks in the electrode indentation area nor in the heat effected zone. PY - 2012 U6 - https://doi.org/10.1002/srin.201100286 SN - 1611-3683 SN - 0177-4832 VL - 83 IS - 10 SP - 988 EP - 994 PB - Verl. Stahleisen CY - Düsseldorf AN - OPUS4-27632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brauser, Stephan A1 - Rethmeier, Michael A1 - Pepke, Lutz-Alexander A1 - Weber, Gert T1 - Influence of production-related gaps on strength properties and deformation behaviour of spot welded trip steel HCT690T N2 - In this study, the influence of production-related gaps on the shear tension strength and fatigue performance was investigated for resistance spot welded TRIP steel HCT690. Furthermore, the local strain distribution in shear tension test was calculated by the digital image correlation technique (DIC). The static shear tension strength was found to be almost independent of gaps up to 3 mm. The maximum local strain in the spot weld region however decreases depending on which sample side (deformed or undeformed) is considered. In addition, it has been ascertained that gaps of 3 mm lead to a significant drop in fatigue life compared to gap-free shear tension samples. This fact could be attributed to decreased stiffness, higher transverse vibration and higher rotation (θ) between the sheets as well as increased local stress calculated by 2 dimensional FE simulation. KW - Deformation KW - Fatigue life KW - Finite element analysis KW - Gap KW - Resistance spot welding KW - Shear strength PY - 2012 SN - 0043-2288 SN - 1878-6669 VL - 56 IS - 03-04 SP - 115 EP - 125 PB - Springer CY - Oxford AN - OPUS4-27590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Graf, Benjamin A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laser metal deposition as repair technology for stainless steel and titanium alloys N2 - In a repair process chain, damaged areas or cracks can be removed by milling and subsequently be reconditioned with new material deposition. The use of laser metal deposition has been investigated for this purpose. The material has been deposited into different groove shapes, using both stainless steel and Ti-6Al-4 V. The influence of welding parameters on the microstructure and the heat affected zone has been studied. The parameters have been modified in order to achieve low heat input and consequently low distortion as well as low metallurgical impact. Finally, an evaluation of the opportunities for an automatized repair process is made. T2 - LANE 2012 - Laser Assisted net shape engineering 7 CY - Fürth, Germany DA - 2012-11-12 KW - Laser metal deposition KW - Laser powder cladding KW - Repair welding KW - Ti-6Al-4 V KW - Stainless steel PY - 2012 U6 - https://doi.org/10.1016/j.phpro.2012.10.051 N1 - Serientitel: Physics Procedia – Series title: Physics Procedia VL - 39 SP - 376 EP - 381 AN - OPUS4-27306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quiroz Penaranda, Vanessa A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Investigation of the hot cracking susceptibility of laser welds with the controlled tensile weldability test N2 - Due to significant developments over the last decades, laser beam welding has become a well-established industrial process offering high processing speeds and causing low component distortions. But an important issue currently preventing its intense use, especially in the energy or plant construction sector where high alloy steels are applied, concerns hot crack formation. Although considerable advances in understanding hot cracking mechanisms have been made, most of the known influencing factors are metallurgical in character. The thermo-mechanical effects are barely considered or quantified. Up to the present, there exist numerous hot cracking tests that were however conceived for welding methods other than laser beam welding. Considering the special features of the laser welding process, such as high cooling rates and the narrow process zone, results obtained with other welding techniques and test procedures cannot be transferred to laser beam welding. In this study, the laser beam weldability of various stainless steels was examined in terms of their susceptibility to hot cracking by means of the controlled tensile weldability test, which was proven to be suitable for use in conjunction with CO2 laser welding. This test allows the application of tensile strain at a variable fixed cross-head speed transverse to the welding direction. Full and partial penetration bead-on-plate welds were produced. In a first attempt to determine the impact of the applied external strain on the local transient strains and strain rates near the weld pool, an optical system was used to measure the backside surface of partial penetration welds. The results showed the influence of the strain and the strain rates on hot crack formation. Furthermore, a classification of the studied austenitic, duplex and ferritic stainless steels according to the established test criteria (critical strain and cross-head speed) was conducted. KW - Laser beam welding KW - CO2 laser KW - Hot cracking KW - Stainless steels KW - Critical strains KW - Strain rates KW - Hot cracking test KW - Controlled tensile weldability test PY - 2012 U6 - https://doi.org/10.1177/0309324712462120 SN - 0309-3247 SN - 2041-3130 VL - 47 IS - 8 SP - 587 EP - 599 PB - Sage CY - London AN - OPUS4-27281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avilov, Vjaceslav A1 - Schneider, André A1 - Lammers, Marco A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Electromagnetic control of the weld pool dynamics in partial penetration laser beam welding of aluminium alloys N2 - An oscillating (AC) magnet field was used to suppress porosity formation and to stabilize the surface of the weld pool in bead-on-plate partial penetration 4.4 kW Nd:YAG laser beam welding of AW-5754 plates in PA position. The magnet was mounted on the laser welding head. The magnet field (up to 0.4 T and 10 kHz) was oriented perpendicular the welding direction. The analysis of the weld cross-sections and x-ray images shows a drastic reduction (up to 90%) of porosity contents in the welds. The observed effects can be explained in terms of electromagnetically (EM) induced 'Archimedes' forces as well as the EM stirring flow in the weld pool. Moreover, usage of AC magnetic fields results in a significant reduction (up to 50%) of the surface roughness of the welds. This effect can be explained in terms of electromagnetic (EM) contribution to the surface tension (the Garnier-Moreau effect) T2 - ICALEO 2012 - 31st International congress on applications of lasers & electro-optics CY - Anaheim, CA, USA DA - 23.09.2012 PY - 2012 IS - Paper 701 SP - 250 EP - 256 AN - OPUS4-27257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rethmeier, Michael A1 - Gumenyuk, Andrey A1 - Quiroz Penaranda, Vanessa T1 - Investigation on laser beam welding of high-manganese austenitic and austenitic-ferritic stainless steels PY - 2012 SN - 0005-111x SN - 0005-2302 VL - 1 IS - 705 SP - 12 EP - 17 CY - Kiev, Ukraine AN - OPUS4-27209 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quiroz Penaranda, Vanessa A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Investigations on laser beam welding of high-manganese austenitic and austenitic-ferritic stainless steels KW - Laser welding KW - CO2- and Nd:YAG laser KW - Stainless austenitic and duplex steels KW - Higher manganese content KW - Process stability KW - Shielding atmosphere KW - Weld metal KW - Microstructure KW - Mechanical properties KW - Corrosion resistance PY - 2012 SN - 0957-798X VL - 1 SP - 10 EP - 14 PB - E. O. Paton Electric Welding Institute of the National Acad. of Sciences of Ukraine CY - Kyïv AN - OPUS4-27062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Multi-physics process simulation of static magnetic fields in high power laser beam welding of aluminium N2 - A three-dimensional turbulent steady state numerical model was used to investigate the influence of a stationary magnetic field during partial penetration high power laser beam keyhole welding of thick aluminum parts. COMSOL Multiphysics was used to calculate the three-dimensional heat transfer, fluid dynamics and electromagnetic field equations. Thermo-capillary (Marangoni) convection at the upper weld pool surface, natural convection due to gravity and latent heat of solid-liquid phase transition were taken into account. It shows that the application of steady magnetic fields produces a braking Lorentz force in the melt based on the Hartmann effect. The flow pattern in the weld pool and also the temperature distribution and associated weld pool geometry thus change significantly. Convective flows in the melt can effectively be suppressed and the influence of thermo-capillary flow is diminished to a thin surface layer. T2 - COMSOL Conference 2012 CY - Milan, Italy DA - 10.10.2012 KW - Electromagnetic weld pool control KW - Laser beam welding KW - Lorentz force KW - Marangoni convection KW - Buoyancy PY - 2012 SN - 978-0-9839688-7-0 SP - 1 EP - 7 AN - OPUS4-26993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -