TY - JOUR A1 - Cosimi, Andrea A1 - Stöbener, Daniel D. A1 - Nickl, Philip A1 - Schusterbauer, Robert A1 - Donskyi, Ievgen A1 - Weinhart, Marie T1 - Interfacial nanoengineering of hydrogel surfaces via block copolymer self-assembly N2 - Synthetic polymer hydrogels are valuable matrices for biotransformations, drug delivery, and soft implants. While the bulk properties of hydrogels depend on chemical composition and network structure, the critical role of interfacial features is often underestimated. This work presents a nanoscale modification of the gel−water interface using polymer brushes via a straightforward “grafting-to” strategy, offering an alternative to more cumbersome “grafting-from” approaches. Functional block copolymers with photoreactive anchor blocks are successfully self-assembled and UV-immobilized on hydrogel substrates despite their low solid content (<30 wt %). This versatile technique works on both bulk- and surface-immobilized hydrogels, demonstrated on poly(hydroxypropyl acrylate), poly(N-isopropylacrylamide), and alginate gels, allowing precise control over grafting density. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry revealed a homogeneous bilayered architecture. By “brushing-up”, the hydrogels’ interface can be tailored to enhance protein adsorption, improve cell adhesion, or impair the diffusive uptake of small molecules into the bulk gels. This effective interfacial nanoengineering method is broadly applicable for enhancing hydrogel performance across a wide range of applications. KW - Brushing-up KW - Benzophenone KW - LCTS-type polymer KW - Poly(glycidyl ether) (PGE) KW - Fibroblast adhesion KW - XPS KW - ToF-SIMS PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652966 DO - https://doi.org/10.1021/acsami.4c18632 SN - 1944-8244 VL - 17 IS - 6 SP - 10073 EP - 10086 PB - American Chemical Society (ACS) CY - Washington, DC AN - OPUS4-65296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Habibimarkani, Heydar A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - John, Elisabeth T1 - Probing Surface Changes in Fe–Ni Oxide Nanocatalysts with a ToF-SIMS-Coupled Electrochemistry Setup and Principal Component Analysis N2 - Understanding catalyst surface dynamics under operating conditions is essential for improving electrocatalytic performance. Here, we present a novel approach combining electrochemical treatment with contamination-free transfer to Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), followed by principal component analysis (PCA), to probe surface and interfacial changes in Ni–Fe oxide nanoparticles stabilized by polyvinylpyrrolidone (PVP) during the oxygen evolution reaction (OER). The surface analysis at three distinct treatment stages revealed distinct chemical fingerprints across pristine nanoparticles, after exposure to 1 M KOH electrolyte, and after cyclic voltammetry treatment. The results highlight a progressive transition from ligand-rich to ligand-depleted interfaces, with PVP-related fragments dominant in the early stages and metal- and electrolyte-derived species emerging after activation. Complementary ToF-SIMS analysis of electrolyte deposited on Si wafers after each treatment step confirms the concurrent leaching of PVP and Fe–Ni-based fragments during OER. These findings underscore the dynamic nature of catalyst–electrolyte interfaces and demonstrate a robust strategy for monitoring surface-sensitive chemical changes associated with the nanoparticles, especially during the initial cycles of the OER. KW - Fe-Ni oxide KW - Nanocatalysts KW - ToF-SIMS KW - Electrochemistry KW - PCA (principal component analysis) KW - OER PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-652667 DO - https://doi.org/10.1021/acs.analchem.5c03894 SN - 0003-2700 SP - 1 EP - 8 PB - American Chemical Society (ACS) AN - OPUS4-65266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Correlative chemical imaging to reveal the nature of different commercial graphene materials N2 - Different synthesis techniques were developed which led to other graphene-related materials such as graphene oxide (GO) or elemental-doped graphene. Further chemical functionalization can enhance but also alter or reduce specific properties of the graphene. To reveal the nature of these materials a proper physico‑chemical characterization with different analytical techniques is crucial. Single-layer GO flakes provided by Graphenea (Spain) were prepared for systematic image analysis. These flakes were disposed on an alignment-marked SiO2 substrate and correlatively imaged by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Raman spectroscopy. The high lateral resolution and/ or extreme surface sensitivity of the mentioned techniques is necessary to explore monolayers. The ToF-SIMS images match well with the SEM and AFM images and provide information about the chemistry. With 2D Raman spectroscopy it is possible to differentiate between the number of stacked single-layer flakes. This is visualized in a 3D image. Well-defined GO flakes could be used as a reference material for imaging of graphene-like structures but also of other types of 2D materials. In addition to these monolayer GO flakes, commercial graphene-containing inks (Haydale) with a more complex morphology were also correlatively imaged. ToF-SIMS and SEM images were merged to identify the origin of different chemical fragments. The findings correlate closely with the expectation that the specific functionalizations (with fluorine and nitrogen as marker elements) are present only on the graphene flakes as presumed from the SEM images. Energy-dispersive X-ray spectroscopy (EDX) supports these results, yet with a much lower sensitivity compared to ToF-SIMS. T2 - Joint Regulatory Risk Assessors Summit – Advancing Safety & Sustainability Assessments of Advanced Materials CY - Paris, France DA - 19.06.2025 KW - ToF-SIMS KW - Imaging KW - Graphene-related 2D materials KW - SEM/EDX KW - Auger electron spectroscopy KW - Raman spectroscopy PY - 2025 UR - https://macrame-project.eu/macrame-meetings-workshops/jointrras/#Agenda AN - OPUS4-63656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Standardized Measurements of Surface - Functionalities on Nanoparticles N2 - Engineered nanoparticles (NPs) with various chemical compositions and surface functionalities are routinely fabricated for industrial applications such as medical diagnostics, drug delivery, sensing, catalysis, energy conversion and storage, optoelectronics, and information storage. NP function, interaction with biological species, and environmental fate are largely determined by surface functionalities. Reliable, reproducible, and standardized surface characterization methods are therefore vital for quality control of NPs, and mandatory to meet increasing concerns regarding their safety. Also, industry, international standardization organizations, regulatory agencies, and policymakers need validated and standardized measurement methods and reference materials. However, methodologies for determining NP surface properties, including the amount, chemical composition, and homogeneity of surface functionalities and coatings are largely non-standardized. Suitable methods for determining surface functionalities on ligand-stabilized core and core/shell NPs include advanced techniques such as traceable quantitative nuclear magnetic resonance (qNMR) as well as X-ray electron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS), and simpler optical and electrochemical methods. The latter less costly methods are often used by SMEs, e.g., for quality control. To validate methods, establish measurement uncertainties, test reference materials, and produce reference data, international interlaboratory comparisons (ILC) on NP surface functionalization measurements are required and well characterized test and reference nanomaterials providing benchmark values.[1] These needs are addressed by the recently started European metrology project SMURFnano involving 12 partners from different National Metrology Institutes, designated institutes, and research institutes, two university groups as well as one large company and one SME producing NPs. This project as well as first results derived from the development of test and reference materials with a well characterized surface chemistry and ongoing interlaboratory comparisons will be presented. T2 - eMRS CY - Strasbourg, France DA - 27.05.2025 KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Silica KW - Upconversion nanoparticles KW - Optical assay KW - qNMR KW - Surface analysis KW - Ligand KW - Quantification KW - Functional group KW - XPS KW - ToF-SIMS KW - Polymer particle KW - Surface modification KW - Potentiometry KW - Metrology KW - Method KW - Validation KW - ILC PY - 2025 AN - OPUS4-63339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - John, Elisabeth T1 - Exploring the SIMS Matrix Effect in High-Entropy Alloy Thin-Films N2 - Compared with traditional alloys, which typically consist of one or two main elements and small amounts of secondary elements, High Entropy Alloys (HEA) are characterized by the presence of multiple principal elements in almost equal proportions. This unique composition results in a high degree of disorder at the atomic level, leading to exceptional mechanical, physical, and often unexpected properties. HEAs have garnered significant attention in materials science and engineering due to their potential applications in a wide range of industries, from aerospace and automotive to electronics and renewable energy. Analyzing materials composed of multiple elements with spectroscopic techniques such as X-ray Photoelectron Spectroscopy (XPS), Auger-Electron Spectroscopy (AES) or Electron Probe Microanalysis (EPMA), can be challenging due to spectral overlap. This challenge reaches its peak if neighboring 3d elements are present, as it is the case for the famous Cantor alloy which is composed of Cr, Mn, Fe, Co and Ni. Moreover, each analytical method introduces its own set of challenges, e.g., the strong secondary fluorescence effect for neighbor elements in EPMA, thus, making the accurate elemental quantification in such materials difficult. If the material is available as thin film, additional constraints are inherently present. To provide a reference material for these analytical challenges HEAs are excellent candidates. Currently, there is no thin film reference available containing more than two elements. Our goal is to prepare thin films with a homogeneous thickness and defined, homogenous chemical composition to be analyzed by various methods dedicated to surface analysis. ToF-SIMS is an excellent method for the (3D) analysis of thin films, however due to the dependence of element ion yield on the surrounding chemical state i.e., the matrix effect, it is considered a non-quantitative method. In HEAs the elements are each present in a homogenous matrix which makes these materials interesting for investigation of the matrix effect. Moreover, we evaluate methods to minimize the disturbances of oxygen enhancement during the beginning of the sputter analysis and the effect of recoil mixing at the film/substrate interface with the aim to measure accurate depth profiles. T2 - SIMS 24 CY - La Rochelle, France DA - 09.09.2024 KW - High-entropy alloy KW - ToF-SIMS KW - Matrix Effect PY - 2024 AN - OPUS4-62511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Challenges in Correlative imaging of Advanced Materials N2 - Newly developed methodical approaches with an emphasis on correlative imaging analysis of morphology and chemistry of nanomaterials will be presented. Correlative imaging by high-resolution SEM with STEM-in-SEM as well as with EDS, and further with AFM, or with the new technique TKD (Transmission Kikuchi Diffraction) will be explained on various examples of nanostructures, both as starting materials and as embedded/functionalized nanoparticles in products. The unique analytical benefits of the Auger electron probe as a veritable nano-tool for the local surface chemistry will be highlighted. Examples of hybrid analysis of the bulk of nanomaterials by X-ray Spectroscopy and the highest surface-sensitive methods XPS and ToF-SIMS as advanced surface characterization methods available in the Competence Centre nano@BAM will be showed. Particularly for the spatially resolved analysis of the chemistry of nanostructures, such in-depth and lateral gradients of chemistry within mesoporous thin layers, or the completeness of the shells of core-shell nanoparticles, the latter methods are inherent. Other dedicated developments like approaches for the quantitative determination of the porosity of thin mesoporous layers by electron probe microanalysis (EPMA) with SEM or the quantitative determination of the roughness of particle surface by high-resolution imaging with electron microscopy will be also presented. T2 - Workshop: Harmonisation & Standardisation of Test Methods for Nano- and Advanced Materials CY - Online meeting DA - 18.11.2024 KW - Imaging KW - Advanced materials KW - Correlative imaging KW - Nanomaterials KW - Electron microscopy KW - ToF-SIMS PY - 2024 UR - https://macrame-project.eu/macrame-meetings-workshops/2nd-joint-online-workshop-harmonisation-standardisation-of-test-methods-for-nano-and-advanced-materials/ AN - OPUS4-61858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Kotil, Leyla A1 - Matjacic, Lidija A1 - McMahon, Greg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Kraehnert, Ralph A1 - Hertwig, Andreas A1 - Hodoroaba, Vasile-Dan T1 - Morphological and Chemical Nanoscale Analysis of Mesoporous Mixed IrOx-TiOy Thin Films as Electrode Materials N2 - orous films play an important role particularly in energy applications like photovoltaics, electrolysis or batteries. Thin film properties such as thickness, chemical composition, crystallinity of the framework, and porosity define the activity of the porous films. The accurate morpho-chemical characterisation of mesoporous thin films is a challenging analytical task which requires the consideration of new analytical approaches based on the combination of data of different methods able to address the structure and chemical composition at the nanoscale. In this contribution we characterise thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with Energy-Dispersive X-ray Spectroscopy (EDS) at an SEM applied in a dedicated “thin film analysis” approach (1). Thus, the film mass deposition, film thickness and the film density can be determined. Further, by dividing the measured film density to an assumed (theoretical) metal oxide framework (skeletal) density, the thin film porosity can be extracted, too. In order to assess the homogeneity of the thin film properties like the chemical composition, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Auger Electron Spectrometry are applied in the depth profiling mode, so that possible in-depth gradients are detected. Lateral inhomogeneities in the chemical composition and structure of the thin mesoporous films are also identified by applying the same methods in the line-scan or mapping mode, which can be further combined with in-depth sputtering for 3D information. The role of the spatial resolution of the analytical methods considered, which can go down well below 100 nm, will be highlighted. KW - Mesoporous thin films KW - Imaging KW - TiO2 KW - Ir oxid KW - Auger electron spectroscopy KW - ToF-SIMS KW - SEM/EDX PY - 2024 DO - https://doi.org/10.1093/mam/ozae044.252 VL - 30 IS - Supplement 1 SP - 541 EP - 542 PB - Oxford University Press (OUP) AN - OPUS4-61185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schusterbauer, Robert T1 - Correlative chemical imaging to reveal the nature of different commercial graphene materials N2 - Since the original report in 2004 by Novoselov and Geim, Graphene gained incredible attention due to its fascinating properties. In the past 20 years, the synthesis and functionalization of graphene has evolved significantly[3]. Different synthesis techniques were developed which led to other graphenerelated materials such as graphene oxide (GO) or elemental-doped graphene. Further chemical functionalization can enhance but also alter or reduce specific properties of the graphene. To reveal the nature of these materials a proper physico‑chemical characterization with different analytical techniques is crucial. Single-layer GO flakes kindly provided by Graphenea (Spain) were prepared for systematic image analysis. These flakes were disposed on an alignment-marked SiO2 substrate and correlatively imaged by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Raman spectroscopy. The high lateral resolution and/ or extreme surface sensitivity of the mentioned techniques is necessary to explore monolayers. The ToF-SIMS images match well with the SEM and AFM images and provide information about the chemistry. With 2D Raman spectroscopy it is possible to differentiate between the number of stacked single-layer flakes. This is visualized in a 3D image (Figure b). Well-defined GO flakes could be used as a reference material for imaging of graphene-like structures but also of other types of 2D materials. In addition to these monolayer GO flakes, commercial graphene-containing inks (Haydale) with a more complex morphology were also correlatively imaged. ToF-SIMS and SEM images were merged to identify the origin of different chemical fragments. The findings correlate closely with the expectation that the specific functionalizations (with fluorine and nitrogen as marker elements) are present only on the graphene flakes as presumed from the SEM images. Energy-dispersive X-ray spectroscopy (EDX) supports these results, yet with a much lower sensitivity compared to ToF-SIMS. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Graphene oxide flakes KW - ToF-SIMS KW - SEM KW - Raman KW - Correlative imaging PY - 2024 AN - OPUS4-60681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schusterbauer, Robert T1 - Correlative chemical imaging to reveal the nature of different commercial graphene materials N2 - Since the original report in 2004 by Novoselov and Geim, Graphene gained incredible attention due to its fascinating properties. In the past 20 years, the synthesis and functionalization of graphene has evolved significantly[3]. Different synthesis techniques were developed which led to other graphenerelated materials such as graphene oxide (GO) or elemental-doped graphene. Further chemical functionalization can enhance but also alter or reduce specific properties of the graphene. To reveal the nature of these materials a proper physico‑chemical characterization with different analytical techniques is crucial. Single-layer GO flakes kindly provided by Graphenea (Spain) were prepared for systematic image analysis. These flakes were disposed on an alignment-marked SiO2 substrate and correlatively imaged by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Raman spectroscopy. The high lateral resolution and/ or extreme surface sensitivity of the mentioned techniques is necessary to explore monolayers. The ToF-SIMS images match well with the SEM and AFM images and provide information about the chemistry. With 2D Raman spectroscopy it is possible to differentiate between the number of stacked single-layer flakes. This is visualized in a 3D image (Figure b). Well-defined GO flakes could be used as a reference material for imaging of graphene-like structures but also of other types of 2D materials. In addition to these monolayer GO flakes, commercial graphene-containing inks (Haydale) with a more complex morphology were also correlatively imaged. ToF-SIMS and SEM images were merged to identify the origin of different chemical fragments. The findings correlate closely with the expectation that the specific functionalizations (with fluorine and nitrogen as marker elements) are present only on the graphene flakes as presumed from the SEM images. Energy-dispersive X-ray spectroscopy (EDX) supports these results, yet with a much lower sensitivity compared to ToF-SIMS. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Correlative imaging KW - ToF-SIMS KW - SEM KW - Graphene oxide flakes KW - Raman PY - 2024 AN - OPUS4-60680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Kun A1 - Carrod, Andrew J. A1 - Del Giorgio, Elena A1 - Hughes, Joseph A1 - Rurack, Knut A1 - Bennet, Francesca A1 - Hodoroaba, Vasile-Dan A1 - Harrad, Stuart A1 - Pikramenou, Zoe T1 - Luminescence Lifetime-Based Sensing Platform Based on Cyclometalated Iridium(III) Complexes for the Detection of Perfluorooctanoic Acid in Aqueous Samples N2 - Luminescence lifetimes are an attractive analytical method for detection due to its high sensitivity and stability. Iridium probes exhibit luminescence with long excited-state lifetimes, which are sensitive to the local environment. Perfluorooctanoic acid (PFOA) is listed as a chemical of high concern regarding its toxicity and is classified as a “forever chemical”. In addition to strict limits on the presence of PFOA in drinking water, environmental contamination from industrial effluent or chemical spills requires rapid, simple, accurate, and cost-effective analysis in order to aid containment. Herein, we report the fabrication and function of a novel and facile luminescence sensor for PFOA based on iridium modified on gold surfaces. These surfaces were modified with lipophilic iridium complexes bearing alkyl chains, namely, IrC6 and IrC12, and Zonyl-FSA surfactant. Upon addition of PFOA, the modified surfaces IrC6-FSA@Au and IrC12-FSA @Au show the largest change in the red luminescence signal with changes in the luminescence lifetime that allow monitoring of PFOA concentrations in aqueous solutions. The platform was tested for the measurement of PFOA in aqueous samples spiked with known concentrations of PFOA and demonstrated the capacity to determine PFOA at concentrations >100 μg/L (240 nM). KW - Perfluorooctanoic Acid (PFOA) KW - Cyclometalated iridium (III) complexes KW - Luminescent lifetime KW - Optically active surfaces KW - ToF-SIMS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594535 UR - https://pubs.acs.org/doi/10.1021/acs.analchem.3c04289 DO - https://doi.org/10.1021/acs.analchem.3c04289 VL - 96 IS - 4 SP - 1565 EP - 1575 PB - American Chemical Society (ACS) AN - OPUS4-59453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -