TY - CONF A1 - Prakash, Swayam T1 - Development of a Rapid and Sensitive Fluorometric Detection Method for Urobilin Analysis for On-site Water Quality Assessment N2 - The W.H.O. estimated that globally at least 2 billion people use drinking water sources contaminated with faeces and according to UNICEF, most of these faecal contaminants detection methods are expensive, time-consuming (18–24 h time to result), and, with few exceptions, not suited for on-site analysis. Hence, there is an urgent need for the development of rapid analytical methods that allow to unequivocally assess drinking water quality directly on-site. Our approach exploits the weak fluorescence of faecal biomarkers such as urobilin (UB), which is enhanced through complexation with Zn2+ in alcoholic media and is the basis of their detection/estimation, known as Schlesinger’s test.3 However, this method is associated with limitations, as the fluorescence of Zn2+ complexes of UB in water is weak, shows time dependent loss of emission intensity and has strong interference from humic substances that naturally present in surface waters. , To circumvent these issues and achieve the rapid and sensitive on-site detection of FPs, silane-functionalized glass fibre paper test strips were developed following the ‘drop-&-detect’ concept. Drop casting of water samples containing faecal contaminants like UB on specifically functionalized test strips allowed the sensitive detection with a smartphone coupled to a 3D printed optical setup. A series of silanes were used to functionalize glass fibre paper and tune its hydrophobicity, exploiting the influence of matrix tailoring to enhance binding of the Zn2+ salt used as co-reagent to bind UB for optimal fluorometric response. A detection spot was designed by the combination of hydrophilic and hydrophobic silanes with ZnCl2-impregnated test strips. This developed analytical method showed sensitive (nano- and sub-nanomolar concentration) response for UB detection. Furthermore, it can be successfully applied to the analysis of real water samples, allowing for the first time to test for faecal contamination in fresh water directly on-site using a smartphone in only a few minutes, instead of >10 h required for the current standard, i.e., lab-based bacterial tests. T2 - 14th International Conference on Instrumental Methods of Analysis: Modern Trends and Applications CY - Kefalonia, Greece DA - 14.09.2025 KW - Faecal contamination KW - Fluorescence KW - Metal complexes KW - Water analysis KW - Optical and chemical sensing KW - Spectroscopy KW - Onsite analysis KW - Rapid testing PY - 2025 AN - OPUS4-64270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scholtz, Lena T1 - Luminescent, Semiconductor Nanoparticle-Loadedpolymer Microbeads–Comparingparticlearchitectures N2 - Luminescent polymer microparticles (PMPs) are applied in various (bio)analytical and diagnostic processes.[1] The staining of these beads is important for the realization of optically distinguishable barcodes that can be read out, e.g., by a flow cytometer or fluorescence microscope. Typically, luminescent semiconductor nanoparticles (NPs) absorb in a broad wavelength range and show narrow emission bands, which enables simultaneous excitation of differently colored luminophores and facilitates a spectral discrimination.[1] This makes them ideal candidates for this purpose and encouraged us to explore and develop a simple, effective approach to luminescent semiconductor NP encoding of polystyrene PMPs and identify suitable synthesis conditions.[2] Until now, mainly semiconductor quantum dots (QDs) have been used for the synthesis of luminescent PMPs, although NPs with different shapes could introduce beneficial new features. Aiming for the application of our developed procedure to non-spherical NPs, we systematically investigated the luminescence properties of the resulting NP-stained beads using fluorescence and integrating sphere spectroscopy as well as fluorescence and electron microscopy. These studies showed that the suitability of semiconductor NPs for the synthesis of luminescent PMPs depends not only on their shape, but also heavily on their surface chemistry.[3] The successful incorporation of nonspherical NPs opens the path to include even more NPs, and the results can help to deduce future applications for the beads which best suit their specific properties. T2 - E-MRS Fall Meeting 2025 CY - Warsaw, Poland DA - 15.09.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Quantum dot KW - Quantum rod KW - Platelet KW - Quantum yield KW - Polymer particle KW - Encoding KW - Surface chemistry KW - Mechanism KW - Characterization KW - Lifetime KW - Barcode KW - Polymerization KW - Method PY - 2025 AN - OPUS4-64242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hartmann, Yannic A1 - El Abbassi, Abdelouahad A1 - Mayer, Bernhard A1 - Resch‐Genger, Ute A1 - Müller, Thomas J. J. T1 - Ester‐Aroyl‐S,N‐Ketene Acetals with Solid‐State Luminescence: AIEgens from Sequential Three‐Component Desymmetrization N2 - AbstractDi(hetero)aroyl dichlorides are desymmetrized upon sequential reaction with alcohols and 2‐methyl N‐benzyl thiazolium salts within the course of a one‐pot three‐component reaction yielding ester‐substituted aroyl‐S,N‐ketene acetals under mild conditions in good yields. A prerequisite for the concise one‐pot process is the different nucleophilicity of the alcohols and in situ generated S,N‐ketene acetals. The resulting compounds are merocyanines with dominant charge‐transfer absorption bands which are fluorescent in the solid state, but not in solution. In water/ethanol solvent mixtures of increasing water content, the water‐insoluble dyes display typical aggregation‐induced emission (AIE) characteristics. The water fraction inducing AIE as well as the emission color, and fluorescence quantum yield (Φf) of the aggregated dyes can be controlled by the alcohol part of the ester moiety. Encapsulation into polystyrene nanoparticles can lead to a considerable increase of the fluorescence quantum yield Φf to 30% as shown for a representatively chosen dye revealing the highest Φf of 11% within the dye series in the water/ethanol mixtures and enabling the usage of these dyes as fluorescent reporters in aqueous environments. KW - Dye KW - Fluorescence KW - Aggregation KW - Mechanism KW - Signal enhancement KW - Nano KW - Particle KW - Characterization KW - Quantum yield KW - Photophysics KW - Probe KW - Sensor KW - Lifetime KW - Polarity PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-642400 DO - https://doi.org/10.1002/chem.202502071 SN - 0947-6539 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-64240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tavernaro, Isabella A1 - Sander, P. C. A1 - Andresen, E. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Expanding the Toolbox of Simple, Cost-Efficient, and Automatable Methods for Quantifying Surface Functional Groups on Nanoparticles� Potentiometric Titration N2 - Measuring surface functional groups (FGs) on nanomaterials (NMs) is essential for designing dispersible and stable NMs with tailored and predictable functionality. FG screening and quantification also plays a critical role for subsequent processing steps, NM long-term stability, quality control of NM production, and risk assessment studies and enables the implementation of sustainable and safe(r)-by-design concepts. This calls for simple and cost-efficient methods for broadly utilized FGs that can be ideally automated to speed up FG screening, monitoring, and quantification. To expand our NM surface analysis toolbox, focusing on simple methods and broadly available, cost-efficient instrumentation, we explored a NM-adapted pH titration method with potentiometric and optical readout for measuring the total number of (de)protonable FGs on representatively chosen commercial and custom-made aminated silica nanoparticles (SiO2 NPs). The accuracy and robustness of our stepwise optimized workflows was assessed by several operators in two laboratories and method validation was done by cross-comparison with two analytical methods relying on different signal generation principles. This included traceable, chemo-selective quantitative nuclear magnetic resonance spectroscopy (qNMR) and thermogravimetric analysis (TGA), providing the amounts of amino silanes released by particle dissolution and the total mass of the surface coatings. A comparison of the potentiometric titration results with the reporter-specific amounts of surface amino FGs determined with the previously automated fluorescamine (Fluram) assay highlights the importance of determining both quantities for surface-functionalized NMs. In the future, combined NM surface analysis with optical assays and pH titration will simplify quality control of NM production processes and stability studies and can yield large data sets for NM grouping that facilitates further developments in regulation and standardization. KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Characterization KW - Advanced material KW - Surface KW - Standardization KW - Reference material KW - Functional group KW - Quantification KW - Coating KW - Automation KW - Potentiometry KW - Method KW - Validation KW - Optical assay KW - Fluram KW - Fluorescamine KW - qNMR KW - Comparison KW - ILC PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-642371 DO - https://doi.org/10.1021/acsmeasuresciau.5c00062 SN - 2694-250X SP - 1 EP - 13 PB - American Chemical Society CY - Washington, DC AN - OPUS4-64237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Güttler, Arne T1 - Certified Reference Materials for the Quantification and Standardization of Fluorescence-based Measurements N2 - The size and shape of photoluminescence signals is affected by wavelength-, polarization-, and time-dependent instrumentspecific contributions and the compound- and environment-specific photoluminescence quantum yield. The former hamper the comparability of fluorescence measurements performed on different measuring devices. The commonly relatively done determination of the performance parameter requires suitable quantum yield standards with well-known. The performance of such measurements is, e.g., described in the written standard IEC 62607 currently revised. T2 - Colloquium für Optische Spektrometrie 2025 CY - Jena, Germany DA - 24.09.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Advanced material KW - Calibration KW - Characterization KW - Fluorescence quantum yield KW - Phosphor KW - Absolute KW - Integrating sphere spectroscopy KW - Dye KW - Standardization KW - Reference material KW - Interlaboratory comparison KW - Uncertainty PY - 2025 AN - OPUS4-64213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Fallisch, A. A1 - Petrov, E. P. A1 - Salhany, R. A1 - Forthman, C. A1 - Guttenberg, Z. A1 - Nitschke, R. T1 - Spectral fluorescence standards for the calibration and performance validation of fluorescence microscopes N2 - The standardization and calibration of fluorescence microscopy have become increasingly vital due to the wide-spread use of in life and materials sciences. As the demand for reliable and user-friendly methods to assess micro-scope performance grows, universal calibration tools accessible to both researchers and vendors are needed. To support the standardization of characterization methods in microscopy, it is crucial to provide calibration tools together with standardized operating procedures for their effective implementation. The public-funded project "FluMiKal"* develops calibration tools in the shape of typical microscopic slides to assess key parameters such as spatial resolution, point spread function, spectral sensitivity, linearity and sensitivity of the detection system. The focus is on creating calibration tools that are user-friendly, robust, and versatile in their application. This work addresses the critical parameter of wavelength-dependent spectral sensitivity, which affects the meas-ured signals from the instrument side, yielding instrument-specific data and instrument aging-induced changes over time. For this purpose, μ-slides from ibidi with six channels are used, allowing them to be filled with different solutions containing molecular or nanoscale fluorophores with well-characterized absorption and fluorescence properties. The certified spectral fluorescence standards BAM-F003, F004, F005, and F007 assessed provided as ethanolic solutions by the Federal Institute for Materials Research and Testing (BAM), cover a broad spectral range from the blue to the near-infrared [1], [2]. Dye-based slide prototypes have been used to determine the spectral sensitivity of confocal microscopes from different vendors with various detector types by acquiring the spectral data of the BAM dyes under standardized measurement conditions, demonstrating the applicability of this concept. Proof-of-concept experiments could demonstrate the proper sealing of the slides. Further experiments will explore long-term stability and their potential as standards for relative intensity calibrations. * FluMiKal is funded by the Federal Ministry for Economic Affairs and Climate Action, Germany (WIPANO FKZ 03TN0047B) [1] doi: 10.1007/4243_2008_028. [2] doi: 10.1007/s00216-024-05723-w. T2 - European Light Microscopy Initiative - ELMI 2025 CY - Heidelberg, Germany DA - 03.06.2025 KW - Fluorescence KW - Advanced material KW - Validation KW - Calibration KW - Method comparison KW - Reference material KW - Dye KW - Fluorescence standard KW - Microscopy KW - CLSM KW - Imaging PY - 2025 AN - OPUS4-64206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Sander, P. A1 - Andresen, E. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Potentiometric and Optical Titration for Cost- Efficient Quantification of Surface Functional Groups on Silica Nanoparticles N2 - Surface chemistry of engineered nanomaterials (NMs) plays a critical role not only in determining their interactions with the environment but also in their stability, safety, and functionality across diverse applications ranging from catalysis to biomedicine. Accurate quantification of surface functional groups (FGs) is therefore essential for quality control, risk assessment, and performance optimization.[1] However, many existing analytical techniques are either cost-intensive, require specialized instrumentation, or lack scalability for routine use. In this study, we present a comparative evaluation of potentiometric and optical titration as two simple, cost-efficient, and automatable methods for quantifying surface functional groups on a variety of surface-modified silica nanoparticles (SiO₂ NPs). These NPs were chosen as they are among the most frequently utilized engineered NMs in the life and material sciences. Potentiometric titration, based on pH monitoring during acid-base neutralization, offers a direct and label-free approach to determine the total amount of FGs. Optical titration provides a complementary method with potential for high-throughput screening. To examine the accuracy and robustness of our stepwise-optimized workflows and the achievable relative standard deviations (RSDs), measurements were performed by multiple operators in two laboratories. Method validation was conducted through cross-comparison with traceable, chemo-selective quantitative nuclear magnetic resonance spectroscopy (qNMR) and thermogravimetric analysis (TGA). A comparison with optical assays highlights the importance of measuring both quantities for comprehensive characterization of surface-modified NMs.[2] A combined NM surface analysis using optical assays and pH titration will simplify quality control of NM production processes and stability studies, and can yield large datasets for NM grouping in sustainable and safe(r)-by-design studies. T2 - eMRS Fall Meeting 2025 CY - Warsaw, Poland DA - 15.09.2025 KW - Fluorescence KW - Advanced material KW - Synthesis KW - Characterization KW - Nano KW - Particle KW - Silica KW - Surface analysis KW - Validation KW - qNMR KW - Fluram assay KW - Functional group KW - Quantification KW - Potentiometry KW - Amino groups KW - Fluorescamine KW - Calibration KW - Method comparison PY - 2025 AN - OPUS4-64205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Reliable measurements of the photoluminescence quantum yield of transparent and scattering luminophores N2 - Optical measurements of transparent solutions of organic dyes and semiconductor quantum dots and scattering materials such as luminescent nanocomposites and microparticles and phosphors dispersed in liquid and solid matrices play an important role in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. A key performance parameter is the photoluminescence quantum yield QY, i.e., the number of emitted per number of absorbed photons. QY of transparent luminophore solutions can be obtained relative to a fluorescence QY standard of known QY.[1] Meanwhile, a first set of certified fluorescence QY standards is available.[2] Such relative QY measurements require a calibrated spectrofluorometer.[1,3] For determining QY of scattering liquid and solid samples, absolute measurements of QY with a calibrated integrating sphere setup are mandatory.[1,4,5] However, scattering QY standards are not available and uncertainties of such measurements have not yet been assessed in interlaboratory comparisons (ILCs). To determine typical sources of uncertainty of absolute QY measurements, we assessed the influence of the measurement geometry and the optical properties of the blank for determining the number of incident photons absorbed by the sample in an ILC using commercial integrating sphere setups and a custom-designed integrating sphere setup. Samples examined included transparent and scattering dye solutions, solid phosphors such as YAG:Ce optoceramics used as LED converter material, and polymer films stained with different amounts of phosphor microparticles. Matching QY values could be obtained for transparent dye solutions and scattering dispersions with a blank with scattering properties closely matching those of the sample, while QY measurements of optoceramic samples with different blanks revealed substantial differences of more than 20 %. Based on our data, we recommend non-absorbing blank materials with a high reflectivity (>95 %) such as a 2 mm-thick PTFE target placed on the sample holder as blanks. T2 - eMRS 2025 Fall Meeting CY - Warsaw, Poland DA - 15.09.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Advanced material KW - Synthesis KW - Characterization KW - Fluorescence quantum yield KW - Phosphor KW - Absolute KW - Integrating sphere spectroscopy KW - Dye KW - Standardization KW - Reference material KW - Interlaboratory comparison KW - Uncertainty PY - 2025 AN - OPUS4-64184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Quantifying functional groups and coatings on nanoobjects N2 - Engineered nanomaterials (NM) of different size, shape, chemical composition, and surface chemistry are increasingly used for many key technologies of the 21st century and consumer products. This includes polymer and silica or silica-coated nanoparticles (NP) with covalently bound surface groups, semiconductor quantum dots (QD), metal and metal oxide NP, and lanthanide NP with coordinatively or electrostatically bound ligands, as well as surface-coated nanostructures like micellar encapsulated NP. Decisive for most applications of NMs are their specific surface properties, which are largely determined by the chemical nature and amounts of ligands and functional groups (FGs) on the NM surface. The surface chemistry can strongly affect the physicochemical properties of NM, their charge, hydrophilicity/hydrophobicity, reactivity, function, stability, and processability and thereby their impact on human health and environment. Knowledge of NM surface chemistry plays an important role for NM functionality and performance in (bio)applications and the fate, exposure, dissolution, transformation, and accumulation of NM, and thus, the potential risks for human health and the environment. This highlights the importance of reliable, validated, and eventually standardized analytical methods for analyzing and quantifying NM surface chemistry for process and quality control of NM production, safe use of NMs, design of novel NM, and sustainable concepts for NM fabrication.[1-3] In this context, interlaboratory comparisons (ILCs) are needed to assess method reliability and reference materials with known surface chemistries for establishing surface analytical methods and their performance validation.[2,4] Also, to respond to the increasing number of samples to be analyzed, cost-efficient automation concepts for surface analysis are needed that can be realized with affordable and preferably commercial instrumentation.[5] Here, we provide an overview of analytical methods for FG analysis and quantification used by us for quantifying broadly utilized FGs and ligands on different types of NMs with electrochemical titration methods, optical assays, nuclear magnetic resonance (NMR) and vibrational (IR) spectroscopy, and X-ray based and thermal analysis methods.[1,2] Thereby, method- and material-related challenges are addressed, and the importance of multi-method characterization approaches easing method validation by method cross-validation. Special emphasis is dedicated to simple, versatile, and cost-efficient methods such as optical assays and electrochemical titration methods. T2 - eMRS Fall Meeting 2025 CY - Warsaw, Poland DA - 15.09.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Characterization KW - Advanced material KW - Surface KW - Standardization KW - Reference material KW - Functional group KW - Quantification KW - Coating KW - Interlaboratory comparison KW - Uncertainty PY - 2025 AN - OPUS4-64183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chahal, Shweta T1 - Sustainable Synthesis of Na+ and Bi3+ - doped Cs₂AgInCl₆ Double Perovskites for Efficient White-Light Emission N2 - Double halide perovskites have emerged as promising, less-toxic alternatives to lead-based perovskites for diverse photochemical applications. Among them, Cs₂AgInCl₆ has attracted significant attention, particularly when doped with various elements, which induce self-trapped exciton (STE) states within the bandgap, resulting in efficient white-light emission and a remarkable enhancement of photoluminescence quantum yield (PL QY). While several solid-state and solution-based methods have been employed for the synthesis of double halide perovskites, many rely on toxic solvents and complex procedures, hindering scalability. In this study, we present two environmentally friendly synthesis approaches for the preparation of Cs₂AgInCl₆ doped with monovalent (Na⁺) and trivalent (Bi³⁺) cations: 1. Green solution-based method: Utilizes mild reagents and entirely replaces harsh chemicals, enabling synthesis at ambient conditions. 2. Mechanochemical approach: Employs high-energy ball milling for 62 minutes at room temperature to obtain the desired crystalline phase. These green methodologies provide sustainable and scalable alternatives to conventional routes, minimizing the environmental footprint. We systematically compare the structural and optical properties of the doped perovskites synthesized via both approaches. The resulting materials exhibit strong UV absorption, broadband white-light emission, high PL QY (up to 85%, Fig. 1), long PL lifetimes, and good thermal and environmental stability (up to 300 °C in air). These results highlight the potential of doped Cs₂AgInCl₆ double perovskites as an eco-friendly material with possible photonic applications as in white-light devices. T2 - eMRS Fall Meeting 2025 CY - Warsaw, Poland DA - 15.09.2025 KW - Fluorescence KW - Advanced material KW - Perovskite KW - Synthesis KW - Characterization KW - Fluorescence quantum yield KW - Absolute KW - Integrating sphere spectroscopy KW - Sustainable synthesis KW - Lifetime KW - Photophysics PY - 2025 AN - OPUS4-64185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -