TY - JOUR A1 - Merino, E. A1 - Cere, S. A1 - Özcan Sandikcioglu, Özlem A1 - Dimper, Matthias A1 - Sobrados, I. A1 - Durán, A. A1 - Castro, Y. T1 - Influence of the BF3·O(C2H5)2 on the corrosion resistance of hybrid silica sol-gel coatings deposited on flash-PEO-treated Mg alloy N2 - Achieving highly cross-linked sol-gel coatings to provide effective corrosion protection of Mg alloys remains a challenging task. The aim of this work is to evaluate the effect boron trifluoride diethyl etherate (BF3·O(C2H5)2) as catalyst to epoxy group in a GPTMS/TEOS/SiO2 sol and assesses its effect on the structure and corrosion resistance properties of Flash-PEO coated pre-treated Mg alloy. 29Si MAS NMR and 13C CPMAS-NMR demonstrated that (BF3·O(C2H5)2) efficiently promotes the epoxy polymerization of the GPTMS and the formation of a hybrid silica network. However, the amount of (BF3·O(C2H5)2) should be optimized to minimize the formation of undesirable byproducts such as ethyl ether terminal units. Therefore, GPTMS/TEOS/SiO2 sols containing different amounts of (BF3·O(C2H5)2) were synthesized and deposited onto the Flash-PEO coated Mg alloy, leading to bilayer systems with a total thickness of ⁓8 μm. The corrosion behavior of the bilayer coatings in 3.5 wt% NaCl solution was evaluated by electrochemical impedance spectroscopy (EIS) and Scanning Kelvin probe microscope (SKPFM). The results revealed that the barrier properties of the coatings with enhanced cross-linked structure showed impedance modulus (│Z│f:0.1 Hz) approximately four orders of magnitude higher than the bare magnesium alloy and two orders of magnitude higher than the F-PEO coated sample. A suitable compromise between (BF3·O(C2H5)2) amount and sol-gel film structure is required to obtain a more durable barrier coating capable to extend the protective lifespan of the magnesium alloy. KW - Sol-gel KW - Corrosion KW - AZ31B Mg alloy KW - Chemical structure KW - SKPFM PY - 2026 DO - https://doi.org/10.1016/j.surfcoat.2025.133055 SN - 0257-8972 VL - 522 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-65416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valet, Svenja A1 - Bohlmann, Tatjana A1 - Ebell, Gino A1 - Burkert, Andreas T1 - pH sensitive gel pads for the visualization of anodes and cathodes on zinc N2 - Zinc and zinc alloys have many applications. Zinc corrosion takes place in the atmosphere and is assumed to follow the water drop theory (a macroelement), in which the anode is at the centre of the drop and is surrounded by a cathode. This paper is the first to use gel electrolytes made of agar to visualize anodic and cathodic areas on zinc samples in order to examine the water drop theory. For that, agar gels were added with universal pH indicators, as the anode and cathode exhibit different pH values. In this paper, different amounts of pH indicators were tested to determine whether the indicator influences the potential, the impedance, phase shift, corrosion current and potential and corrosion layer resistance. KW - Corrosion KW - Zinc KW - Gel electrolyte PY - 2026 DO - https://doi.org/10.1016/j.electacta.2026.148134 SN - 0013-4686 VL - 551 SP - 1 EP - 21 PB - Elsevier Ltd. AN - OPUS4-65308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino T1 - Investigations to determine the damage pattern for H-induced stress corrosion cracking at QT prestressing steel N2 - Prestressed steel bridges that were constructed in the past using tempered prestressing steel can develop significant problems with regard to load-bearing capacity under unfavourable conditions during their construction. In particular, hydrogen-induced stress corrosion cracking during the construction of the bridge structures may have caused cracks in the prestressing tendons, which could lead to the failure of the bridge years later. The presentation specifically addresses the partial collapse of the Carola Bridge in Dresden. T2 - Europäischer Workshop zum Einsturz der Craolabrücke CY - Online meeting DA - 02.12.2025 KW - Corrosion KW - Prestressing steel KW - Stress corrosion cracking KW - Hydrogen embrittlement PY - 2025 AN - OPUS4-64979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Misra, Archismita T1 - Polyoxometalate Ionic Liquids as Protective Coatings for Industrial Infrastructure and Cultural Heritage against Microbiologically Influenced Corrosion (MIC) N2 - Corrosion of stone and metal due to acid rain and biodeterioration poses significant challenges for industrial and residential infrastructure, as well as cultural heritage, including statues and historical artefacts. A promising mitigation strategy involves thin, transparent films of polyoxometalate-based ionic liquids (POM-ILs) as chemical shields. Stone samples coated with acid-resistant, biocidal POM-ILs exhibited negligible corrosion when exposed to simulated acid rain, in stark contrast to the severe deterioration of unprotected samples. Additionally, their biocidal properties effectively prevent biofilm formation on coated surfaces. Following studies successfully explored the effectiveness of the coating against lampenflora growing in the Pommery Champagne cellar; and the long-term performance of POM-ILs under outdoor environmental conditions. So, POM-ILs have already demonstrated remarkable anticorrosion and antimicrobial properties against aerobic microorganisms and, being water-insoluble, do not leach into aquatic ecosystem. The current research project repurposes the POM-ILs, extending their application to metals, specifically targeting microbiologically influenced corrosion (MIC) in cultural heritage artefacts made of brass, carbon steel, cast iron, and bronze. This involves optimizing nanocoating adhesion to the metal surface and evaluating its protective efficacy against MIC caused by anaerobic microorganisms such as methanogenic archaea and sulfate reducing bacteria (SRB). This presentation will highlight POM-ILs as sustainable, high-performance nanocoatings for biocorrosion mitigation. It will showcase published success stories, discuss ongoing research and proof-of-concept results, and explore future prospects for these advanced materials in safeguarding metal infrastructure and artefacts across different industrial sectors as well as in the context of cultural heritage conservation. T2 - Euro-MIC COST Action - Closing Workshop Conference CY - Horsens, Denmark DA - 17.09.2025 KW - Polyoxometalates KW - Corrosion KW - Microbiologically Influenced Corrosion KW - Ionic Liquid PY - 2025 AN - OPUS4-64549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Misra, Archismita T1 - Polyoxometalate Ionic Liquids as Protective Coatings for Industrial Infrastructure and Cultural Heritage against Microbiologically Influenced Corrosion (MIC) N2 - Corrosion of stone and metal due to acid rain and biodeterioration poses significant challenges for industrial and residential infrastructure, as well as cultural heritage, including statues and historical artefacts. A promising mitigation strategy involves thin, transparent films of polyoxometalate-based ionic liquids (POM-ILs) as chemical shields. Stone samples coated with acid-resistant, biocidal POM-ILs exhibited negligible corrosion when exposed to simulated acid rain, in stark contrast to the severe deterioration of unprotected samples. Additionally, their biocidal properties effectively prevent biofilm formation on coated surfaces. Following studies successfully explored the effectiveness of the coating against lampenflora growing in the Pommery Champagne cellar; and the long-term performance of POM-ILs under outdoor environmental conditions. So, POM-ILs have already demonstrated remarkable anticorrosion and antimicrobial properties against aerobic microorganisms and, being water-insoluble, do not leach into aquatic ecosystem. The current research project repurposes the POM-ILs, extending their application to metals, specifically targeting microbiologically influenced corrosion (MIC) in cultural heritage artefacts made of brass, carbon steel, cast iron, and bronze. This involves optimizing nanocoating adhesion to the metal surface and evaluating its protective efficacy against MIC caused by anaerobic microorganisms such as methanogenic archaea and sulfate reducing bacteria (SRB). This presentation will highlight POM-ILs as sustainable, high-performance nanocoatings for biocorrosion mitigation. It will showcase published success stories, discuss ongoing research and proof-of-concept results, and explore future prospects for these advanced materials in safeguarding metal infrastructure and artefacts across different industrial sectors as well as in the context of cultural heritage conservation. T2 - 10th International symposium on applied microbiology and molecular biology in oil systems (ISMOS10) CY - Nashville, Tennessee, USA DA - 11.08.2025 KW - Polyoxometalates KW - Corrosion KW - Microbiologically Influenced Corrosion KW - Ionic Liquid PY - 2025 AN - OPUS4-64548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tidblad, Johan A1 - Moya Núñez, Alice A1 - de la Fuente, Daniel A1 - Ebell, Gino A1 - Flatlandsmo Berglen, Tore A1 - Grøntoft, Terje A1 - Hans, Ulrik A1 - Christodoulakis, Ioannis A1 - Kajánek, Daniel A1 - Kreislová, Kateřina A1 - Kwiatkowski, Lech A1 - La Torreta, Teresa A1 - Lutze, Rafał A1 - Pinar Larrubia, Guadalupe A1 - Pintus, Valentina A1 - Prange, Michael A1 - Spezzano, Pasquale A1 - Varotsos, Costas A1 - Verney-Carron, Aurélie A1 - Vuorio, Tiina A1 - Yates, Tim T1 - Corrosion and Soiling in the 21st Century: Insights from ICP Materials and Impact on Cultural Heritage N2 - This paper reviews results published by the International Co-operative Programme on Effects on Materials including Historic and Cultural Monuments (ICP Materials) with emphasis on those obtained after the turn of the century. Data from ICP Materials come from two main sources. The first is through exposures of materials and collection of environmental data in a network of atmospheric exposure test sites mainly distributed across Europe. Corrosion of carbon steel has continued to decrease during the period 2000–2020 but corrosion of zinc only up until 2014, and the trend in zinc corrosion is only visible when examining four-year data. Surface recession of limestone as well as soiling of modern glass show no decreasing trend during 2000–2020. The second is through case studies performed at heritage sites across Europe. Risk analysis of corrosion and soiling for twenty-six sites indicate that currently soiling is a more significant maintenance trigger than corrosion. Costs for maintaining heritage sites are substantial and costs attributable to air pollution is estimated from 40% to as much as 80% of the total cost. Future directions of the program are work on effects of particulate matter, improving the scientific basis for the work, and making the monitoring data publicly available. KW - Corrosion KW - Atmospheric corrosion KW - Soiling PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644651 DO - https://doi.org/10.3390/cmd6040054 SN - 2624-5558 VL - 6 IS - 4 SP - 1 EP - 25 PB - MDPI AG AN - OPUS4-64465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Exploring Microbial Impacts on Hydrogen Storage: - A Novel System for Corrosion Testing of Gas- and Material Degradation N2 - Underground hydrogen storage (UHS) is a strategic step towards implementing the hydrogen economy. Achieving the required infrastructure by 2050 necessitates advancements in hydrogen-dedicated assets and the evaluation of existing infrastructure. The unique conditions in UHS require an experimental set-up to simulate UHS operating conditions, which allows to assess the readiness of current storage and transmission for hydrogen, and develop new technologies for material-resistance, operational-simulations, and risk-assessments. In addition to the physical/chemical conditions in UHS (e.g., salinity, hydrogen concentration, operating temperature/-pressure, water content), biological threats must also be considered. Therefore, we present here a high-pressure-set-up, developed for research/-industrial testing purposes. Currently, UHS-experiments for microbiologically-influenced-corrosion (MIC) are performed in standard autoclaves with relatively high volumes/pressures; they were primarily designed for material-specific investigations. While these methods provided some useful information for biological questions, they had significant limitations. The novel UHS-simulation-set-up presented here is designed with a controlled independently temperature and pressure. Field samples can be used to mimic geology, water chemistry, construction materials, and microbiological conditions. Most significant advantages of the set-up are: 1. It allows for liquid addition during the test, enabling the study of biocides or the evaluation of operating setups. 2. It permits liquid/-gas sampling during the test, allowing for more efficient monitoring of testing conditions and a better understanding of the process over time. Additionally, a low-release function is added, which is particularly important for studying MIC to avoid negative side effects, on the material (e.g. polymers/corrosion product-layer/cells itself) which might occur due to the fast pressure release T2 - ISMOS10 CY - Nashville, TN, USA DA - 11.08.2025 KW - MIC KW - MISTRAL KW - Corrosion KW - Environmental simulation KW - Metall KW - Polymer PY - 2025 AN - OPUS4-64297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seifert, Lando T1 - A New Young Network - die junge gfkorr (Das Netzwerk für junge Korrosionisten) N2 - This invited talk at the Young EFC Meeting (European Federation of Corrosion) was about the new network, founded in Germany in 2023, specialising in corrosion and corrosion protection. The network is called "die junge gfkorr" and has the following aims: (i) Initiation of in-person events with excursions and a networking atmosphere. (ii) Members come from both industry and academia can find similarities in each other's work (iii) Get to know each other and learn from each other, and (iv) Members benefit long-term by using the network throughout their careers and for future collaboration on daily business and research projects. T2 - Conference EUROCORR 2025, Young EFC Meeting CY - Stavanger, Norway DA - 07.09.2025 KW - Coatings KW - Corrosion KW - Corrosion Protection KW - Network PY - 2025 AN - OPUS4-64102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seifert, Lando A1 - Eggert, Lara T1 - Weathering Campaigns in the North Sea for an Offshore Power-to-X Project N2 - The poster contributes to the assessment of corrosivity in offshore atmospheric exposure environments according to DIN EN ISO 9224 for unalloyed steel, zinc, copper and aluminium. Studies on corrosivity from an offshore wind turbine and a distribution platform in the North Sea are presented. The results show that the corrosivity of unalloyed steel is mostly dependent on the altitude of exposure and whether it is inside or outside. T2 - Conference EUROCORR 2025 CY - Stavanger, Norway DA - 07.09.2025 KW - Weathnering Campaigns KW - North Sea KW - Corrosivity KW - Corrosion KW - Atmospheric Corrosion KW - Mass Loss KW - Corrosion Rate KW - Offshore Wind Turbine PY - 2025 AN - OPUS4-64086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Euro-MIC 2021-2025, our journey, and paths forward N2 - Microbiologically Influenced Corrosion (MIC) refers to the detrimental effects on materials caused by microorganisms, and it is becoming an increasingly significant issue for society. Unlike the USA, Canada, and Australia, Europe has less developed cooperation on MIC. Although several research groups and industrial stakeholders are addressing MIC, discussions remain fragmented, and information exchange is limited. A truly transdisciplinary approach is rarely seen. As a result, Europe often relies on methods, preventive measures, and standards from other regions, as there are no equivalent European standards. This situation makes Europe a) highly dependent, and b) in some cases, unable to use certain measures or standards due to European legal restrictions (e.g., the use of biocides). In 2021, researchers established the “Euro-MIC” network, financially supported by the EU project “COST-Action,” to tackle these issues. Through COST-Action, Euro-MIC aims to facilitate necessary interactions, communication, knowledge sharing, and training for personnel and researchers across various disciplines. COST-Action supports network activities, workshops, training schools, conferences, and more. Euro-MIC aspires to position Europe as a leader in MIC, promoting ideas on par with other nations while upholding European values and ensuring greater protection for people, property, and the environment. In this presentation, I will briefly introduce the principles of COST Action and highlight the significant opportunities provided by this EU-funded project. COST Action fosters interdisciplinarity, networking, training, scientific exchange, and the promotion of young scientists. By showcasing some examples of CA20130 COST ACTION Euro-MIC, I hope to demonstrate that COST Action is not only relevant for addressing MIC but can also be applied to other important topics and sectors. T2 - Unseen Corrosion: Unveiling Hidden Threats and Innovating Monitoring Solutions CY - Bergen, Norway DA - 15.05.2025 KW - COST Action CA20130 KW - MIC KW - Network KW - Corrosion KW - Microorganisms PY - 2025 UR - https://www.norceresearch.no/en/events/unseen-corrosion AN - OPUS4-63726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -