TY - JOUR A1 - Musl, O. A1 - Sulaeva, I. A1 - Sumerskii, I. A1 - Mahler, A.K. A1 - Rosenau, T. A1 - Falkenhagen, Jana A1 - Potthast, A. T1 - Mapping of the Hydrophobic Composition of Lignosulfonates JF - ACS Sustainable Chemistry&Engineering N2 - Lignosulfonates are industrial biorefinery products that are characterized by significant variability and heterogeneity in their structural composition. Typically, they exhibit high dispersities in molar mass (molar mass distribution-MMD) and in functionalities (functionality-type distribution - FTD), which crucially affect their material usage. In terms of FTD, state-of-the-art Lignin analytics still rely mainly on the determination of functional group contents, which are statistical averages with limited explanatory power. In contrast, our online hydrophobic interaction chromatography−size-exclusion chromatography 2D-LC approach combines the determination of both MMD and FTD in a single measurement to provide a comprehensive picture of the characteristic composition of industrial lignosulfonates information hitherto inaccessible by state-of-the-art lignin analytics. In this way, the complex inter - relationships between these two important structural parameters can be studied in an unprecedented manner. In this study, we reveal the considerable differences in terms of hydrophobic composition and its dispersity present in a range of different industrial lignosulfonates - data desperately needed in tailoring and refining of lignosulfonate composition for material usage. KW - Lignosulfonates KW - Amphiphilicity KW - Hydrophobic interaction chromatography KW - Two-dimensional chromatography (2D-LC) KW - Charge-to-size-ratio PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538612 DO - https://doi.org/10.1021/acssuschemeng.1c06469 VL - 9 IS - 49 SP - 16786 EP - 16795 PB - ASC Publications AN - OPUS4-53861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fink, Friedrich A1 - Emmerling, Franziska A1 - Falkenhagen, Jana T1 - Identification and Classification of Technical Lignins by means of Principle Component Analysis and k-Nearest Neighbor Algorithm JF - Chemistry-Methods N2 - The characterization of technical lignins is a key step for the efficient use and processing of this material into valuable chemicals and for quality control. In this study 31 lignin samples were prepared from different biomass sources (hardwood, softwood, straw, grass) and different pulping processes (sulfite, Kraft, organosolv). Each lignin was analysed by attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy. Statistical analysis of the ATR-FT-IR spectra by means of principal component analysis (PCA) showed significant differences between the lignins. Hence, the samples can be separated by PCA according to the original biomass. The differences observed in the ATR-FT-IR spectra result primarily from the relative ratios of the p-hydroxyphenyl, guaiacyl and syringyl units. Only limited influence of the pulping process is reflected by the spectral data. The spectra do not differ between samples processed by Kraft or organosolv processes. Lignosulfonates are clearly distinguishable by ATR-FT-IR from the other samples. For the classification a model was created using the k-nearest neighbor (k NN) algorithm. Different data pretreatment steps were compared for k=1…20. For validation purposes, a 5-fold cross-validation was chosen and the different quality criteria Accuracy (Acc), Error Rate (Err), Sensitivity (TPR) and specificity (TNR) were introduced. The optimized model for k=4 gives values for Acc = 98.9 %, Err = 1.1 %, TPR = 99.2 % and TNR = 99.6 %. KW - Classification KW - PCA KW - K-nearest neighbor KW - FT-IR KW - Technical lignin PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533855 DO - https://doi.org/10.1002/cmtd.202100028 VL - 1 IS - 8 SP - 350 EP - 396 PB - Wiley-VCH GmbH AN - OPUS4-53385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Falkenhagen, Jana T1 - Reversible Polycondensations outside the Jacobson-Stockmayer Theory and a New Concept of Reversible Polycondensations JF - Polymer Chemistry N2 - L-Lactide was polymerized with tin(II)acetate, tin(II)2-ethyl hexanoate, diphenyltin dichloride and dibutyltin bis(pentafluorophenoxide) at 130 °C in bulk. When an alcohol was added as initiator, linear chains free of cycles were formed having a degree of polymerization (DP) according to the lactide/initiator (LA/In) ratio. Analogous polymerizations in the absence of an initiator yielded high molar mass cyclic polylactides. Quite similar results were obtained when ε-caprolactone was polymerized with or without initiator. Several transesterification experiments were conducted at 130 °C, either with polylactide or poly(ε-caprolactone) indicating that several transesterification mechanisms are operating under conditions that do not include formation of cycles by back-biting. Furthermore, reversible polycondensations (revPOCs) with low or moderate conversions were found that did not involve any kind of cyclization. Therefore, These results demonstrate the existence of revPOCs, which do neither obey the theory of irreversible polycondensation as defined by Flory nor the hypothesis of revPOCs as defined by Jacobson and Stockmayer. A new concept encompassing any kind of revPOCs is formulated in the form of a “polycondensation triangle”. KW - Polylactide KW - MALDI-TOF MS KW - Polycondensation PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530831 DO - https://doi.org/10.1039/d1py00704a VL - 12 IS - 35 SP - 5003 EP - 5016 PB - Royal Society for Chemistry AN - OPUS4-53083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Falkenhagen, Jana A1 - Kricheldorf, H. R. T1 - SnOct2-catalyzed and alcohol-initiated ROPs of L-lactide – About the influence of initiators on chemical reactions in the melt and the solid state JF - European Polymer Journal N2 - SnOct2 (Sn(II) 2-ethylhexanoate) catalyzed ROPs of L-lactide were performed in bulk with eight different alcohols as initiators. The time was varied between 1 h and 24 h for all initiators. For two initiators the temperature was also lowered to 115 ◦C. Even-numbered chains were predominantly formed in all polymerizations at short times, but the rate of transesterification (e.g. even/odd equilibration) and the molecular weight distribution were found to depend significantly on the nature of the initiator. Observed transesterification reactions also continued in solid poly (L-lactide), and with the most active initiator, almost total equilibration was achieved even at 130 ◦C. This means that all chains including those of the crystallites were involved in transesterification reactions proceeding across the flat surfaces of the crystallites. The more or less equilibrated crystalline polylactides were characterized by DSC and SAXS measurements with regard to their melting temperature (Tm), crystallinity and crystal thickness. KW - Polylactide KW - MALDI-TOF MS KW - Crystallization KW - Catalysts KW - SAXS PY - 2021 DO - https://doi.org/10.1016/j.eurpolymj.2021.110508 VL - 153 SP - 110508 PB - Elsevier Ltd. AN - OPUS4-52633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -