TY - CONF A1 - Rhode, Michael A1 - Kannengiesser, Thomas T1 - Call for interested people to contribute to series of comprehensive papers on welding and joining of components for sustainable energy systems N2 - Joining and welding technologies are of high importance for the manufacturing of components and parts used in sustainable energy generation, conversion, and transport. In that connection, offshore and on-shore installed wind turbines are of high interest for the generation of electrical energy as well as photo-voltaic systems (solar cells). The electricity can be either directly transported or conversed via power-to-gas e.g., to hydrogen. In that scope, electrolyzer up to MW-range are of interest as well as the conver-sion back to electricity via fuel cells. In addition, hydrogen is a key element of the decarburization of in-dustries as well as the mobility sector encompassing sea, air and land transportation driven by hydrogen or its derivates. Well-known examples cover the direct reduction of iron ore to replace the conventional blast furnace process up to gas turbines or fuel cells for home-end use. All mentioned technologies re-quire reliable components, which are to a high extend dependent on joining and especially welding pro-cessing of materials. Especially, the (petro-) chemical industry has many years of experience with both materials used in hydrogen applications. The challenge is e.g., the transition to mass production of sys-tem components of electrolyzers/fuel cells and for distribution grids. At this point, the scalability of cur-rently applied joining processes often limits the economic efficiency, whereas especially laser welding or additive manufacturing will be of high interest. In that connection, it is very important to provide answers by joint research of universities, institutes, and industrial companies. Very often, solutions are already available and “just” have to be investigated and adapted for the new application, like repair welding of NG pipelines. For that reason, we want to set up a series of comprehensive papers with the aforementioned title. The idea is to get an in-depth but manageable overview of the importance of joining technologies in sustaina-ble energy generation, conversion, and transport encompassing current processes, limitations, and fur-ther perspectives. In that connection, the additive manufacturing is gaining more and more attention. If applicable, current challenges in the adaption or creation of new standards/regulations shall be addressed. T2 - IIW Intermediate Meeting, Com. II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Hydrogen KW - Welding KW - Comprehensive study KW - Component manufatcturing KW - Additive manufacturing PY - 2024 AN - OPUS4-59676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René A1 - Fabry, Cagtay A1 - Rethmeier, Michael T1 - Life cycle assessment of fusion welding processes strategies and implementation N2 - In manufacturing, fusion welding processes use a lot of resources, which presents an opportunity to reduce environmental impact. While there is a general understanding of the environmental impact of these processes, it is difficult to quantitatively assess key parameters. This study introduces a welding-specific methodology that uses life cycle assessment (LCA) to evaluate the environmental impact of fusion welding technologies. Our approach analyses the main parameters that affect the environmental performance of different welding techniques, including traditional methods and additive manufacturing through the Direct Energy Deposition-Arc (DED-Arc) process. We integrate real-time resource usage data to offer an innovative framework for directly deriving environmental impacts. This research contributes to optimising welding processes by providing a precise and quantifiable measure of their ecological impact, facilitating the advancement of sustainable manufacturing practices. T2 - CEMIVET - Circular Economy in Metal Industries CY - Berlin, Germany DA - 06.06.2023 KW - Life Cycle Assessment KW - Fusion welding KW - Additive manufacturing KW - DED-Arc PY - 2023 AN - OPUS4-59499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René A1 - Fabry, Cagtay A1 - Rethmeier, Michael T1 - Life cycle assessment of fusion welding processes considering upstream and downstream process steps N2 - In manufacturing, fusion welding processes consume significant resources, presenting a significant opportunity for reducing environmental impact. Although there is a qualitative understanding of the environmental implications of these processes, a quantitative assessment of key parameters remains complex. This study introduces a welding-specific methodology that employs life cycle assessment (LCA) to quantitatively evaluate the environmental footprint of fusion welding technologies. Our approach identifies and analyses the principal parameters affecting the environmental performance of various welding techniques, including traditional joint welding and additive manufacturing via the Direct Energy Deposition-Arc (DED-Arc) process. Real-time resource usage data is integrated to offer an innovative framework for directly deriving environmental impacts. This research contributes to optimising welding processes by providing a precise and quantifiable measure of their ecological impact. This facilitates the advancement of sustainable manufacturing practices. T2 - Joining Smart Technologies - International Automotive Conference CY - Wels, Austria DA - 10.05.2023 KW - Life Cycle Assessment KW - Arc welding KW - Additive manufacturing KW - DED-Arc PY - 2023 AN - OPUS4-59494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer. T2 - IIW Intermediate Meeting C-II/CIX CY - Munich, Germany DA - 06.03.2023 KW - Additive manufacturing KW - High strength steel KW - Residual stress PY - 2023 AN - OPUS4-59307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Mishurova, Tatiana A1 - Serrano-Munoz, Itziar A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Residual stresses Analysis in Additively Manufactured alloys using neutron diffraction (L-PBF) N2 - An overview of recent progress at BAM of residual stress analysis in additively manufactured, in particular Laser Powder Bed Fusion of metallics materials, using neutron diffraction will be presented. This will cover important topics of the stress-free reference, the diffraction elastic moduli and principal stress determination. T2 - AWT-Fachausschuss 13 "Eigenspannungen" CY - Berlin, Germany DA - 28.03.2023 KW - AGIL KW - Residual stress KW - Additive manufacturing KW - Laser Powder Bed Fusion KW - Diffraction PY - 2023 AN - OPUS4-59177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - On the limitations of small cubes as test coupons for process parameter optimization in laser powder bed fusion of metals N2 - The capability to produce complexly and individually shaped metallic parts is one of the main advantages of the laser powder bed fusion (PBF LB/M) process. Development of material and machine specific process parameters is commonly based on results acquired from small cubic test coupons of about 10 mm edge length. Such cubes are usually used to conduct an optimization of process parameters to produce dense material. The parameters are then taken as the basis for the manufacturing of real part geometries. However, complex geometries go along with complex thermal histories during the manufacturing process, which can significantly differ from thermal conditions prevalent during the production of simply shaped test coupons. This may lead to unexpected and unpredicted local inhomogeneities of the microstructure and defect distribution in the final part and it is a root cause of reservations against the use of additive manufacturing for the production of safety relevant parts. In this study, the influence of changing thermal conditions on the resulting melt pool depth of 316L stainless steel specimens is demonstrated. A variation of thermo-graphically measured intrinsic preheating temperatures was triggered by an alteration of inter layer times and a variation of cross section areas of specimens for three distinct sets of process parameters. Correlations between the preheating temperature, the melt pool depth, and occurring defects were analyzed. The limited expressiveness of the results of small density cubes is revealed throughout the systematic investigation. Finally, a clear recommendation to consider thermal conditions in future process parameter optimizations is given. T2 - Icaleo 2023 CY - Chicago, IL, USA DA - 16.10.2023 KW - Additive manufacturing KW - Heat accumulation KW - Thermal history KW - In situ monitoring KW - Representative specimens KW - Thermography PY - 2023 AN - OPUS4-58656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kannengießer, Thomas A1 - Hensel, J. T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. Direct energy deposition processes such as wire and arc-based additive manufacturing (DED-arc) are important methods. The wire filler metals enable a wide range of materials. In addition, the arc process provides a high deposition rate compared to laser and powder-based processes. Furthermore, components can be manufactured near-net-shape, offering significant savings in cost, time, and resources. Combined with the use of high-strength steels to reduce wall or component thicknesses in the context of lightweight design, great opportunities for saving energy and resources can be achieved. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times in the area of the top layer. T2 - AJP 2023 3rd International Conference on Advanced Joining Processes CY - Braga, Portugal DA - 19.10.2023 KW - DED-arc KW - Residual stress KW - Neutron diffraction KW - High-strength steel KW - Additive manufacturing PY - 2023 AN - OPUS4-58647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strobl, Dominic A1 - Robens-Radermacher, Annika A1 - Ghnatios, Ch. A1 - Pittner, Andreas A1 - Rethmeier, Michael A1 - Unger, Jörg F. T1 - Reduced Order Model with Domain Mapping for Temperature Field Simulation of Wire Arc Additive Manufacturing N2 - Additive manufacturing (AM) has revolutionized the manufacturing industry, offering a new paradigm to produce complex geometries and parts with customized properties. Among the different AM techniques, the wire arc additive manufacturing (WAAM) process has gained significant attention due to its high deposition rate and low equipment cost. However, the process is characterized by a complex thermal history, dynamic metallurgy, and mechanical behaviour that make it challenging to simulate it in real-time for online process control and optimization. In this context, a reduced order model (ROM) using the proper generalized decomposition (PGD) method is proposed as a powerful tool to overcome the limitations of conventional numerical methods and enable the real-time simulation of the temperature field of WAAM processes. Though, the simulation of a moving heat source leads to a hardly separable parametric problem, which is handled by applying a novel mapping approach. Using this procedure, it is possible to create a simple separated representation of the model, also allowing to simulate multiple layers. In this contribution, a PGD model is derived for the WAAM procedure simulating the temperature field. A good agreement with a standard finite element method is shown. The reduced model is further used in a stochastic model parameter estimation using Bayesian inference, speeding up calibrations and ultimately leading to a calibrated real-time simulation. T2 - SIM-AM 2023 CY - Munich, Germany DA - 26.07.2023 KW - Additive manufacturing KW - Reduced Order Model PY - 2023 AN - OPUS4-58253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - On critical shifts of the process window due to heat accumulation in laser powder bed fusion N2 - Safety-critical applications of products manufactured by laser powder bed fusion (PBF-LB/M) are still limited to date. This is mainly due to a lack of knowledge regarding the complex relationship between process, structure, and resulting properties. The assurance of homogeneity of the microstructure and homogeneity of the occurrence and distribution of defects within complexly shaped geometries is still challenging. Unexpected and unpredicted local inhomogeneities may cause catastrophic failures. The identification of material specific and machine specific process parameter windows for production of fully dense simple laboratory specimens is state of the art. However, the incorporation of changing thermal conditions that a complexly shaped component can be faced with during the manufacturing process is often neglected at the stage of a process window determination. This study demonstrates the tremendous effect of changing part temperatures on the defect occurrence for the broadly used stainless steel alloy AISI 316L. Process intrinsic variations of the surface temperature are caused by heat accumulation which was measured by use of a temperature adjusted mid-wavelength infrared (MWIR) camera. Heat accumulation was triggered by simple yet effective temporal and geometrical restrictions of heat dissipation. This was realized by a variation of inter layer times and reduced cross section areas of the specimens. Differences in surface temperature of up to 800 K were measured. A severe development of keyhole porosity resulted from these distinct intrinsic preheating temperatures, revealing a shift of the process window towards unstable melting conditions. The presented results may serve as a warning to not solely rely on process parameter optimization without considering the actual process conditions a real component is faced with during the manufacturing process. Additionally, it motivates the development of representative test specimens. T2 - The 76th IIW annual assembly and international conference on welding and joining CY - Singapore DA - 16.07.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Laboratory specimens KW - Process parameter optimization KW - Heat accumulation KW - Keyhole porosity KW - Infrared thermography PY - 2023 AN - OPUS4-58023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin A1 - Poka, Konstantin A1 - Nilsson, Ricardo A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - On the challenges of hybrid repair of gas turbine blades using laser powder bed fusion N2 - Additive manufacturing (AM) processes such as laser powder bed fusion (PBF-LB/M) are rapidly gaining popularity in repair applications. Gas turbine components benefit from the hybrid repair process as only damaged areas are removed using conventional machining and rebuilt using an AM process. However, hybrid repair is associated with several challenges such as component fixation and precise geometry detection. This article introduces a novel fixturing system, including a sealing concept to prevent powder sag during the repair process. Furthermore, a high-resolution camera within an industrial PBF-LB/M machine is installed and used for object detection and laser recognition. Herein, process related inaccuracies such as PBF-LB/M laser drift is considered by detection of reference objects. This development is demonstrated by the repair of a representative gas turbine blade. The final offset between AM build-up and component is analysed. An approximate accuracy of 160 μm is achieved with the current setup. T2 - LiM 2023 CY - Munich, Germany DA - 26.06.2023 KW - Laser powder bed fusion KW - Additive manufacturing KW - Hybrid repair KW - Position detection KW - High-resolution camera PY - 2023 AN - OPUS4-57837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -