TY - CONF A1 - Nirmalananthan-Budau, Nithiya A1 - Moser, Marko A1 - Geißler, Daniel A1 - Behnke, Thomas A1 - Resch-Genger, Ute T1 - Multimodal cleavable reporters vs conventional labels for optical quantification of amino and carboxy groups on nanomaterials and microparticles N2 - Carboxy, amino, and thiol groups play a critical role in a variety of physiological and biological processes and are frequently used for bioconjugation reactions. Moreover, they enable size control and tuning of the surface during the synthesis of particle systems. Especially, thiols have a high binding affinity to noble metals and semiconductors (SC). Thus, simple, inexpensive, robust, and fast methods for the quantification of surface groups and the monitoring of reactions involving ligands are of considerable importance for the characterization of modified or stabilized nanomaterials including polymers. We studied the potential of the Ellman’s assay, recently used for the quantification of thiol ligands on SC nanocrystals by us1 and the 4-aldrithiol assay for the determination of thiol groups in molecular systems and on polymeric, noble and SC nanomaterials. The results were validated with ICP-OES and reaction mechanisms of both methods were studied photometrically and with ESI-TOF-MS. The investigation of the reaction mechanisms of both methods revealed the influence of different thiols on the stoichiometry of the reactions2, yielding different mixed disulfides and the thiol-specific products spectroscopically detected. The used methods can quantify freely accessible surface groups on nanoparticles, e.g., modified polystyrene nanoparticles. For thiol ligands coordinatively bound to surface atoms of, e.g., noble or SC nanomaterials, depending on the strength of the thiol-surface bonds, particle dissolution prior to assay performance can be necessary. We could demonstrate the reliability of the Ellman’s and aldrithiol assay for the quantification of surface groups on nanomaterials by ICP-OES and derived assay-specific requirements and limitations. Generally, it is strongly recommended to carefully control assay performance for new samples, components, and sample ingredients to timely identify possible interferences distorting quantification. T2 - BAM-BfR Seminar 2018 CY - Berlin, Germany DA - 15.02.2018 KW - Surface functionalization KW - Nanoparticles KW - Surface chemistry KW - Multimodal reporters PY - 2018 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-44850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nirmalananthan-Budau, Nithiya A1 - Moser, Marko A1 - Behnke, Thomas A1 - Geißler, Daniel A1 - Resch-Genger, Ute T1 - Multimodal cleavable reporters for the optical quantification of functional groups on nano- and microparticles N2 - Polymer nanoparticles (NPs) are of increasing importance for a wide range of applications in the material and life sciences. This includes their application as carriers for e.g., analyte-responsive ligands for DNA sequencing platforms, drugs as well as dye molecules for use as multichromophoric reporters for signal enhancement in optical assays or the fabrication of nanosensors and targeted probes in bioimaging studies. All these applications require surface functionalization of the particles with e.g., ligands, sensor dyes, or analyte recognition moieties like biomolecules, and subsequently, the knowledge of the chemical nature and total number of surface groups as well as the number of groups accessible for coupling reactions. Particularly attractive for the latter are optically active reporters together with sensitive and fast optical assays, which can be read out with simple, inexpensive instrumentation. We assessed a variety of conventional and newly developed colorimetric and fluorometric labels for optical surface group analysis, utilizing e.g., changes in intensity and/or color for signal generation. Moreover, novel cleavable and multimodal reporters were developed which consist of a reactive group, a cleavable linker, and an optically active moiety, chosen to contain also heteroatoms for straightforward method validation by elemental analysis, ICP-OES, ICP-MS or NMR. In contrast to conventional labels measured bound at the particle surface, which can favor signal distortions by scattering and encoding dyes, cleavable reporters can be detected colorimetrically or fluorometrically both attached at the particle surface and after quantitative cleavage of the linker in the transparent supernatant after particle removal e.g., by centrifugation. Here, we present first results obtained for the optical quantification of carboxylic and amino groups on a series of self-made polystyrene NPs with different types of labels and compare their potential and drawbacks for surface group analysis. T2 - NanoWorkshop 2018 CY - Berlin, Germany DA - 14.05.2018 KW - Optical assays KW - Cleavable probes KW - Conventional dyes KW - Nanoparticles PY - 2018 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-45177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -