TY - JOUR A1 - Redda, Zinnabu Tassew A1 - Prinz, Carsten A1 - Yimam, Abubeker A1 - Barz, Mirko A1 - Becker, Katharina A1 - Gizaw, Desta Getachew A1 - Laß-Seyoum, Asnakech T1 - Structural and textural characterization of Brassica carinata biochar to investigate its potential industrial applications N2 - Biochar, a low-cost, and carbon-rich product of the thermal decomposition of biomass under oxygen-limited conditions and at relatively low temperatures, has recently been identified as a promising porous material with a wide range of industrial applications. In the present study, a comprehensive analysis of proximate, ultimate, nutrient profile, structural, and textural properties of a biochar derived from two Ethiopian indigenous Brassica carinata cultivars was conducted. The characterization of the biochar was achieved by employing a variety of well-established methods, including proximate analysis (moisture, volatile matter, ash content, and fixed carbon), ultimate analysis (C, S, and O content), atomic oxygen to carbon ratio (O/C), morphological and elemental composition analysis through scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS). Furthermore, a combination of mercury intrusion porosimetry (MIP), dynamic vapor sorption (DVS), and gas adsorption methods such as nitrogen and krypton gas adsorption, were used for an in-depth study of the porous structure. SEM morphological characterization showed that the biochar surfaces showed multiple pores of diverse sizes and shapes. EDS elemental composition analysis revealed that sodium, aluminium, and silicon were not detected, but potassium, calcium, magnesium, and iron were all present in noticeable amounts. Furthermore, ultimate analysis showed that the most prevalent elements were carbon (86 wt.%) and oxygen (10.41‒9.77 wt.%), while sulphur was present in negligible concentrations. MIP analysis demonstrated that the porosities of the biochars varied from 62.68 to 69.99 wt.%, with the Holetta-1 biochar showing the highest porosity. The superior porosity of Holetta-1, as confirmed via MIP analysis, yielded higher values for bulk volume (2.36 mL g− 1), skeletal volume (1.65 mL g− 1), and total intrusion volume (1.65 mL g− 1) compared to the Yellow Dodolla. The most frequent pore diameters were 172.46 μm for Yellow Dodolla and 111.42 μm for Holetta-1. The MIP log differential pore diameter distributions were observed to vary from 18 to 411 μm and 10 to 411 μm, respectively, for Yellow Dodolla and Holetta-1. Despite the biochars’ low specific surface areas (0.17–0.21 m² g⁻¹), krypton sorption was a suitable technique for its characterization compared to DVS and nitrogen sorption methods. In conclusion, the characterization studies confirmed that this carbon-rich porous material possesses unique and valuable properties, with these attributes position it as a promising alternative for diverse industrial applications, contributing to the development of a bio-based circular economy. KW - Morphological characterization KW - Mercury intrusion porosimetry KW - Gas adsorption PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655325 DO - https://doi.org/10.1038/s41598-025-32063-1 SN - 2045-2322 VL - 16 IS - 1 SP - 1 EP - 19 PB - Springer Science and Business Media LLC AN - OPUS4-65532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pei, R. A1 - Petrazoller, J. A1 - Atila, Achraf A1 - Arnoldi, S. A1 - Xiao, L. A1 - Liu, X. A1 - Wang, H. A1 - Korte-Kerzel, S. A1 - Berbenni, S. A1 - Richeton, T. A1 - Guénolé, J. A1 - Xie, Z. A1 - Al-Samman, T. T1 - Solute co-segregation mechanisms at low-angle grain boundaries in magnesium: A combined atomic-scale experimental and modeling study N2 - Solute segregation at low-angle grain boundaries (LAGBs) critically affects the microstructure and mechanicalproperties of magnesium (Mg) alloys. In modern alloys containing multiple substitutional elements, understanding solute-solute interactions at microstructural defects becomes essential for alloy design. This study investigates the co-segregation mechanisms of calcium (Ca), zinc (Zn), and aluminum (Al) at a LAGB in a dilute Mg-0.23Al-1.00Zn-0.38Ca (AZX010) alloy by combining atomic-scale experimental and modeling techniques.Three-dimensional atom probe tomography (3D-APT) revealed significant segregation of Ca, Zn, and Al at the LAGB, with Ca forming linear segregation patterns along dislocation arrays characteristic of the LAGB. Clustering analysis showed increased Ca–Ca pairs at the boundary, indicating synergistic solute interactions. Atomistic simulations and elastic dipole calculations demonstrated that larger Ca atoms prefer tensile regions around dislocations, while smaller Zn and Al atoms favor compressive areas. These simulations also found that Ca–Ca co-segregation near dislocation cores is energetically more favorable than other solute pairings, explaining the enhanced Ca clustering observed experimentally. Thermodynamic modeling incorporating calculated segregation energies and solute-solute interactions accurately predicted solute concentrations at the LAGB, aligning with experimental data. The findings emphasize the importance of solute interactionsat dislocation cores in Mg alloys, offering insights for improving mechanical performance through targeted alloying and grain boundary engineering. KW - Atomic probe tomography KW - Atomistic simulation KW - Grain boundary KW - Co-segregation KW - Magnesium alloy PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655248 DO - https://doi.org/10.1016/j.actamat.2026.121947 SN - 1359-6454 VL - 306 SP - 1 EP - 13 PB - Elsevier Inc. AN - OPUS4-65524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas T1 - How can ellipsometry help us to understand ultrashort pulse laser material processing? N2 - Laser processing of materials is a key technology in many fields of modern production. Still, more work is needed to understand the mechanisms behind laser material interaction. Recently, ellipsometry has become a valuable tool for investigating materials pre and post laser irradiation. Imaging ellipsometry and time-resolved methods boost this work and open up the path to a much better understanding of light interaction with solid state surfaces. We use spectroscopic single-spot and imaging ellipsometry to investigate treated and untreated surfaces. The goal is to determine changes in the material dielectric function, as well as geometric changes in surface layers (oxidation, modification, ablation, blistering). A good knowledge of bulk dielectric functions is often needed to model processes caused by laser irradiation. Imaging ellipsometry can play an important role in the post-analysis of laser treated sites on surfaces if combined with other methods such as IR-spectroscopy, SEM, topometric methods, Raman-spectroscopy, and XPS. In this work, we present the results of several studies to investigate laser-treated materials by means of ellipsometry. We cover the following topics: • Ablation of amorphous carbon layers, role of intra-layer interference effects on the result • Amorphisation behaviour of c-Si, depending on the crystal orientation, • Understanding the role of bulk and surface properties on ablation behaviour of classical and multicomponent high-entropy metals, T2 - 13th Workshop on Spectroscopic Ellipsometry CY - Genova, Italy DA - 09.02.2026 KW - Ellipsometry KW - Laser Ablation KW - Femtosecond Technology KW - Surface and Thin Layer Technology KW - Laser Surface processing PY - 2026 AN - OPUS4-65521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Robust Data Generation, Heuristics and Machine Learning for Materials Design N2 - This talk first introduces students to the Materials Acceleration Platforms and Advanced Materials Characterization at BAM. Then, it motivates high-throuhgput screening for materials discovery and advanced materials simulations based on these core topics. Then four different research studies are presentend: evaluation of generative models, synthesizability prediction via PU learning, acceleration of materials property predictions with bonding analysis and advanced materials simulations supported by automatically trained machine learning potentials. T2 - Guest Lecture in MSE 403/1003, a Seminar in the Curriculum of the University of Toronto CY - Online meeting DA - 13.02.2026 KW - Automation KW - Materials Acceleration Platforms KW - Machine Learning KW - Workflows KW - Phonons KW - Bonding Analysis KW - Thermal Conductivity PY - 2026 AN - OPUS4-65514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rastgou, Masoud A1 - Hülagü, Deniz A1 - Danilenko, Aleksandr A1 - Manoocheri, Farshid A1 - Hertwig, Andreas A1 - Ikonen, Erkki T1 - Comparison of thin-film thickness measurements using ellipsometry and reflectometry with uniform samples N2 - This study evaluates spectroscopic ellipsometry and reflectometry using high-quality SiO2 and Al2O3 thin-films on Si substrates, thereby facilitating a detailed assessment of consistency of measurement results and uncertainty analyses. The results with detailed uncertainty budgets indicate good agreement between the two methods across a broad layer thickness range from 10 nm to 2000 nm, with deviations remaining well within the measurement uncertainties. Ellipsometry results have lower uncertainty than reflectometry results especially with the thinner layers, whereas reflectometry uncertainties are lower with the thickest layers studied. This work underscores the importance of rigorous thickness characterization and reliable uncertainty evaluation as critical factors in advancing both modeling and measurement practices in thin-film metrology. KW - Ellipsometry KW - Reflectometry KW - Thin Film Metrology KW - Measurement Accuracy PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655209 DO - https://doi.org/10.1088/1681-7575/ae3964 SN - 0026-1394 VL - 63 IS - 1 SP - 1 EP - 14 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-65520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, Christina A1 - Szymoniak, Paulina A1 - Lohstroh, W. A1 - Juranyi, F. A1 - Zamponi, M. A1 - Frick, B. A1 - Al-Sabbagh, Dominik A1 - Emmerling, Franziska A1 - Zorn, R. A1 - Schönhals, Andreas T1 - Complex molecular dynamics of symmetric model discotic liquid crystals: Comparison of Hexakis(hepta-alkanoyloxy)triphenylene (HOT6) with Hexakis(hexa-alkyloxy)triphenylene (HAT6) N2 - This study investigates the complex molecular dynamics of discotic liquid crystals (DLCs) by comparing two structurally similar compounds: Hexakis(hepta-alkanoyloxy)triphenylene (HOT6) and Hexakis(hexa-alkyloxy)triphenylene (HAT6) having the same triphenyl core and the same length of the alkyl side chain. The difference of both materials is that the alkyl chain is linked by an oxygen bridge to the triphenylene core for HAT6 and by a ester group for HOT6. Using a combination of broadband dielectric spectroscopy, differential scanning calorimetry, X-ray scattering, and neutron scattering techniques, the research explores the glass transition phenomena and relaxation processes in these materials. HOT6, featuring ester linkages, exhibits distinct dynamic behavior compared to HAT6, including two separate glass transitions indicated by the 1- and 2-relaxation found by dielectric spectroscopy which are assigned to the glassy dynamics of the alkyl side chain in the intercolumnar space and that of the columns, respectively. The study reveals that the ester group in HOT6 leads to increased molecular rigidity and altered packing in the intercolumnar space, as evidenced by X-ray scattering and the vibrational density of states. Neutron scattering confirms localized methyl group rotations and a further relaxation process which relates to the -relaxation revealed by dielectric spectroscopy. The findings contribute to a deeper understanding of glassy dynamics in partially ordered systems and highlight the influence of molecular architecture on relaxation behavior in DLCs. KW - Discotic Liquid Crystals PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655171 DO - https://doi.org/10.1039/d5sm01247c SP - 1 EP - 17 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Naik, Aakash A. A1 - Dhamrait, Nidal A1 - Ueltzen, Katharina A1 - Ertural, Christina A1 - Benner, Philipp A1 - Rignanese, Gian-Marco A1 - George, Janine T1 - A critical assessment of bonding descriptors for predicting materials properties N2 - Most machine learning models for materials science rely on descriptors based on materials compositions and structures, even though the chemical bond has been proven to be a valuable concept for predicting materials properties. Over the years, various theoretical frameworks have been developed to characterize bonding in solid-state materials. However, integrating bonding information from these frameworks into machine learning pipelines at scale has been limited by the lack of a systematically generated and validated database. Recent advances in high-throughput bonding analysis workflows have addressed this issue, and our previously computed Quantum-Chemical Bonding Database for Solid-State Materials was extended to include approximately 13,000 materials. This database is then used to derive a new set of quantum-chemical bonding descriptors. A systematic assessment is performed using statistical significance tests to evaluate how the inclusion of these descriptors influences the performance of machine-learning models that otherwise rely solely on structure- and composition-derived features. Models are built to predict elastic, vibrational, and thermodynamic properties typically associated with chemical bonding in materials. The results demonstrate that incorporating quantum-chemical bonding descriptors not only improves predictive performance but also helps identify intuitive expressions for properties such as the projected force constant and lattice thermal conductivity via symbolic regression. KW - Bonding Analysis KW - Machine Learning KW - Symbolic Regression KW - Chemical Understanding KW - Phonons KW - Thermal Conductivity PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655150 DO - https://doi.org/10.48550/arXiv.2602.12109 SP - 1 EP - 28 PB - Cornell University CY - Ithaca, NY AN - OPUS4-65515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gerrits, Ruben A1 - Stepec, Biwen An A1 - Bäßler, Ralph A1 - Becker, Roland A1 - Dimper, Matthias A1 - Feldmann, Ines A1 - Goff, Kira L. A1 - Günster, Jens A1 - Hofmann, Andrea A1 - Hesse, René A1 - Kirstein, Sarah A1 - Klein, Ulrich A1 - Mauch, Tatjana A1 - Neumann-Schaal, Meina A1 - Özcan Sandikcioglu, Özlem A1 - Taylor, Nicole M. A1 - Schumacher, Julia A1 - Shen, Yin A1 - Strehlau, Heike A1 - Weise, Matthias A1 - Wolf, Jacqueline A1 - Yurkov, Andrey A1 - Gieg, Lisa M. A1 - Gorbushina, Anna T1 - A 30-year-old diesel tank: Fungal-dominated biofilms cause local corrosion of galvanised steel N2 - The increased use of biodiesel is expected to lead to more microbial corrosion, fouling and fuel degradation issues. In this context, we have analysed the metal, fuel and microbiology of a fouled diesel tank which had been in service for over 30 years. The fuel itself, a B7 biodiesel blend, was not degraded, and—although no free water phase was visible—contained a water content of ~60 ppm. The microbial community was dominated by the fungus Amorphotheca resinae, which formed thick, patchy biofilms on the tank bottom and walls. The tank sheets, composed of galvanised carbon steel, were locally corroded underneath the biofilms, up to a depth of a third of the sheet thickness. On the biofilm-free surfaces, Zn coatings could still be observed. Taken together, A. resinae was shown to thrive in these water-poor conditions, likely enhancing corrosion through the removal of the protective Zn coatings. KW - Fungal biofilms KW - Biodiesel degradation mechanisms PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655014 DO - https://doi.org/10.1038/s41529-025-00731-2 SN - 2397-2106 VL - 10 IS - 1 SP - 1 EP - 14 PB - Springer Science and Business Media LLC AN - OPUS4-65501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pavlidis, Sotirios A1 - Fischer, Eric W. A1 - Opis-Basilio, Amanda A1 - Bera, Ayan A1 - Guilherme Buzanich, Ana A1 - Álvarez-Sánchez, María A1 - Wittek, Severin A1 - Emmerling, Franziska A1 - Ray, Kallol A1 - Roemelt, Michael A1 - Abbenseth, Josh T1 - Ambiphilic Reactivity and Switchable Methyl Transfer at a T-Shaped Bi(NNN) Complex Enabled by a Redox-Active Pincer Ligand N2 - We report the transition-metal-like reactivity of a geometrically constrained, ambiphilic bismuth(III) trisamide. Planarization of the Bi(III) center unlocks Bi−C bond formation when reacted with mild electrophiles (alkyl iodides and triflates) accompanied by two-electron oxidation of the utilized NNN pincer nligand. The preservation of the bismuth oxidation state is confirmed by single-crystal X-ray diffraction and X-ray absorption spectroscopy and corroborated by theoretical calculations. Sequential reduction of the oxidized ligand framework alters the reactivity of a generated Bi−Me unit, enabling controlled access to methyl cation, radical, and anion equivalents. The full [Bi(Me)(NNN)]+/•/− redox series was comprehensively characterized using NMR and EPR spectroscopy as well as spectro-electrochemistry. This work represents the first example of ligand-assisted, redox-neutral C−X bond splitting at bismuth, establishing a new paradigm for synthetic bismuth chemistry. KW - Pincer ligand KW - XAS KW - Redox PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654948 DO - https://doi.org/10.1021/jacs.5c18955 SN - 0002-7863 VL - 148 IS - 2 SP - 2683 EP - 2692 PB - American Chemical Society (ACS) AN - OPUS4-65494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, Xingyu A1 - Antunes, Margarida M. A1 - Guilherme Buzanich, Ana A1 - Cabanelas, Pedro A1 - Valente, Anabela A. A1 - Pinna, Nicola A1 - Russo, Patrícia A. T1 - Formation, Phase Transition, Surface, and Catalytic Properties of Cubic ZrO 2 Nanocrystals N2 - Pseudocapacitance-type transition metal oxides have been extensively investigated as anodes for lithium-ion batteries (LIBs). Currently, they are also gaining attention for sodium-ion batteries (SIBs) due to their low volume change and safety. However, their performance in sodium storage remains limited, primarily due to the larger Na+ ion radius. Here, for the first time, an iron niobate is reported with a columbite structure as a high-Performance sodium storage anode. The presence of iron triggers the loss of long-rangeorder through disorder of the FeO6 octahedra local structure, subsequentlyallowing reversible sodium storage in an amorphous phase. Simultaneously, the formation of short-range ordered zigzag-chain structures within the NbO6 planes creates a “skeleton” that offers abundant active sites forpseudocapacitive ion storage and enhanced ion diffusion pathways. These characteristics of FeNb2O6 make it an effective intercalation host, offering high capacity along with fast Na+ kinetics, as demonstrated through operando and ex situ characterizations. It leads to an applicable reversible capacity (>300 mAh g−1) with a favorable average voltage of ≈0.6 V and excellent rate capability (180.4 mAh g−1 at a current density of 2 A g−1). This study provides insights into the development of intrinsically active transition metal oxides for Na+-ion intercalation. KW - XAS KW - Sodium-ion Batteries PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654955 DO - https://doi.org/10.1021/acs.chemmater.5c01483 SN - 0897-4756 VL - 37 IS - 21 SP - 8568 EP - 8580 PB - American Chemical Society (ACS) AN - OPUS4-65495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -