TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Donėlienė1, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. T1 - Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid N2 - A femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. T2 - Microscopy & Microanalysis 2018 CY - Baltimore, MD, USA DA - 05.08.2018 KW - Nanoparticles KW - Titanium oxide KW - Laser ablation in liquid KW - Electron microscopy KW - XRD PY - 2018 AN - OPUS4-46502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - EMPIR nPSize - improved traceability chain of nanoparticle size measurements - Is a liaison to CEN/TC 352 nanotechnologies useful? N2 - The main objectives of the new EMPIR project nPSize are to establish EU capability of traceable measurement of NP size and shape, lower uncertainties of NP size measurement by developement of new nano-CRMs, new models (physical and machine learning), 3D method combination, and also by new ISO and CEN standards on accurate NP size measurement and guidance and knowledge transfer. The envisaged outcomes of the project will be presented and their suitability will be discussed to be taken over as pertinent contributions to normative projects within CEN/TC 352 Nanotechnologies. T2 - Joint Working Groups and 24th CEN/TC 352 Nanotechnologies Meetings CY - DIN, Berlin, Germany DA - 09.10.2018 KW - Nanoparticles KW - Size KW - Particle size distribution KW - Particle shape KW - Traceability KW - Standardisation KW - CEN/TC 352 Nanotechnologies PY - 2018 AN - OPUS4-46252 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Overview on the most advanced and suitable NanoDefine measurement methods N2 - The EC Recommendation on the definition of nanomaterial, based solely on size of the constituent particles, foresees development of harmonised measurement methods ensuring ‘consistent results across materials and over time’. The EU/FP7 research project NanoDefine has been exclusively dedicated to support the implementation of this EC Recommendation for the European Union’s legislation. For the first time, measurement techniques able to determine the size of nanoparticles have been evaluated systematically on a well-defined set of quality control materials (spherical, monodisperse) as well as industrial materials of complex shapes and considerable polydispersity. Particularly based on the analytical performance of the measurement techniques as tested on the challenging real-world particulate materials, it was possible to formulate recommendations for use of a new tiered approach consisting of screening and confirmatory techniques. Thus, a consistent framework of guidance for nanomaterial identification according to the EC Definition has been issued in form of the NanoDefiner e-tool, with a transparent decision flow scheme and an extensive user manual. Selected examples of analysis and classification as nano-/non-nanomaterials will be given, highlighting the limits of applicability of the available measurement techniques in dependence on sample properties. On some recent relevant developments in sample preparation – as a crucial part for an accurate analysis - will be also reported. T2 - VCI-NanoDefine Follow-up Meeting CY - VCI, Frankfurt am Main, Germany DA - 25.09.2018 KW - Nanoparticles KW - Nanomaterial KW - EC definition of nanomaterial KW - Nanoparticle size distribution PY - 2018 AN - OPUS4-46251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Yamamoto, K. A1 - Grulke, E. A. T1 - Size and shape distribution of bipyramidal TiO2 nanoparticles by transmission electron microscopy – an inter-laboratory comparison N2 - Extraction of true, 3D shape (and size) of non-spherical nanoparticles (NPs) is associated with errors by conventional 2D electron microscopy using projection images. Significant efforts within the ISO technical committee TC 229 ‘Nanotechnologies’ are aimed at establishing accurate TEM and SEM measurement of NP size and shape as robust, standard procedures. Study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated titania nano-powder for which size and shape distribution of primary crystallites of irregular shape must be measured accurately. To be noticed is e. g. the fact that the measurement procedure allows only manual selection of the particles clearly distinguishable for analysis as well as manual definition of the contour of the imaged NPs. An inter-laboratory exercise on titania NPs (pure anatase, grown by hydrothermal synthesis) of well-defined non-spherical shape, i.e. bipyramidal has been recently started within ISO/TC 229 under similar conditions as for the irregular shaped titania. Overlapped particles were allowed to be considered, as long as they are clearly distinguishable. One decisive NP selection criterion was to analyze only those NPs with a roundness value below 0.7, i.e. the NPs laying on the support foil and, hence, with projection areas clearly deviating from perfect circles (R=1). The overall evaluation (for 15 labs) of the size descriptors (area, Feret, minFeret, perimeter) and shape descriptors (aspect ratio, roundness, compactness, extent) by analysis of variance is just to be finished and included in ISO/WD 21363 Nanotechnologies -- Protocol for particle size distribution by transmission electron microscopy. KW - Nanoparticles KW - Electron microscopy KW - Titanium oxide KW - Particle size distribution PY - 2018 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/size-and-shape-distribution-of-bipyramidal-tich-nanoparticles-by-transmission-electron-microscopy-an-interlaboratory-comparison/9E2FA0C716DB5F881E3032D014DFD52B DO - https://doi.org/10.1017/S1431927618009017 SN - 1431-9276 SN - 1435-8115 VL - 24 IS - S1 (August 2018) SP - 1706 EP - 1707 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-46005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donėlienė, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. A1 - Hodoroaba, Vasile-Dan T1 - Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid N2 - A femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD(two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. KW - Laser ablation in liquid KW - Nanoparticles KW - Titanium oxide KW - Particle morphology PY - 2018 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/electron-microscopy-and-xray-diffraction-analysis-of-titanium-oxide-nanoparticles-synthesized-by-pulsed-laser-ablation-in-liquid/AE368446FAC70E08C514F9AEABFD131B DO - https://doi.org/10.1017/S1431927618009030 VL - 24 IS - S1 (August) SP - 1710 EP - 1711 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-45949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Yamamoto, K. A1 - Grulke, E. A. A1 - Maurino, V. T1 - Size and shape distribution of bipyramidal TiO2 nanoparticles by TEM - An inter-laboratory comparison N2 - Extraction of true, 3D shape (and size) of non-spherical nanoparticles (NPs) is associated with errors by conventional 2D electron microscopy using projection images. Significant efforts within the ISO technical committee TC 229 ‘Nanotechnologies’ are aimed at establishing accurate TEM and SEM measurement of NP size and shape as robust, standard procedures. Study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated titania nano-powder for which size and shape distribution of primary crystallites of irregular shape must be measured accurately. To be noticed is e. g. the fact that the measurement procedure allows only manual selection of the particles clearly distinguishable for analysis as well as manual definition of the contour of the imaged NPs. An inter-laboratory exercise on titania NPs (pure anatase, grown by hydrothermal synthesis) of well-defined non-spherical shape, i.e. bipyramidal has been recently started within ISO/TC 229 under similar conditions as for the irregular shaped titania. Overlapped particles were allowed to be considered, as long as they are clearly distinguishable. One decisive NP selection criterion was to analyze only those NPs with a roundness value below 0.7, i.e. the NPs laying on the support foil and, hence, with projection areas clearly deviating from perfect circles (R=1). The overall evaluation (for 15 labs) of the size descriptors (area, Feret, minFeret, perimeter) and shape descriptors (aspect ratio, roundness, compactness, extent) by analysis of variance is just to be finished and included in ISO/WD 21363 Nanotechnologies -- Protocol for particle size distribution by transmission electron microscopy. T2 - Microscopy & Microanalysis 2018 CY - Baltimore, MD, USA DA - 05.08.2018 KW - Nanoparticles KW - Electron microscopy KW - ISO KW - Nanotechnology PY - 2018 AN - OPUS4-45750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maurino, V. A1 - Hodoroaba, Vasile-Dan A1 - Pellutiè, L. A1 - Pellegrino, F. A1 - Ortel, Erik A1 - Isopescu, R. T1 - Synthesis of Shape controlled TiO2 N2 - Titanium dioxide is one of the most studied metal oxides due to its chemical, surface, electronic and (photo)catalytic properties, providing this material of multisectorial applications ranging from healthcare, photocatalysis, smart materials with self cleaning and self sterilizing properties and solar energy harvesting. However it is difficult to correlate the functional properties of TiO2 nanomaterials to the properties at single nanoparticle level due to the high polydispersity in shape, size and surface features of the currently available TiO2 nanoparticles (NPs). Although intensive experimental and theoretical studies have been conducted on the reactivity of different surfaces of metal oxides such as TiO2 much less attention is paid on the dependence of functional properties, like photocatalytic activity, dye adsorption, open circuit potential and fill factor in dye sensitized solar cells, on crystal facets in different orientations. One of the goal of SETNanoMetro project was the development of design rules to tune crystal facets of TiO2 NPs in order to optimize and control functional properties. In the present work we have developed a series of design rules in order to obtain sets of anatase TiO2 NPs with low polydispersity and to tune their shape and size by hydrothermal processing of Ti(IV)-Triethanolamine complex in presence of different shape controllers. Through a careful experimental design, a predictive soft model was developed. The model is able to predict the synthesis outcome allowing to tune the shape factor from 5 (prisms) to 1.5 (bipyramids) to 0.2 (platelets). This allows to control the main crystal facets exposed ranging from (100) to (001). Due to the dependence of functional properties of nanomaterials on shape distribution and not only size, the availability of NPs sets with uniform and well defined and tunable shapes can be of paramount relevance in order to produce reference nanomaterials for shape measurement. T2 - NanoWorkshop 2018 (Workshop on reference nanomaterials, current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - Anatase KW - Shape control KW - Hydrothermal synthesis KW - Nanoparticles PY - 2018 AN - OPUS4-45634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Measurement of nanoparticle size and shape distribution – Current situation and outlook N2 - The EC Recommendation on the definition of nanomaterial, based solely on size of the constituent particles, foresees development of harmonised measurement methods ensuring ‘consistent results across materials and over time’. The EU/FP7 research project NanoDefine has been exclusively dedicated to support the implementation of this EC Recommendation for the European Union’s legislation. For the first time, measurement techniques able to determine the size of nanoparticles have been evaluated systematically on a well-defined set of quality control materials (spherical, monodisperse) as well as industrial materials of complex shapes and considerable polydispersity. Particularly based on the analytical performance of the measurement techniques as tested on the challenging real-world particulate materials, it was possible to formulate recommendations for use of a new tiered approach consisting of screening and confirmatory techniques. Thus, a consistent framework of guidance for nanomaterial identification according to the EC Definition has been issued in form of the NanoDefiner e-tool, with a transparent decision flow scheme and an extensive user manual. Selected examples of analysis and classification as nano-/non-nanomaterials will be given, highlighting the limits of applicability of the available measurement techniques in dependence on sample properties. On some recent relevant developments in sample preparation – as a crucial part for an accurate analysis - will be also reported. Further, ISO/TC 229 ‘Nanotechnologies’ activities aiming at establishing accurate TEM and SEM measurement of NP size and shape as robust, traceable, standard procedures are highlighted. With participation of BAM, study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated or shape-controlled titania nano-powder for which size and shape distribution of primary particles must be measured accurately. T2 - Symposium Preparation, Characterization and Processing of Nano and Submicron Powders CY - Berlin, Germany DA - 14.06.2018 KW - Nanoparticles KW - Nanomaterial KW - EC definition KW - Nanoparticle size distribution PY - 2018 AN - OPUS4-45191 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Yamamoto, K. A1 - Grulke, E. A. A1 - Maurino, V. T1 - Shape controlled TiO2 nanoparticles as candidates for nano-CRM’s – an ISO case study N2 - Extraction of true, 3D shape (and size) of non-spherical nanoparticles (NPs) is associated with errors by conventional 2D electron microscopy using projection images. Significant efforts within the ISO technical committee TC 229 ‘Nanotechnologies’ are aimed at establishing accurate TEM and SEM measurement of NP size and shape as robust, standard procedures. Study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated titania nano-powder for which size and shape distribution of primary crystallites of irregular shape must be measured accurately. To be noticed is e. g. the fact that the measurement procedure allows only manual selection of the particles clearly distinguishable for analysis as well as manual definition of the contour of the imaged NPs. An inter-laboratory exercise on titania NPs (pure anatase, grown by hydrothermal synthesis) of well-defined non-spherical shape, i.e. bipyramidal has been recently started within ISO/TC 229 under similar conditions as for the irregular shaped titania. Overlapped particles were allowed to be considered, as long as they are clearly distinguishable. One decisive NP selection criterion was to analyze only those NPs with a roundness value below 0.7, i.e. the NPs laying on the support foil and, hence, with projection areas clearly deviating from perfect circles (R=1). The overall evaluation (for 15 labs) of the size descriptors (area, Feret, minFeret, perimeter) and shape descriptors (aspect ratio, roundness, compactness, extent) by analysis of variance is just to be finished and included in ISO/WD 21363 Nanotechnologies -- Protocol for particle size distribution by transmission electron microscopy. T2 - NanoWorkshop 2018 (Workshop on reference nanomaterials, current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - Titanium oxide KW - Nanoparticles KW - Shape-controlled KW - Electron microscopy KW - Reference material PY - 2018 AN - OPUS4-44996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Bosse, H. T1 - Improved traceability chain of nanoparticle size measurements – the new EMPIR project nPSize N2 - Coming as response to the needs expressed by The European Commission mandating CEN, CENELEC and ETSI to develop European standards for methods that can characterize reliably manufactured nanomaterials, a new European metrology research project ‘nPSize - Improved traceability chain of nanoparticle size measurements’ has received funding for the next three years. The project will develop methods, reference materials and modelling to improve the traceability chain, comparability and compatibility for nanoparticle size measurements to support standardization. nPSize has selected only those nanoparticle sizing techniques which are able to provide traceable results: electron microscopy (SEM, TSEM and TEM), AFM and SAXS. Metrologists from national metrological or designated institutes (PTB, LNE, LGC, VSL, SMD and BAM) will work together with scientists with know-how in development of new nano reference nanoparticles (CEA, University of Turin, LGC, BAM) and with experts in advanced data processing, e.g. by machine learning (POLLEN). With the support of DIN, the project outcomes will be channelized to standardization bodies such as ISO/TC 229 ‘Nanotechnologies’/JWG 2 ‘Nanoparticle Measurement and Characterization’ (SEM, TSEM and TEM), CEN/TC 352 ‘Nanotechnologies’ (SEM, TSEM and TEM), ISO/TC 201/SC 9 (AFM), ISO/TC 24/SC 4 (SAXS). Three technical work packages will ensure input for impact to standardization community, nanoparticle manufacturers, instrument manufacturers, and (accredited) service laboratories: - WP1 Performance and traceability of characterization methods - WP2 Reference materials - Preparation and Characterization - WP3 Modelling and development of measurement procedures Well-defined non-spherical nanoparticles shapes such as cubes, platelets, bipyramids, rods/acicular will be developed, with mono- and polydisperse size distribution, as well as with accurate particle number concentration (by SAXS and isotopically enrichment for ICP-MS). Physical modelling of the signal for TSEM, SEM, 3D-AFM and SAXS will be used to feed machine learning modeling from a-priori measurement data. Further, data fusion will be developed for hybrid sizing techniques: SEM with TSEM/TEM, SEM/TSEM with AFM, SEM/TSEM with SAXS with the final aim of improving the true shape and size of non-spherical nanoparticles by a better estimation of the measurement uncertainties. In the second half-time of the project dedicated workshops (focused on method improvement and reference materials development) will be organized to disseminate the gained knowledge to end-users. Further, a data library with relevant tagged measurement data is planned to be organized and made publicly available. Inter-laboratory comparisons based on the newly developed multi-modal nano reference materials will be organized preferably within VAMAS/TWA 34 ‘Nanoparticle populations’. T2 - NanoWorkshop 2018 (Workshop on reference nanomaterials, current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - Nanoparticles KW - Size KW - Shape KW - Traceable size PY - 2018 AN - OPUS4-44995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -