TY - CONF A1 - Yang, Chunliang A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Putra, Stephen Nugraha A1 - Rethmeier, Michael T1 - Experimental and numerical study on grain refinement in electromagnetic assisted laser beam welding of 5754 al alloy N2 - Through experimental observation and auxiliary numerical simulation, this investigation studies the different types of grain refinement of 5754 aluminum alloy laser beam welding by applying a transverse oscillating magnetic field. Scanning electron microscope results have proved that the application of a magnetic field can reduce the average crystal branch width and increase its number. The interaction between the induced eddy current generated by the Seebeck effect and the applied external magnetic field produces a Lorentz force, which is important for the increase in the number of crystal branches. Based on the theory of dendrite fragmentation and the magnetic field-induced branches increment, the grain size reduction caused by the magnetic field is studied. Furthermore, the effects of the magnetic field are ana lyzed by combining a phase field method model and simulations of nucleation and grain growth. The grain distribution and average grain size after welding verify the reliability of the model. In addition, the introduction of a magnetic field can increase the number of periodic three-dimensional solidification patterns. In the intersection of two periods of solidification patterns, the metal can be re-melted and then re-solidified, which prevents the grains, that have been solidified and formed previously, from further growth and generates some small cel lular grains in the new fusion line. The magnetic field increases the building frequency of these solidification structures and thus promotes this kind of grain refinement. T2 - ICALEO 2023 CY - Chicago, IL, USA DA - 16.10.2023 KW - Laser beam welding KW - Magnetic field KW - Crystal branch development KW - Grain refinement KW - Periodic solidification pattern PY - 2023 AN - OPUS4-58493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yang, Chunliang T1 - Numerical analysis of ultrasonic vibration enhanced friction stir welding of dissimilar Al/Mg alloys N2 - The ultrasonic vibration enhanced friction stir welding (UVeFSW) process has unique advantages in joining dissimilar Al/Mg alloys. While there are complex coupling mechanisms of multi-fields in the process, it is of great significance to model this process, to reveal the influence mechanism of ultrasonic vibration on the formation of Al/Mg joints. In this study, the acoustic-plastic constitutive equation was established by considering the influence of both ultrasonic softening and residual hardening on the flow stress at different temperatures and strain rates. And the ultrasonic induced friction reduction (UiFR) effect on friction coefficient in different relative directions at the FSW tool-workpiece interface was quantitatively calculated and analyzed. The Al/Mg UVeFSW process model was developed through introducing the above acoustic effects into the model of Al/Mg friction stir welding (FSW). The ultrasonic energy is stronger on the aluminum alloy side. In the stirred zone, there is the pattern distribution of ultrasonic sound pressure and energy. The heat generation at the tool-workpiece contact interface and viscous dissipation were reduced after applying ultrasonic vi-bration. Due to the UiFR effect, the projection of friction coefficient and heat flux distributions at the tool-workpiece interface present a "deformed" butterfly shape. The calculated results show that ultrasonic vibration enhanced the material flow and promoted the mixing of dissimilar materials. T2 - The 13th International Seminar "Numerical Analysis of Weldability" CY - Graz, Austria DA - 04.09.2022 KW - Numerical simulation KW - Friction stir welding KW - Ultrasonic vibration KW - Al/Mg alloys PY - 2022 AN - OPUS4-56319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -