TY - GEN A1 - Burkert, Andreas A1 - Ebell, Gino A1 - Eichler, T. A1 - Hariri, K. A1 - Harnisch, J. A1 - Keßler, S. A1 - Mayer, T. A1 - Meier, J. A1 - Mietz, Jürgen A1 - Reichling, K. A1 - Sodeikat, C. T1 - Electrochemical half-cell potential measurements for the detection of reinforcement corrosion N2 - This specification describes the application of electrochemical half‐cell potential measurements (frequently also called potential mapping) for the detection of reinforcement corrosion in reinforced concrete structures. Areas of corroding reinforcement steel can be located in a nondestructive manner by means of this procedure. Half‐cell potential measurements are used in order to detect chloride‐induced corrosion. However, it is not recommended in order to assess the risk of carbonation‐induced corrosion. For this purpose the determination of the carbonation depth and the concrete cover appear to be more appropriate. The content of this specification exclusively refers to the application of mobile, local variable reference electrodes, which are only placed on the concrete surface while measuring. The technique distinguishes itself thereby from the range of corrosion monitoring systems with stationary installed reference electrodes and sensor systems, respectively, whereby it is possible to continuously track measurements within the area of the installed electrodes. However, these methods are not dealt with in this specification. KW - Monitoring KW - Corrosion KW - Reinforcement PY - 2014 SN - 978-940283-72-6 SP - B 03, 1 EP - 19 PB - DGZfP CY - Berlin AN - OPUS4-40419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Droste, Bernhard A1 - Komann, Steffen A1 - Wille, Frank A1 - Rolle, Annette A1 - Probst, Ulrich A1 - Schubert, Sven T1 - Consideration of aging mechanism influence on transport safety of dual purpose casks for spent nuclear fuel of HLW N2 - When storage of spent nuclear fuel or high level waste is carried out in dual purpose casks (DPC), the effects of aging on safety relevant DPC functions and properties have to be managed in a way that a safe transport after the storage period of several decades is capable and can be justified and certified permanently throughout that period. The effects of aging mechanisms (e.g. radiation, different corrosion mechanisms, stress relaxation, creep, structural changes and degradation) on the transport package design safety assessment features have to be evaluated. Consideration of these issues in the DPC transport safety case will be addressed. Special attention is given to all cask components that cannot be directly inspected or changed without opening the cask cavity, like the inner parts of the closure system and the cask internals, like baskets or spent fuel assemblies. The design criteria of that transport safety case have to consider the operational impacts during storage. Aging is not the subject of technical aspects only but also of ‘intellectual’ aspects, like changing standards, scientific/technical knowledge development and personal as well as institutional alterations. Those aspects are to be considered in the management system of license holders and in appropriate design approval update processes. The paper addresses issues that are subject of an actual International Atomic Energy Agency TECDOC draft 'Preparation of a safety case for a dual purpose cask containing spent nuclear fuel'. KW - Transport KW - Storage KW - Spent fuel KW - High-level waste KW - Aging KW - Metal seals KW - Transport and storage casks KW - Spent nuclear fuel KW - Aging mechanisms KW - Corrosion KW - Safety assessment PY - 2014 U6 - https://doi.org/10.1179/1746510914Y.0000000070 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 25 IS - 3-4 SP - 105 EP - 112 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-33428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yevtushenko, Oleksandra A1 - Bäßler, Ralph A1 - Bettge, Dirk T1 - Corrosion susceptibility of steels under transport and injection exploitation conditions possible in CCS process chain N2 - Once sequestrated, C02 will be transported and injected in its gaseous, liquid or supercritical state. The presence of impurities significantly influences the corrosion behavior of pipeline steels even with small concentrations of water below its Saturation limit. T2 - EUROCORR 2014 - European corrosion congress CY - Pisa, Italy DA - 08.09.2014 KW - Corrosion KW - Stainless steel KW - CCS KW - COORAL PY - 2014 SN - 978-3-89746-159-8 SP - 1 AN - OPUS4-32745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Droste, Bernhard A1 - Komann, Steffen A1 - Wille, Frank A1 - Rolle, Annette A1 - Probst, Ulrich A1 - Schubert, Sven T1 - Considerations of aging mechanisms influence on transport safety and reliability of dual purpose casks for spent nuclear fuel or HLW N2 - When storage of spent nuclear fuel (SNF) or high-level waste (HLW) is done in dual purpose casks (DPC), the effects of aging on safety relevant DPC functions and properties have to be managed in a way that a safe transport after the storage period of several decades is capable, and can be justified and certified permanently throughout that period. The effects of aging mechanisms (like e.g. radiation, different corrosion mechanisms, stress relaxation, creep, structural changes and degradation) on the transport package design safety assessment features have to be evaluated. The consideration of these issues in the DPC transport safety case will be addressed. Special attention is given to all cask components which cannot be directly inspected or changed without opening the cask cavity, what are the inner parts of the closure system and the cask internals, like baskets or spent fuel assemblies. The design criteria of that transport safety case have to consider the operational impacts during storage. Aging is not subject of technical aspects only, but also of 'intellectual' aspects, like changing standards, scientific/ technical knowledge development and personal as well as institutional alterations. Those aspects are to be considered in the management system of the license holders and in appropriate design approval update processes. The paper addresses issues which are subject of an actual IAEA TECDOC draft 'Preparation of a safety case for a dual purpose cask containing spent nuclear fuel'. T2 - PSAM 12 - Probabilistic safety assessment and management CY - Honolulu, Hawaii, USA DA - 22.06.2014 KW - Transport and storage casks for spent nuclear fuel or high level waste KW - Aging mechanisms KW - Corrosion KW - Safety assessment KW - Metal seals KW - Closure system KW - Spent fuel/high-level waste KW - Dual purpose casks KW - Metal seals reliability KW - Cesium corrosion PY - 2014 UR - http://psam12.org/proceedings/paper/paper_180_1.pdf SP - 1 EP - 10 AN - OPUS4-32518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paetsch, O. A1 - Baum, D. A1 - Ebell, Gino A1 - Ehrig, Karsten A1 - Heyn, Andreas A1 - Meinel, Dietmar A1 - Prohaska, S. T1 - Korrosionsverfolgung in 3D-computertomographischen Aufnahmen von Stahlbetonproben N2 - Durch die Alkalität des Betons wird Betonstahl dauerhaft vor Korrosion geschützt. Infolge von Chlorideintrag kann dieser Schutz nicht länger aufrechterhalten werden und führt zu Lochkorrosion. Die zerstörungsfreie Prüfung von Stahlbetonproben mit 3D-CT bietet die Möglichkeit, eine Probe mehrfach gezielt vorzuschädigen und den Korrosionsfortschritt zu untersuchen. Zur Quanti-fizierung des Schädigungsgrades müssen die bei dieser Untersuchung anfallenden großen Bilddaten mit Bildverarbeitungsmethoden ausgewertet werden. Ein wesent-licher Schritt dabei ist die Segmentierung der Bilddaten, bei der zwischen Kor-rosionsprodukt (Rost), Betonstahl (BSt), Beton, Rissen, Poren und Umgebung unterschieden werden muss. Diese Segmentierung bildet die Grundlage für sta-tistische Untersuchungen des Schädigungsfortschritts. Hierbei sind die Änderung der BSt-Geometrie, die Zunahme von Korrosionsprodukten und deren Veränderung über die Zeit sowie ihrer räumlichen Verteilung in der Probe von Interesse. Auf-grund der Größe der CT-Bilddaten ist eine manuelle Segmentierung nicht durch-führbar, so dass automatische Verfahren unabdingbar sind. Dabei ist insbesondere die Segmentierung der Korrosionsprodukte in den Bilddaten ein schwieriges Problem. Allein aufgrund der Grauwerte ist eine Zuordnung nahezu unmöglich, denn die Grauwerte von Beton und Korrosionsprodukt unterscheiden sich kaum. Eine formbasierte Suche ist nicht offensichtlich, da die Korrosionsprodukte in Beton diffuse Formen haben. Allerdings lässt sich Vorwissen über die Ausbreitung der Korrosionsprodukte nutzen. Sie bilden sich in räumlicher Nähe des BSt (in Bereichen vorheriger Volumenabnahme des BSt), entlang von Rissen sowie in Porenräumen, die direkt am BSt und in dessen Nahbereich liegen. Davon ausgehend wird vor der Korrosionsprodukterkennung zunächst eine BSt-Volumen-, Riss- und Porenerken-nung durchgeführt. Dieser in der Arbeit näher beschriebene Schritt erlaubt es, halb-automatisch Startpunkte (Seed Points) für die Korrosionsprodukterkennung zu finden. Weiterhin werden verschiedene in der Bildverarbeitung bekannte Algorithmen auf ihre Eignung untersucht werden. T2 - DGZfP-Jahrestagung 2014 CY - Potsdam, Germany DA - 26.05.2014 KW - Korrosion KW - Corrosion KW - CT KW - Computertomographie KW - 3D KW - Stahlbeton KW - Betonstahl KW - Bewehrung KW - Lochkorrosion PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-325080 UR - http://jt2014.dgzfp.de/portals/jt2014/BB/di1c3.pdf SN - 978-3-940283-61-0 IS - DGZfP-BB 148 SP - Di.1.C.3, 1 EP - 10 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) AN - OPUS4-32508 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, A. A1 - Wolthusen, Helmut A1 - Wolf, Marcus A1 - Kranzmann, Axel T1 - Effect of heat treatment of injection pipe steels on the reliability of a saline aquifer water CCS-site in the Northern German basin N2 - Samples of differently heat treated high alloyed stainless injection-pipe steels AISI 420 X46Cr13, AISI 420J X20Cr13 as well as X5CrNiCuNb16-4 AISI 630 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in a CO2- saturated synthetic aquifer environment similar to possible geological on-shore CCS-sites in the northern German Basin. Corrosion rates and scale growth are lowest after long term exposure for steels hardened and tempered at 600 to 670 °C and pits - indicating local corrosion- decrease in diameter but increase in number as a function of carbon content of the steel. Martensitic microstructure is preferred with respect to this particular CCS-site. T2 - GHGT-12 - Greenhouse gas control technologies conference CY - Austin, TX, USA DA - 05.10.2014 KW - Steel KW - Supercritical CO2 KW - Pipeline KW - Corrosion KW - CCS KW - CO2-storage PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-319433 SN - 1876-6102 N1 - Serientitel: Energy Procedia – Series title: Energy Procedia VL - 63 SP - 5762 EP - 5772 PB - Elsevier Ltd. AN - OPUS4-31943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stoppel, Markus A1 - Fakhouri, A. ED - Grantham, M. ED - Basheer, P. A. M. ED - Magee, B. ED - Soutsos, M. T1 - Suitability of embedded RFID-sensors for concrete bridge structures T2 - Concrete Solutions 2014 CY - Belfast, UK DA - 2014-09-01 KW - NDT KW - Embedded sensors KW - RFID KW - Moisture measurement KW - Corrosion PY - 2014 SN - 978-1-138-02708-4 SP - 1 EP - 6(?) PB - CRC Press AN - OPUS4-31723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klein, Ulrich A1 - Zunkel, Astrid A1 - Eberle, Arno T1 - Breakdown of heat exchangers due to erosion corrosion and fretting caused by inappropriate operating conditions N2 - Damage analyses on two heat exchanger units showed that in both cases inappropriate flow conditions of media caused very different failure mechanisms that resulted in irreparable damage. The first incident was the breakdown of an unalloyed steel condenser, which operated in a coal-fired power plant. A considerably high number of tubes successively leaked. Metallography identified lines of segregation in the microstructure of the tube walls, thus, giving evidence that both uniform corrosion and erosion corrosion caused by low-pressure wet steam were the root cause. The second incident was the breakdown of a recuperator made from chromium–nickel steel due to mechanical damage to tubes and baffle. This unit operated as part of a pilot plant to regain heat from the drying process of sewage sludge. It turned out that soiled vapour caused clogging of the cross-sectional area and therefore accelerating the flow velocity of the vapour. This inappropriate operating condition caused the tubes to oscillate so severely that they even banged together. Abrasive wear especially at the intersection through the holes of the baffle damaged the tubes and the whole unit irreparably. KW - Corrosion KW - Condenser KW - Recuperator KW - Soiled media KW - Leakage of tubes PY - 2014 U6 - https://doi.org/10.1016/j.engfailanal.2014.03.019 SN - 1350-6307 SN - 1873-1961 VL - 43 IS - Special Issue 'A Tribute to Prof. A. Martens' SP - 271 EP - 280 PB - Elsevier Science Publ. CY - Oxford AN - OPUS4-31597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zunkel, Astrid A1 - Tiebe, Carlo A1 - Schlischka, Jörg T1 - “Stolt Rotterdam” - The sinking of an acid freighter N2 - The Stolt Rotterdam tanker ship, filled with nitric acid, was unloading at the Krefeld-Uerdingen terminal on the Rhine River in November 2001. Nitric acid ran out of the stainless steel tanks into the ship's hull and damaged the structural steel. The ship then caught fire and sank at the terminal. Large quantities of nitrogen oxides were emitted, which drifted towards a residential area. Additionally, a mixture of acid and water was introduced into the Rhine River. The area became hazardous to people and the natural environment; however, the imminent danger for the residents and the environment was reduced because of the protective measures against pollution and the good teamwork between local authorities, fire brigades and the Bayer AG company. The acid was drained off of the ship using a controlled discharge of the acid into the river. Through the use of this measure, the ship was salvaged, limiting the pollution to the area and removing the health hazards to the people and the environment. After the ship was salvaged, the river police, along with assistance from the BAM Federal Institute for Materials Research and Testing, impounded the ship and selected corroded parts for further examination. Some of these components have been examined in detail by the BAM. These material investigations contributed to the elucidation of the origin of the leak in the floor panel. The cause of damage was deemed to be a result of a construction flaw at the enamelled valve on the load and discharge pipes. The results from the comparative corrosion testing using the original structural steel and 60% acid revealed that the valves began to leak at least 8 h prior to the incident at the terminal. KW - Freighter KW - Nitric acid KW - Corrosion KW - Valve KW - Flat gasket PY - 2014 U6 - https://doi.org/10.1016/j.engfailanal.2014.03.002 SN - 1350-6307 SN - 1873-1961 VL - 43 IS - Special Issue 'A Tribute to Prof. A. Martens' SP - 221 EP - 231 PB - Elsevier Science Publ. CY - Oxford AN - OPUS4-31596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Thoralf A1 - Heyn, Andreas A1 - Fenker, M. A1 - Balzer, Martin T1 - Investigation on defect morphology and corrosion behaviour of TiMgN hard coatings on steel substrate N2 - Nitride hard coatings, such as Titanium nitride and chromium nitride coatings are widely used for applications focussing on wear protection and decorative purposes. Also these coatings are often applied on low alloyed steel substrates. The inevitable contact of the coated components with the environment through pores and coating defects bears the danger of corrosion of the steel substrate followed by further delamination of the coating and a loss of function of the component. A new attempt to increase the corrosion behaviour of those physically deposited hard coating systems is the implementation of magnesium. The positive effect of magnesium could be verified already electrochemically. Performed experiments on TiMgN have shown that corrosion resistance could drastically improved with increasing Mg content of the TiMgN up to 30 at% compared to steel substrates with applied titanium nitride hard coatings. Besides the clarification of the electrochemical and phenomenological effect of the magnesium on the corrosion behaviour, an additional aim of this work is the investigation of the coating defects, defect morphologies and their influence on the local corrosion behaviour. For this the incorporation of the magnesium and its effects on the coating material, the influence of coating growth related defects and the effect of the coating structure on the corrosion behaviour should be experimental examined by using innovative surface and material analysis methods such as FIB and TEM. Furthermore the evolution of the coating defects should be investigated by combing confocal microscopy with a new developed exposure test method using the electrochemical indication test KorroPad. The function of the KorroPad test, which was developed and patented [1] at the BAM for the detection of corrosion sensitive steel surfaces by indicating dissolution of iron ions [1], allows the detection and identification of critical coating defects for further microscopic investigation. Additional to that the KorroPad test simulates an accelerated exposure test by simultaneous absence of the disadvantages of typical short time exposure test like salt spray tests. Thus it allows a monitoring and analysis of the evolution of the critical coating defects and their influence on the local corrosion behaviour and the overall corrosion mechanisms. The results of this work should contribute to the development of new hard coatings with improved corrosion protection properties and also to a better understanding of the corrosion mechanisms of coated steel substrates. T2 - EUROCORR 2014 - European corrosion congress CY - Pisa, Italy DA - 08.09.2014 KW - Metallic coatings KW - Cathodic protection KW - Corrosion PY - 2014 SN - 978-3-89746-159-8 SP - O EP - 7473, 384 AN - OPUS4-31482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -