TY - CONF A1 - Strzelczyk, Rebecca A1 - Horn, Wolfgang A1 - Matthias, Richter A1 - Christoph, Grimmer T1 - Zeolites loaded with VOCs as reference for material emissions testing N2 - Nowadays, people spend most of their time indoors. Thus, a good indoor air quality is important. Emissions of volatile organic compounds (VOCs) from furniture and building materials can cause health complaints1. Quantitative VOC-emission testing is carried out under standardized conditions in emission test chambers. In the presented project an emission reference material (ERM) is developed that emits a defined mixture of VOCs which is required for quality assurance and -control (QA/QC) measures. Porous materials (e.g zeolites, activated carbons, MOFs or aerogels) are used as reservoir materials and impregnated with VOC. The porous materials are selected, among others, by their pore size, pore size distribution, polarity and availability. Due to their regular pore structure zeolites are tested at first. For a prediction of the emission profile, the ERM is supposed to exhibit a constant emission rate over time. The aim is a stability of ≤ 10 % change in the emission rate over a minimum of 14 days. Method For impregnation, the material is placed into an autoclave inside a rotatable basket. The VOC is added and the autoclave is closed. Afterwards, CO2 is inserted. The closed system is then heated to the supercritical point of CO2 (31 °C, 73.75 bar). In this state, the CO2 acts as solvent for the VOC. By rotating the basket, the distribution of the VOC is ensured. After a few minutes, the pressure is decreased slowly and the CO2 is released. For the determination of the emission profile, the impregnated sample is placed into an emission test chamber. These chambers can be operated either with dry or humid air (50 ± 5 % rel. humidity). Every second to third day, air samples are taken and analyzed by gas chromatography. For an ideal impregnation, several different pressures and temperatures as well as impregnation times are tested. Results Two zeolite materials tested in dry air conditions reach emission profiles with a decrease of less than 10 % over 14 days (heptane and toluene, respectively). Further it was discovered that smaller pellets of the same zeolite show better results than bigger particles. When the pore size of a zeolite is too small, e.g. 0.3 nm, the VOC cannot be absorbed sufficiently. The main disadvantage of zeolites is their hygroscopicity because it has a large impact on the release of VOC when they are used in emission test chambers under standardized test conditions (23 °C, 50 % rel. humidity). Activated carbons have emission profiles with a larger change over 14 days. However, the high hydrophobicity allows measurements in humid air conditions which was not possible with the before mentioned hygroscopic zeolites. It is possible to impregnate powdered materials as well, and thus powdered non-hygroscopic (n.h.) zeolites were impregnated. Their emission profiles are comparable to those of the activated carbons. The use of methylated hygroscopic zeolites with a decrease in hygroscopicity did not yield successful emission measurements. The change over 14 days is calculated only for the stable phase (~250–300 h). The desired stability of ≤ 10 % change of the emission rate over 14 days could already be reached under dry testing conditions. Further investigations under humid conditions show that zeolites with high Si/Al-ratios are non-hygroscopic and comparable to activated carbons (20–30 % change). The next step is to reduce the change in the emission rate of these materials to the aimed ≤ 10 % over 14 days. T2 - Deutsche Zeolithtagung CY - Jena, Germany DA - 28.02.2024 KW - VOC KW - Emission KW - Quality assurance KW - Reference material KW - Zeolite PY - 2024 AN - OPUS4-59843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strzelczyk, Rebecca A1 - Horn, Wolfgang A1 - Matthias, Richter A1 - Christoph, Grimmer T1 - Constant emitting reference material for emissions test procedures N2 - Since nowadays people spend most of their time indoors, a healthy environment is essential. Volatile organic compounds (VOCs) emitted from furniture and building materials are reported to cause health complaints. Therefore, the usage of low emitting materials will improve the indoor air quality. Quantitative VOC emission testing is usually conducted in emission test chambers under specified controlled conditions as described in DIN 16000-9 and DIN EN 16516. For reasons of quality control/quality assurance (QC/QA) and for a better comparability of test results from different laboratories, suitable emission reference materials (ERM) are needed. Here, it is important to have a homogenous material with known emission rates over a specific time. Different approaches can be found in literature, inter alia polymer films loaded with the target compound to be released again, or a lacquer material to which a VOC mixture is added. After curing of the lacquer, the material can be loaded into a test chamber. Drawback of those approaches are their relatively fast decreasing emission profiles. For QC/QA purposes according to the test standards, VOC sources with constant emission profiles are desirable. The EU-funded research project MetrIAQ “Metrology for the determination of emissions of dangerous substances from building materials into indoor air” is working on a multi-component ERM with an envisaged instability of ≤ 10 % in the emission rate over at least 14 days. Within a doctoral thesis porous materials are impregnated with VOCs. Supercritical CO2 is used as solvent. Thus, the impregnated material does not contain any solvent that may show a measurable amount of emission in the emission test chamber. Furthermore, CO2 has the benefits to have a good availability and low costs. For the selection of porous materials several properties like the pore size, the surface, and the interaction with the components in the atmosphere need to be considered. The impregnation method is optimised while the different porous materials are tested. For the selection of porous materials the pores need to be large enough for the VOC molecules, further influence of the pore size is tested. T2 - Healthy Buildings CY - Aachen, Germany DA - 11.06.2023 KW - VOC KW - Emission KW - Quality assurance KW - Reference material PY - 2023 AN - OPUS4-59842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Horn, Wolfgang A1 - Richter, Matthias A1 - Wilke, Olaf T1 - Volatile organic compounds from building products - Results from seven proficiency tests with emission test chambers conducted between 2008 and 2021 N2 - Emission testing of volatile organic compounds (VOC) from materials and products is commonly based on emission test chamber measurements. To ensure the comparability of results from different testing laboratories their measurement performance must be verified. For this purpose, Bundesanstalt für Materialforschung und -prüfung (BAM) organizes an international proficiency test every two years using well-characterised test materials (one sealant, one furniture board and four times a lacquer) with defined VOC emissions. The materials fulfilled the requirements of homogeneity, reproducibility, and stability. Altogether, 41 VOCs were included of which 37 gave test chamber air concentrations between 10 and 98 µg/m³. This is the typical concentration range to be expected and to be quantified when performing chamber tests. Four compounds had higher concentrations between 250 and 1105 µg/m³. The relative standard deviations (RSD) of BAM proficiency tests since 2008 are compared and the improvement of the comparability of the emission chamber testing is shown by the decrease of the mean RSD down to 23% in 2021. In contrast, the first large European interlaboratory comparison in 1999 showed a mean RSD of 51%. T2 - Proficiency Testing in Analytical Chemistry, Microbiology and Laboratory Medicine CY - Windsor, United Kingdom DA - 25.09.2023 KW - Proficiency Test KW - VOC-Emission KW - Chamber-test PY - 2023 AN - OPUS4-59694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wen, Keqing A1 - Gorbushina, Anna A. A1 - Schwibbert, Karin A1 - Bell, Jérémy T1 - A microfluidic platform for monitoring biofilm formation in flow under defined hydrodynamic conditions N2 - Bacterial adhesion on surfaces of medical, water and food applications may lead to infections, water or food spoilage and human illness. In comparison to traditional static and macro flow chamber assays for biofilm formation studies, microfluidic chips allow in situ monitoring of biofilm formation under various flow regimes, have better environment control and smaller sample requirements. In this work, a novel microfluidic platform is developed to investigate biofilm adhesion under precisely controlled bacteria concentration, temperature, and flow conditions. This platform central unit is a single-inlet microfluidic flow cell with a 5 mm wide chamber designed and tested to achieve ultra-homogenous flow in the central area of chamber. Within this area, defined microstructures are integrated that will disturb the homogeneity of the flow, thus changing bacterial adhesion pattern. Here we present the monitoring of bacterial biofilm formation in a microfluidic chip equipped with a microstructure known as micro-trap. This feature is based on a 3D bacteria trap designed by Di Giacomo et al. and successfully used to sequester motile bacteria. At first, fluorescent particles similar in size to Escherichia coli (E. coli) are used to simulate bacteria flow inside the flow cell and at the micro-trap. The turbulences induced by the trap are analyzed by imaging and particle tracking velocimetry (PTV). Secondly, the model strain E. coli TG1, ideal and well described for biofilm studies, is used to analyze biofilm formation in the micro-trap. Therefore, a stable fluorescent strain E. coli TG1-MRE-Tn7-141 is constructed by using Tn7 transposon mutagenesis according to the method described by Schlechter et al. Sequestering of E. coli cells within the micro-trap was followed using epifluorescence microscopy. The novel microfluidic platform shows great potential for assessment of bacterial adhesion under various flow regimes. The performance of structural feature with respect to the generation of turbulences that promote or reduce bacterial adhesion can be systematically examined. The combination of flow analysis and fluorescent strain injection into the microfluidic chip shows that the micro-trap is useful for capturing bacteria at defined positions and to study how flow conditions, especially micro-turbulences, can affect biofilm formation. It represents a powerful and versatile tool for studying the relation between topography and bacteria adhesion. T2 - International Conference on Miniaturized Systems for Chemistry and Life Sciences CY - Katowice, Poland DA - 15.10.2023 KW - Biofilm KW - E. coli KW - Microfluidics KW - Velocimetry KW - Fluorescence PY - 2023 AN - OPUS4-59593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keshmiri, Hamid T1 - Plasmon-enhanced diffractive supercells N2 - Multiple diffractive surface modulations can concurrently couple the light to several electromagnetic surface waves. We present a multi-resonant plasmonic supercell structure with a broad range of applicability in harvesting the light over an extensive wavelength range and angles of incidence. T2 - Molecular Plasmonics 2023 CY - Jena, Germany DA - 11.05.2023 KW - Optics PY - 2023 AN - OPUS4-59248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keshmiri, Hamid T1 - Bidiffractive leaky-mode biosensor N2 - This study details a thorough analysis of leaky and waveguide modes in biperiodic diffractive nanostructures. By tuning diffraction orders and subsequently confining local density of optical states at two distinct resonance wavelengths, we present a highly sensitive refractive index biosensing platform that can resolve 35.5 to 41.3 nm/RIU of spectral shift for two separate biological analytes. T2 - EMBL Symposium: Seeing is Believing - Imaging the Molecular Processes of Life CY - Heidelberg, Germany DA - 04.10.2023 KW - Optics PY - 2023 AN - OPUS4-59247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cook, Jake Thomas A1 - Tonon, Chiara T1 - Assessment of concrete bioreceptivity in algal biofilm green façade systems N2 - Algal biofilm façades are an alternative to traditional green façades which can help to improve biodiversity and air quality within cities. They present a low maintenance approach in which subaerial algae are grown directly on concrete substrates. The intrinsic bioreceptivity of the substrate is a critical factor in successful facade colonisation. Existing research has identified several environmental and material properties which influence concrete bioreceptivity, however a consensus has yet to be made on which properties are most influential and how the interaction between properties may promote algal biofilm growth under specific conditions. T2 - International Conference on Bio-Based Building Materials CY - Vienna, Austria DA - 21.06.2023 KW - Concrete KW - Façade KW - Bio-receptive KW - Extracellular polymeric substances KW - Fractional factorial PY - 2023 UR - https://www.rilem.net/agenda/5th-international-conference-on-bio-based-building-materials-1501 AN - OPUS4-58976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Franz-Georg A1 - Frieling, Sophie T1 - Sorptionsverhalten von Antimon an Eisenoxidverbindungen N2 - Aschen und Schlacken aus der thermischen Abfallbehandlung enthalten eine Vielzahl von Schwermetallverbindungen. Für Antimon, Chrom, Kupfer, Molybdän und Vanadium werden in der neuen Ersatzbaustoffverordnung Eluatgrenzwerte für die Verwertung festgelegt. Aschen und Schlacken werden aus der Abfallverbrennungsanlage nass ausgetragen und vor einer Verwertung in der Regel mehrere Wochen gelagert. Dabei finden hydraulische Reaktionen statt und enthaltenes CaO wird zu einem Großteil in Calciumcarbonat umgewandelt. Während wässrige Eluate von frischen Aschen pH-Werte von 12 und höher aufweisen, sind die Eluate nach einigen Wochen weniger stark alkalisch. Die gemessenen Schwermetallkonzentrationen sind daher dann auch deutlich niedriger, mit Ausnahme von Antimon (Sb) und Vanadium (V). Hier steigen die Konzentration mit der Lagerungsdauer. Grund sind sinkende Konzentrationen von Ca-Ionen, die sonst zu einer Ausfällung von Antimonaten und Vanadaten führen. Zu hohe Eluatwerte von Sb und V können durch Sorption an Eisenoxidverbindungen gemindert werden. Als besonders wirkungsvoll hat sich Schwertmannit (Eisen-Oxyhydroxysulfat) erwiesen. Es entsteht durch Oxidation von pyrithaltigem Material durch Mikroorganismen und wird deshalb in Gebieten gefunden, in denen Braunkohle abgebaut wurde, z.B. in der Lausitz. Weitere untersuchte Eisenoxidverbindungen waren Hämatit und Schlämme aus der Abtrennung von Eisen und Mangan in Wasserwerken. T2 - 5. Internationales Bergbausymposium WISSYM 2023 CY - Dresden, Germany DA - 25.09.2023 KW - Rostasche KW - Sorption KW - Ersatzbaustoffe PY - 2023 AN - OPUS4-58702 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Doolette, A. A1 - Huang, J. T1 - Combining DGT and 31P NMR spectroscopy to determine phosphorus species in soil N2 - The amount of plant-available phosphorus (P) in soil strongly influences the yield of plants in agriculture. Therefore, various simple chemical extraction methods have been developed to estimate the plant-available P pools in soil. More recently, several experiments with the DGT technique have shown that it has a much better correlation to plant-available P in soils than standard chemical extraction methods (e.g. calcium-acetate-lactate (CAL), Colwell, Olsen, water) when soils with different characteristics are considered. However, the DGT technique cannot give information on the plant-available P species in the soil. Therefore, we combined DGT with solution 31P nuclear magnetic resonance (NMR) spectroscopy. This was achieved by using a modified DGT device in which the diffusive layer had a larger pore size, the binding layer incorporated an adsorption material with a higher capacity, and the device had a larger exposure area. The spectroscopic investigation was undertaken after elution of the deployed DGT binding layer in a NaOH solution. Adsorption tests using solutions of known organic P compounds showed that a sufficient amount of these compounds could be adsorbed on the binding layer in order for them to be analyzed by solution 31P NMR spectroscopy. Furthermore, various intermediates of the hydrolysis of trimetaphosphate in soil could be also analyzed over time. T2 - DGT Konferenz CY - Paris, France DA - 11.10.2023 KW - Soil KW - Phosphorus KW - Plant-availability PY - 2023 AN - OPUS4-58574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Anne-Christine A1 - Schreiber, Frank T1 - Co-selection for biocide and antibiotic resistance in microbial wastewater communities N2 - Biocides are used for a wide range of purposes, including disinfectants or preservatives. They play a major role in the prevention of microbial infections in healthcare and animal husbandry. The use of biocides often leads to the discharge of active biocidal substances into wastewater streams, causing the exposure of wastewater microbial communities to subinhibitory concentrations. In turn, it is known that wastewater treatment plants (WWTP) are hotspots for antibiotic resistant bacteria. Since similar mechanisms confer resistance to biocides and antibiotics, exposure to biocides can result in co-selection of antibiotic resistant bacteria in WWTP Here, we want to investigate co-selection processes of antibiotic resistance in natural WWTP microbial communities upon biocide exposure. Microbial communities were sampled at the WWTP Ruhleben in Berlin and characterized regarding their susceptibility against different clinically relevant antibiotics. To investigate the link between biocide exposure and antibiotic resistance, changes in the susceptibility level after exposure to environmentally relevant concentrations of the commonly used biocide didecyldimethylammonium chloride (DDAC) will be determined by enumerating resistant and non-resistant E. coli on selective plates with and without antibiotics and DDAC. In case of antibiotics, clinical breakpoint concentrations according to EUCAST will be used to discriminate between susceptible and resistant strains. In case of DDAC (and biocides in general), clinical breakpoints do not exist. Therefore, we determined a cut-off concentration at which the majority of naturally-occurring E. coli strains cannot grow anymore based on (I) the MIC (minimal inhibitory concentration) distribution, and (II) by plating wastewater communities onto selective indicator agar plates loaded with increasing DDAC concentration. Additionally, antibiotic cross-resistance will be determined by spotting single colonies, isolated from DDAC-selective plates onto antibiotic plates. The results of our experiments will help to determine selective concentrations and to estimate the risk of antibiotic co-selection and cross-resistance in microbial WWTP communities upon biocide exposure. T2 - Annual Conference 2023 of the Association for General and Applied Microbiology CY - Göttingen, Germany DA - 10.09.2023 KW - Antibiotic resisitance KW - Biocide KW - Wastewater KW - Risk assesment PY - 2023 AN - OPUS4-58510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -