TY - JOUR A1 - Wen, Keqing A1 - Gorbushina, Anna A. A1 - Schwibbert, Karin A1 - Bell, Jérémy T1 - Microfluidic Platform with Precisely Controlled Hydrodynamic Parameters and Integrated Features for Generation of Microvortices to Accurately Form and Monitor Biofilms in Flow N2 - ABSTRACT: Microorganisms often live in habitats characterized by fluid flow, and their adhesion to surfaces in industrial systems or clinical settings may lead to pipe clogging, microbially influenced corrosion, material deterioration, food spoilage, infections, and human illness. Here, a novel microfluidic platform was developed to investigate biofilm formation under precisely controlled (i) cell concentration, (ii) temperature, and (iii) flow conditions. The developed platform central unit is a single-channel microfluidic flow cell designed to ensure ultrahomogeneous flow and condition in its central area, where features, e.g., with trapping properties, can be incorporated. In comparison to static and macroflow chamber assays for biofilm studies, microfluidic chips allow in situ monitoring of biofilm formation under various flow regimes and have better environment control and smaller sample requirements. Flow simulations and experiments with fluorescent particles were used to simulate bacteria flow in the platform cell for calculating flow velocity and direction at the microscale level. The combination of flow analysis and fluorescent strain injection in the cell showed that microtraps placed at the center of the channel were efficient in capturing bacteria at determined positions and to study how flow conditions, especially microvortices, can affect biofilm formation. The microfluidic platform exhibited improved performances in terms of homogeneity and robustness for in vitro biofilm formation. We anticipate the presented platform to be suitable for broad, versatile, and high-throughput biofilm studies at the microscale level. KW - Topographical pattern KW - E. coli KW - Fluorescence KW - Bacteria trapping KW - Particle velocimetry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-610450 DO - https://doi.org/10.1021/acsbiomaterials.4c00101 SN - 2373-9878 VL - 10 IS - 7 SP - 4626 EP - 4634 AN - OPUS4-61045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, Yijuan A1 - Gawlitza, Kornelia A1 - Valderrey, Virginia A1 - Bhattacharya, Biswajit A1 - Rurack, Knut T1 - Ratiometric Molecularly Imprinted Particle Probes for Reliable Fluorescence Signaling of Carboxylate-Containing Molecules N2 - In addition to sensitivity, selectivity, and portability, chemical sensing systems must generate reliable signals and offer modular configurability to address various small molecule targets, particularly in environmental applications. We present a versatile, modular strategy utilizing ratiometric molecularly imprinted particle probes based on BODIPY indicators and dyes for recognition and internal referencing. Our approach employs polystyrene core particles doped with a red fluorescent BODIPY as an internal standard, providing built-in reference for environmental influences. A molecularly imprinted polymer (MIP) recognition shell, incorporating a green-fluorescent BODIPY indicator monomer with a thiourea binding site for carboxylate containing analytes, is grafted from the core particles in the presence of the analyte as the template. The dual-fluorescent MIP probe detects fexofenadine as the model analyte with a change in green emission signal referenced against a stable red signal, achieving a detection limit of 0.13 μM and a broad dynamic range from 0.16 μM to 1.2 mM, with good discrimination against other antibiotics in acetonitrile. By selecting a versatile dye scaffold and recognition element, this approach can be extended to other carboxylate-containing analytes and/or wavelength combinations, potentially serving as a robust multiplexing platform. KW - Core-shell particles KW - Molecular imprinting KW - Pharmaceutical contaminants KW - Self-referenced measurements KW - Fluorescence PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-609385 DO - https://doi.org/10.1021/acsami.4c09990 SP - 1 EP - 13 PB - American Chemical Society (ACS) AN - OPUS4-60938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hernández García, María Amparo T1 - SAF-based optical biosensor with 3D-printed free-form optics for targeted explosives immuno-detection N2 - Guaranteeing safety and security of citizens requires a significant effort and innovative tools from national and international agencies and governments, especially when it comes to the field of explosives detection. The need to detect Improvised Explosive Devices (IEDs) and Home-made Explosives (HMEs) at a point of suspicion, has grown rapidly due to the ease with which the precursors can be obtained and the reagents synthesised. The limited availability of immunoanalytical tools for HME detection presents an opportunity for the development of new devices, which enable a rapid detection and recognise the target analyte with high specificity and sensitivity. In this work, we introduce an optical biosensor for highly specific and sensitive HME detection. The immunoassay system is placed in a hydrogel environment permeable to the analyte and transparent to light interrogating the fluorescently labelled antibodies. The readout of the immunoanalytical system is realized with Supercritical Angle Fluorescence (SAF), an advanced microscopy technique. To accomplish this, we made use of recent, commercial high resolution (< 22 µm) Liquid Crystal Display 3D printers to fabricate a parabolic optical element with high refractive index (RI>1.5) and transmission values (>90%) from photo-resin. Aiming at a new generation of sensors, which not only can meet the requirements of trace detection, but can also be used for substance identification, the combination of immunoanalytical recognition with SAF detection offers a modularity and versatility that is principally well suitable for the measurements of target analytes at trace levels. T2 - 8th International conference in Biosensing Technology CY - Seville, Spain DA - 12.05.2024 KW - 3D printing KW - Biosensor KW - Fluorescence KW - Explosives PY - 2024 AN - OPUS4-60561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Absolute Determination of Photoluminescence Quantum Yields of Scattering LED Converter Materials – How to Get it Right N2 - Optical measurements of scattering luminescent materials dispersed in liquid and solid matrices and luminescent powders play an important role in fundamental research and industry. Typical examples are luminescent nano- and microparticles and phosphors of different composition in different matrices or incorporated into ceramics with applications in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. The key parameter for the performance of these materials is the photoluminescence quantum yield QY, i.e., the number of emitted photons per number of absorbed photons. QY of transparent luminophore solutions can be determined relatively to a fluorescence quantum yield standard of known QY. Such standards are meanwhile available as certified reference materials.[1] The determination of QY of scattering liquid and solid samples like dispersions of luminescent nanoparticles, solid phosphors, and optoceramics requires, however, absolute measurements with an integrating sphere setup. Although the importance of reliable absolute QY measurements has been recognized, no interlaboratory comparisons (ILCs) on measurement uncertainties and the identification of typical sources of uncertainty have been yet reported. Also, no scattering reference materials with known QY are available. We present here the results of a first ILC of 3 laboratories from academia and industry performed to identify and quantify sources of uncertainty of absolute QY measurements of scattering samples. Thereby, two types of commercial stand-alone integrating sphere setups with different illumination and detection geometries were utilized for measuring QY of transparent and scattering dye solutions and solid phosphors. As representative and industrially relevant solid and scattering samples, YAG:Ce optoceramics of varying surface roughness were chosen, applied, e.g., as converter materials for blue light emitting diodes. Special emphasis was dedicated to the influence of the measurement geometry, the optical properties of the blank, utilized to determine the number of photons of the incident excitation light absorbed by the sample, and the sample-specific surface roughness. While matching QY values could be obtained for transparent dye solutions and scattering dispersions, here using a blank with scattering properties closely matching those of the sample, QY measurements of optoceramic samples with different blanks revealed substantial differences, with the blank's optical properties accounting for measurement uncertainties of more than 20 %. Based upon the ILC results, we recommend non-absorbing blank materials with a high reflectivity (>95 %) such as a 2 mm-thick PTFE target placed on the sample holder which reveals a near-Lambertian light scattering behavior, yielding a homogeneous light distribution within the integrating sphere. T2 - e-MRS 2024 CY - Strasbourg, France DA - 27.05.2024 KW - Luminescence KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Phosphor KW - Converter marterial KW - Fluorescence KW - Interlaboratory KW - Comparison KW - Method KW - Uncertainty KW - Reference material PY - 2024 AN - OPUS4-60490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auxillos, J. A1 - Crouigneau, R. A1 - Li, Y.-F. A1 - Dai, Y. A1 - Stigliani, A. A1 - Tavernaro, Isabella A1 - Resch-Genger, Ute A1 - Sandelin, A. A1 - Marie, R. A1 - Pedersen, S. F. T1 - Spatially resolved analysis of microenvironmental gradient impact on cancer cell phenotypes N2 - Despite the physiological and pathophysiological significance of microenvironmental gradients, e.g., for diseases such as cancer, tools for generating such gradients and analyzing their impact are lacking. Here, we present an integrated microfluidic-based workflow that mimics extracellular pH gradients characteristic of solid tumors while enabling high-resolution live imaging of, e.g., cell motility and chemotaxis, and preserving the capacity to capture the spatial transcriptome. Our microfluidic device generates a pH gradient that can be rapidly controlled to mimic spatiotemporal microenvironmental changes over cancer cells embedded in a 3D matrix. The device can be reopened allowing immunofluorescence analysis of selected phenotypes, as well as the transfer of cells and matrix to a Visium slide for spatially resolved analysis of transcriptional changes across the pH gradient. This workflow is easily adaptable to other gradients and multiple cell types and can therefore prove invaluable for integrated analysis of roles of microenvironmental gradients in biology. KW - Bioimaging KW - Fluorescence KW - Cell KW - Cancer KW - Method KW - Microfluids KW - Model KW - Calibration KW - Sensor KW - Ph KW - Probe KW - Workflow PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604631 DO - https://doi.org/10.1126/sciadv.adn3448 VL - 19 IS - 18 SP - 1 EP - 17 AN - OPUS4-60463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Buchholz, Michelle T1 - Dual Fluorescent Molecularly Imprinted Polymers (MIPs) for Detection of the Prevalent Anti-Inflammatory Drug Diclofenac N2 - Ensuring the purity of air and water is essential for the overall well-being of life on earth and the sustainability of the planet's diverse ecosystems. To achieve the goal of zero pollution, as outlined in the 2020 European Green Deal by the European Commission,[1] significant efforts are in progress. A key aspect of this commitment involves advancing more efficient and economically viable methods for treating wastewater. This includes the systematic monitoring of harmful pollutants such as heavy metals, microplastics, pesticides, and pharmaceuticals. One example is the presence of the anti-inflammatory drug diclofenac in water systems, primarily originating from its use as a gel or lotion for joint pain treatment. Diclofenac contamination in surface waters has been detected at approximately 10 μg L-1 (0.03 μM)[2] which is not solely due to widespread usage but also because of the drug's resistance to microbial degradation. Conventional wastewater treatment plants (WWTPs), which rely on biodegradation, sludge sorption, ozone oxidation, and powdered activated carbon treatment, struggle to efficiently remove diclofenac from wastewater.[3],[4] For instance, to enable WWTPs to efficiently monitor and optimize their processes, it would be advantageous to develop on-site detection and extraction methods for persistent pharmaceutical residues in aqueous samples. In this work, a sol-gel process was used to prepare Nile blue-doped silica nanoparticles (dSiO2-NPs) with a diameter of ca. 30 nm that were further functionalized to enable reversible-addition-fragmentation chain-transfer (RAFT) polymerization. To achieve fluorescence detection, a fluorescent monomer was used as a probe for diclofenac in ethyl acetate, generating stable complexes through hydrogen bond formation. The diclofenac/fluorescent monomer complexes were imprinted into thin molecularly imprinted polymer (MIP) shells on the surface of the dSiO2-NPs. Thus, the MIP binding behaviour could be easily evaluated by fluorescence titrations to monitor the spectral changes upon addition of the analyte. Doping the core substrate with Nile blue generates effective dual fluorescent signal transduction. This approach does not solely depend on a single fluorescence emission band in response to analyte recognition. Instead, it enables the fluorescent core to function as an internal reference, minimizing analyte-independent factors such as background fluorescence, instrumental fluctuation, and operational parameters.[5] Rebinding studies showed that the MIP particles have excellent selectivity towards the imprinted template and good discrimination against the competitor ibuprofen, with a discrimination factor of 2.5. Additionally, the limit of detection was determined to be 0.6 μM. Thus, with further optimization of the MIP, there is potential for the development of a MIP-based biphasic extract-&-detect fluorescence assay for simple, sensitive and specific sensing of diclofenac in aqueous samples down to the required concentrations of 0.03 μM. T2 - MIP2024: The 12th International Conference on Molecular Imprinting CY - Verona, Italy DA - 18.06.2024 KW - Sensor KW - Diclofenac KW - Molecularly Imprinted Polymers KW - Fluorescence KW - Pollutant PY - 2024 AN - OPUS4-60439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reiber, T. A1 - Hübner, Oskar A1 - Dose, C. A1 - Yushchenko, D. A. A1 - Resch-Genger, Ute T1 - Fluorophore multimerization on a PEG backbone as a concept for signal amplification and lifetime modulation N2 - Fluorescent labels have strongly contributed to many advancements in bioanalysis, molecular biology, molecular imaging, and medical diagnostics. Despite a large toolbox of molecular and nanoscale fluorophores to choose from, there is still a need for brighter labels, e.g., for flow cytometry and fluorescence microscopy, that are preferably of molecular nature. This requires versatile concepts for fluorophore multimerization, which involves the shielding of dyes from other chromophores and possible quenchers in their neighborhood. In addition, to increase the number of readout parameters for fluorescence microscopy and eventually also flow cytometry, control and tuning of the labels’ fluorescence lifetimes is desired. Searching for bright multi-chromophoric or multimeric labels, we developed PEGylated dyes bearing functional groups for their bioconjugation and explored their spectroscopic properties and photostability in comparison to those of the respective monomeric dyes for two exemplarily chosen fluorophores excitable at 488 nm. Subsequently, these dyes were conjugated with anti-CD4 and anti-CD8 immunoglobulins to obtain fluorescent conjugates suitable for the labeling of cells and beads. Finally, the suitability of these novel labels for fluorescence lifetime imaging and target discrimination based upon lifetime measurements was assessed. Based upon the results of our spectroscopic studies including measurements of fluorescence quantum yields (QY) and fluorescence decay kinetics we could demonstrate the absence of significant dye-dye interactions and self-quenching in these multimeric labels. Moreover, in a first fluorescence lifetime imaging (FLIM) study, we could show the future potential of this multimerization concept for lifetime discrimination and multiplexing. KW - Imaging KW - Quantum yield KW - Quality assurance KW - Antibody KW - Conjugate KW - Cell KW - FLIM KW - PEG KW - Flow cytometry KW - Lifetime KW - Energy transfer KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Fluorescence KW - Dye KW - Amplification KW - Microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602197 DO - https://doi.org/10.1038/s41598-024-62548-4 SN - 2045-2322 VL - 14 IS - 1 SP - 1 EP - 11 AN - OPUS4-60219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Würth, Christian A1 - Tavernaro, Isabella A1 - Grüne, M. A1 - Schweizer, S. A1 - Engel, A. A1 - Resch-Genger, Ute T1 - Interlaboratory Comparison on Absolute Photoluminescence Quantum Yield Measurements of Solid Light Converting Phosphors with Three Commercial Integrating Sphere Setups N2 - Scattering luminescent materials dispersed in liquid and solid matrices and luminescent powders are increasingly relevant for fundamental research and industry. Examples are luminescent nano- and microparticles and phosphors of different compositions in various matrices or incorporated into ceramics with applications in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. The key parameter to characterize the performance of these materials is the photoluminescence/fluorescence quantum yield (Φf), i.e., the number of emitted photons per number of absorbed photons. To identify and quantify the sources of uncertainty of absolute measurements of Φf of scattering samples, the first interlaboratory comparison (ILC) of three laboratories from academia and industry was performed by following identical measurement protocols. Thereby, two types ofcommercial stand-alone integrating sphere setups with different illumination and detection geometries were utilized for measuring the Φf of transparent and scattering dye solutions and solid phosphors, namely, YAG:Ce optoceramics of varying surface roughness, used as converter materials for blue light emitting diodes. Special emphasis was dedicated to the influence of the measurement geometry, the optical properties of the blank utilized to determine the number of photons of the incident excitation light absorbed by the sample, and the sample-specific surface roughness. While the Φf values of the liquid samples matched between instruments, Φf measurements of the optoceramics with different blanks revealed substantial differences. The ILC results underline the importance of the measurement geometry, sample position, and blank for reliable Φf data of scattering the YAG:Ce optoceramics, with the blank’s optical properties accounting for uncertainties exceeding 20%. KW - Nano KW - Fluorescence KW - Reference material KW - Luminescence KW - Quantitative spectroscopy KW - Particle KW - Quantum yield KW - Quality assurance KW - Phosphor KW - Converter material KW - Lifetime KW - Interlaboratory comparison KW - Method KW - Uncertainty PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600945 DO - https://doi.org/10.1021/acs.analchem.4c00372 SN - 0003-2700 SP - 6730 EP - 6737 PB - ACS Publications AN - OPUS4-60094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Prakash, Swayam T1 - Photophysical Understanding of Urobilin and its Zinc Complexes for Water Quality Testing N2 - Faecal contaminants in water are considered serious threats for human health, due to the presence of viruses, bacteria and other harmful microorganisms.1 Urobilin (UB) is a well-known faecal pigment and can be used as a marker for faecal matter in water.2 UB is commonly present in the urine of all mammals as the catabolic end product of bilirubin degradation.2 As the only simple chemical approach to its detection, Schlesinger’s test is usually used to enhance the weak fluorescence of UB in alcoholic media by complexation with Zinc.2, 3 The major limitation of this method is the only weak enhancement of the intrinsically weak UB fluorescence in aqueous media.3 This work presents an approach to introduce different Zn salts for improved fluorescence response, where we found a clear dependence of the fluorescence yield of UB-Zn(II) complexes on the counterion of the salt in water. By employing a combination of fluorescence parameters like transition energy, fluorescence intensity, and fluorescence lifetime, a photophysical understanding of the structure and conformation of the UB-Zn(II) complexes responsible for the fluorescence enhancement in water could be gained. The possibilities of developing a sensitive analytical method based on the acquired understanding are also discussed. T2 - Central European Conference on Photochemistry CECP 2024 CY - Bad Hofgastein, Austria DA - 18.02.2024 KW - Water analysis KW - Faecal contamination KW - Metal complexes KW - Fluorescence PY - 2024 AN - OPUS4-59874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, Yijuan A1 - Gawlitza, Kornelia A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Polymerizable BODIPY probe crosslinker for the molecularly imprinted polymer-based detection of organic carboxylates via fluorescence N2 - This contribution reports the development of a polymerizable BODIPY-type fluorescent probe targeting small-molecule carboxylates for incorporation into molecularly imprinted polymers (MIPs). The design of the probe crosslinker includes a urea recognition site p-conjugated to the 3-position of the BODIPY core and two methacrylate moieties. Titration experiments with a carboxylate-expressing antibiotic, levofloxacin (LEVO), showed a blue shift of the absorption band as well as a broadening and decrease in emission, attributed to hydrogen bonding between the probe’s urea group and the carboxylate group of the antibiotic. Using this probe crosslinker, core–shell particles with a silica core and a thin MIP shell were prepared for the detection of LEVO. The MIP exhibited highly selective recognition of LEVO, with an imprinting factor of 18.1 compared to the non-imprinted polymer. Transmission electron microscopy confirmed the core–shell structure and spectroscopic studies revealed that the receptor’s positioning leads to a unique perturbation of the polymethinic character of the BODIPY chromophore, entailing the favourable responses. These features are fully preserved in the MIP, whereas no such response was observed for competitors such as ampicillin. The sensory particles allowed to detect LEVO down to submicromolar concentrations in dioxane. We have developed here for the first time a BODIPY probe for organic carboxylates and incorporated it into polymers using the imprinting technique, paving the way for BODIPY-type fluorescent MIP sensors. KW - Fluorescence KW - BODIPY probe KW - Molecularly Imprinted Polymers KW - Sensor Materials KW - Dyes KW - Water analysis KW - Advanced materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598629 DO - https://doi.org/10.1039/D3MA00476G SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -