TY - THES A1 - Lecompagnon, Julien T1 - Nondestructive defect characterization using full-frame spatially structured super resolution laser thermography N2 - Laser-based active thermography is a contactless non-destructive testing method to detect material defects by heating the object and measuring its temperature increase with an infrared camera. Systematic deviations from predicted behavior provide insight into the inner structure of the object. However, its resolution in resolving internal structures is limited due to the diffusive nature of heat diffusion. Thermographic super resolution (SR) methods aim to overcome this limitation by combining multiple thermographic measurements and mathematical optimization algorithms to improve the defect reconstruction. Thermographic SR reconstruction methods involve measuring the temperature change in an object under test (OuT) heated with multiple different spatially structured illuminations. Subsequently, these measurements are inputted into a severely ill-posed and heavily regularized inverse problem, producing a sparse map of the OuT’s internal defect structure. Solving this inverse problem relies on limited priors, such as defect-sparsity, and iterative numerical minimization techniques. Previously mostly experimentally limited to one-dimensional regions of interest (ROIs), this thesis aims to extend the method to the reconstruction of two-dimensionalROIs with arbitrary defect distributions while maintaining reasonable experimental complexity. Ultimately, the goal of this thesis is to make the method suitable for a technology transfer to industrial applications by advancing its technology readiness level (TRL). In order to achieve the aforementioned goal, this thesis discusses the numerical expansion of a thermographic SR reconstruction method and introduces two novel algorithms to invert the underlying inverse problem. Furthermore, a forward solution to the inverse problem in terms of the applied SR reconstruction model is set up. In conjunction with an additionally proposed algorithm for the automated determination of a set of (optimal) regularization parameters, both create the possibility to conduct analytical simulations to characterize the influence of the experimental parameters on the achievable reconstruction quality. On the experimental side, the method is upgraded to deal with two-dimensional ROIs, and multiple measurement campaigns are performed to validate the proposed inversion algorithms, forward solution and two exemplary analytical studies. For the experimental implementation of the method, the use of a laser-coupled DLP-projector is introduced, which allows projecting binary pixel patterns that cover the whole ROI, reducing the number of necessary measurements per ROI significantly (up to 20x). Finally, the achieved reconstruction of the internal defect structure of a purpose-made OuT is qualitatively and qualitatively benchmarked against well-established thermographic testing methods based on homogeneous illumination of the ROI. Here, the background-noise-free two-dimensional photothermal SR reconstruction results show to outclass all defect reconstructions by the considered reference methods. N2 - Die laserbasierte aktive thermografische Prüfung als berührungslose Methode der zerstörungsfreien Werkstoffprüfung (NDT) basiert auf der aktiven Erwärmung des Testobjekts (OuT) und Messung des resultierenden Temperaturanstiegs mit einer Infrarotkamera. Dadurch bedingt können systematische Abweichungen vom vorhergesagten Erwärmungsverhalten Aufschluss über dessen innere Struktur geben. Jedoch ist das Auflösungsvermögen für innenliegende Defekte durch die diffusive Natur der Wärmeleitung in Festkörpern begrenzt. Thermografische Super-Resolution (SR)-Methoden zielen darauf ab, diese Limitation durch die Kombination mehrerer Messungen mit jeweils unterschiedlicher strukturierter Erwärmung und mathematischer Optimierungsmethoden zu überwinden. Zur Rekonstruktion innerer Defekte mithilfe thermografischer SR-Rekonstruktionsmethodik wird für die Gesamtheit mehrerer Messungen ein schlecht gestelltes und stark regularisiertes inverses mathematisches Problem gelöst, was in einer dünnbesetzten Karte der internen Defektstruktur des OuTs resultiert. Die Inversion mittels iterativer numerischer Minimierungsverfahren profitiert dabei von einzelnen Annahmen wie der vergleichsweisen Seltenheit von Materialdefekten. Nachdem die Methode bisher experimentell fast ausschließlich auf eindimensionale Messbereiche (ROIs) beschränkt war, zielt diese Arbeit auf eine Erweiterung zur Prüfung zweidimensionaler ROIs mit arbiträren Defektverteilungen bei erträglicher experimenteller Komplexität ab. Ziel ist es, durch die Weiterentwicklung des Technologie-Reifegrades (TRL) den Technologietransfer zur industriellen Anwendung zu ermöglichen. Hierzu werden erst die numerische Erweiterung der SR-Rekonstruktionsmethodik für zweidimensionale ROIs erörtert und zwei neue Algorithmen zur Invertierung des zugrunde liegenden inversen Problems vorgestellt, sowie eine Vorwärtslösung des inversen Problems entwickelt. In Verbindung mit einem neuartigen Algorithmus zur automatisierten Bestimmung der (optimalen) Regularisierungsparameter wird erstmals die Möglichkeit geschaffen, analytische Simulationen zum Einfluss einzelner Parameter auf die erreichbare Rekonstruktionsqualität durchzuführen. Weiterhin wird der experimentelle Ansatz zur Prüfung zweidimensionaler ROIs erweitert. Mehrere Messkampagnen validieren die eingeführten Inversionsalgorithmen, die Vorwärtslösung und zwei exemplarische analytische Studien. Für die experimentelle Umsetzung wird erstmals die Verwendung lasergekoppelter DLP-Technologie für die makroskopische thermografische Prüfung nutzbar gemacht, welche die Projektion großflächiger binärer Pixelmuster ermöglicht. Dadurch kann die Anzahl der erforderlichen Messungen pro ROI ohne Qualitätseinbußen erheblich reduziert werden (bis zu 20x). Abschließend werden die erzielten Rekonstruktionsergebnisse der internen Defektstruktur eines speziell angefertigten OuTs qualitativ und quantitativ mit auf homogener Erwärmung basierenden etablierten Methoden der thermografischen Prüfung verglichen. Hier zeigt sich, dass die weitgehend rauschfreien SR-Rekonstruktionsergebnisse alle Defektrekonstruktionen der betrachteten Referenzmethoden deutlich übertreffen. KW - Nondestructive testing KW - Zerstörungsfreie Prüfung KW - Thermography KW - Thermografie KW - Super resolution KW - Structured illumination KW - Strukturierte Beleuchtung KW - Defect characterization KW - Defektcharakterisierung KW - DMD KW - DLP PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588296 DO - https://doi.org/10.14279/depositonce-19271 SP - 1 EP - 154 PB - Technische Universität Berlin CY - Berlin AN - OPUS4-58829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertovic, Marija T1 - How can we use psychology to optimize the NDT inspection process and prevent human error N2 - The aim of this presentation is to highlight how psychology can be used to prevent human error. It starts with examples of accidents, incidents and events that have happened due to too little attention being dedicated to human factors. It continues arguing that human factors are one of the main factors influencing the reliability of non-destructive testing and gives definitions of the main terms. Furthermore, it presents a method used to identify risks in mechanized NDT to be used for the purposes of the final disposal of spent nuclear fuel and presents a study, in which human-centred design and eye tracking have been used to optimism the inspection procedure. The conclusion is that human factors methods can be used to identify problems during the inspection process and generate mitigation strategies that can be used to decrease human error and enhance safety. T2 - The Nordic Symposium on Nuclear Power CY - Stockholm, Sweden DA - 26.11.2018 KW - Zerstörungsfreie Prüfung KW - Human factors KW - Human error KW - Risk management PY - 2018 AN - OPUS4-46938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Jan P. A1 - Krankenhagen, Rainer T1 - Influence of the real energy input on the sensitivity of thermographic testing in case of GFRP N2 - Thermographic testing (TT) is an upcoming nondestructive method, which requires no contact at all to the specimen and can be applied on larger areas simultaneously. The measurement concept is based on the production of a thermal imbalance at the surface of the object under test. When the surface of this object is heated by an external source for a certain time, the surface temperature drops subsequently, influenced by inner defects of the sample. This leads to thermal contrasts at the surface. It is crucial that those contrasts are large enough to be detectable above the noise level. In a first approximation, the observed temperature contrast at a defect is proportional to the energy which was really introduced into the specimen during the heating period. However, the real energy input in a TT experiment is almost always unknown due to distinct parameters of the experimental setup or the material investigated. Typically, only the power consumption of the heating sources is reported, sometimes combined with the distance to the specimen surface. This contribution describes the thermographic inspection of a rear side thickness variation from 1 to 2 cm at GFRP. This could represent a rear side adhesive bond i.e. in a wind turbine rotor blade. The front side heating was realized by usual halogen lamps with variable radiation power. The detected temperature contrast at the front side will be related to the different energy inputs determined by means of a simple analytical model applied to the experimental data. Additionally, the experimental data are compared with results of FEM simulations performed by COMSOL Multiphysics. The results clearly demonstrate the key role of the real energy input in a real TT setup, if detection limits have to be evaluated. T2 - ECNDT 2018 CY - Göteborg, Sweden DA - 11.06.2018 KW - GFK KW - Thermografie mit Stufenanregung KW - Rotorblatt KW - Zerstörungsfreie Prüfung KW - Energieeintrag PY - 2018 AN - OPUS4-45374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -