TY - JOUR A1 - Appel, Paul Alexander A1 - Prinz, Carsten A1 - Low, Jian Liang A1 - Asres, Nahom Enkubahri A1 - Wu, Shu-Han A1 - Freytag, Annica A1 - Krug von Nidda, Jonas A1 - de Sousa Amadeu, Nader A1 - Fellinger, Tim-Patrick T1 - Core‐Shell: Resolving the Dilemma of Hard Carbon Anodes by Sealing Nanoporous Particles With Semi‐Permeable Coatings N2 - A core-shell strategy is introduced to overcome the dilemma of common non-graphitic hard carbon anodes, linking high reversible storage capacity to practically unacceptable irreversible losses in the first cycle(s). Just as Graphite homogeneously combines effective lithium storage with an electrolyte solvent-sieving function, we show that both of these functions could be strategically integrated into non-graphitic carbons in a heterogeneous structure. Highly porous activated carbons are sealed by kinetically tuned gas-phase deposition of non-graphitic carbon to form a functional core-shell structure. Gas sorption porosimetry on core, shell, core–shell, and cracked core-shell particles confirms preserved core porosity and a semi-permeable shell. Diethyl carbonate sorption analysis is introduced as a more suitable probe than N2 or CO2 sorption, linking first-cycle losses to the liquid–solid interface of carbon anodes. The functional core-shell particles with much reduced diethyl carbonate uptake allow for high storage capacity and reduced first cycle losses. Delivering 400 ± 24 mAh g−1 with 82 ± 2% first-cycle reversibility, it is shown that three-stage Na storage in designed core-shell anodes can compensate for the larger size of sodium compared to lithium stored in graphite anodes (372 mAh g−1). The designed core-shell anodes show state-of-the-art performance with commercial promise. KW - Sodium-ion battery KW - Activated carbon KW - Core-shell KW - Hard carbon anode KW - Diethyl carbonate vapor sorption PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655346 DO - https://doi.org/10.1002/anie.202519457 SN - 1433-7851 N1 - Es gibt eine parallele Sprachausgabe (deutsch), ein Link befindet sich im Feld zugehöriger Identifikator - There is a parallel language edition (German), a link is in the field related identifier SP - 1 EP - 9 PB - Wiley-VCH CY - Weinheim AN - OPUS4-65534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Redda, Zinnabu Tassew A1 - Prinz, Carsten A1 - Yimam, Abubeker A1 - Barz, Mirko A1 - Becker, Katharina A1 - Gizaw, Desta Getachew A1 - Laß-Seyoum, Asnakech T1 - Structural and textural characterization of Brassica carinata biochar to investigate its potential industrial applications N2 - Biochar, a low-cost, and carbon-rich product of the thermal decomposition of biomass under oxygen-limited conditions and at relatively low temperatures, has recently been identified as a promising porous material with a wide range of industrial applications. In the present study, a comprehensive analysis of proximate, ultimate, nutrient profile, structural, and textural properties of a biochar derived from two Ethiopian indigenous Brassica carinata cultivars was conducted. The characterization of the biochar was achieved by employing a variety of well-established methods, including proximate analysis (moisture, volatile matter, ash content, and fixed carbon), ultimate analysis (C, S, and O content), atomic oxygen to carbon ratio (O/C), morphological and elemental composition analysis through scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS). Furthermore, a combination of mercury intrusion porosimetry (MIP), dynamic vapor sorption (DVS), and gas adsorption methods such as nitrogen and krypton gas adsorption, were used for an in-depth study of the porous structure. SEM morphological characterization showed that the biochar surfaces showed multiple pores of diverse sizes and shapes. EDS elemental composition analysis revealed that sodium, aluminium, and silicon were not detected, but potassium, calcium, magnesium, and iron were all present in noticeable amounts. Furthermore, ultimate analysis showed that the most prevalent elements were carbon (86 wt.%) and oxygen (10.41‒9.77 wt.%), while sulphur was present in negligible concentrations. MIP analysis demonstrated that the porosities of the biochars varied from 62.68 to 69.99 wt.%, with the Holetta-1 biochar showing the highest porosity. The superior porosity of Holetta-1, as confirmed via MIP analysis, yielded higher values for bulk volume (2.36 mL g− 1), skeletal volume (1.65 mL g− 1), and total intrusion volume (1.65 mL g− 1) compared to the Yellow Dodolla. The most frequent pore diameters were 172.46 μm for Yellow Dodolla and 111.42 μm for Holetta-1. The MIP log differential pore diameter distributions were observed to vary from 18 to 411 μm and 10 to 411 μm, respectively, for Yellow Dodolla and Holetta-1. Despite the biochars’ low specific surface areas (0.17–0.21 m² g⁻¹), krypton sorption was a suitable technique for its characterization compared to DVS and nitrogen sorption methods. In conclusion, the characterization studies confirmed that this carbon-rich porous material possesses unique and valuable properties, with these attributes position it as a promising alternative for diverse industrial applications, contributing to the development of a bio-based circular economy. KW - Morphological characterization KW - Mercury intrusion porosimetry KW - Gas adsorption PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655325 DO - https://doi.org/10.1038/s41598-025-32063-1 SN - 2045-2322 VL - 16 IS - 1 SP - 1 EP - 19 PB - Springer Science and Business Media LLC AN - OPUS4-65532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pei, R. A1 - Petrazoller, J. A1 - Atila, Achraf A1 - Arnoldi, S. A1 - Xiao, L. A1 - Liu, X. A1 - Wang, H. A1 - Korte-Kerzel, S. A1 - Berbenni, S. A1 - Richeton, T. A1 - Guénolé, J. A1 - Xie, Z. A1 - Al-Samman, T. T1 - Solute co-segregation mechanisms at low-angle grain boundaries in magnesium: A combined atomic-scale experimental and modeling study N2 - Solute segregation at low-angle grain boundaries (LAGBs) critically affects the microstructure and mechanicalproperties of magnesium (Mg) alloys. In modern alloys containing multiple substitutional elements, understanding solute-solute interactions at microstructural defects becomes essential for alloy design. This study investigates the co-segregation mechanisms of calcium (Ca), zinc (Zn), and aluminum (Al) at a LAGB in a dilute Mg-0.23Al-1.00Zn-0.38Ca (AZX010) alloy by combining atomic-scale experimental and modeling techniques.Three-dimensional atom probe tomography (3D-APT) revealed significant segregation of Ca, Zn, and Al at the LAGB, with Ca forming linear segregation patterns along dislocation arrays characteristic of the LAGB. Clustering analysis showed increased Ca–Ca pairs at the boundary, indicating synergistic solute interactions. Atomistic simulations and elastic dipole calculations demonstrated that larger Ca atoms prefer tensile regions around dislocations, while smaller Zn and Al atoms favor compressive areas. These simulations also found that Ca–Ca co-segregation near dislocation cores is energetically more favorable than other solute pairings, explaining the enhanced Ca clustering observed experimentally. Thermodynamic modeling incorporating calculated segregation energies and solute-solute interactions accurately predicted solute concentrations at the LAGB, aligning with experimental data. The findings emphasize the importance of solute interactionsat dislocation cores in Mg alloys, offering insights for improving mechanical performance through targeted alloying and grain boundary engineering. KW - Atomic probe tomography KW - Atomistic simulation KW - Grain boundary KW - Co-segregation KW - Magnesium alloy PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655248 DO - https://doi.org/10.1016/j.actamat.2026.121947 SN - 1359-6454 VL - 306 SP - 1 EP - 13 PB - Elsevier Inc. AN - OPUS4-65524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rodriguez, Santiago A1 - Kumanski, Sylvain A1 - Ayed, Zeineb A1 - Fournet, Aurélie A1 - Bouanchaud, Charlène A1 - Sagar, Amin A1 - Allemand, Frédéric A1 - Baulin, Vladimir A. A1 - Resch‐Genger, Ute A1 - Cortés, Juan A1 - Sibille, Nathalie A1 - Chirot, Fabien A1 - Wegner, Karl David A1 - Antoine, Rodolphe A1 - Le Guével, Xavier A1 - Bernadó, Pau T1 - Programming the Optoelectronic Properties of Atomically Precise Gold Nanoclusters Using the Conformational Landscape of Intrinsically Disordered Proteins N2 - The rational design of hybrid nanomaterials with precisely controlled properties remains a central challenge in materials science. While atomically precise gold nanoclusters (Au‐NCs) offer molecule‐like control over a metallic core, tuning their optoelectronic behavior via surface engineering is often empirically driven. Here, we establish a design principle by demonstrating that the conformational landscape of intrinsically disordered proteins (IDP) can be used as a programmable scaffold to rationally modulate the photophysical properties of a covalently bound Au‐NC. We synthesized a series of bioconjugates between Au 25 nanoclusters and bioengineered IDPs containing a variable number of cysteine anchoring points. A combination of mass spectrometry, small‐angle X‐ray scattering, and modeling on the conjugates indicates that increasing the number of covalent anchors systematically restricts the conformational ensemble, inducing a progressively more compact protein shell around nanoclusters. This structural rigidification at the interface directly translates into a 15‐fold enhancement of the Au‐NC near‐infrared photoluminescence and a six‐fold increase in its average lifetime. Our findings demonstrate that the conformational plasticity of IDPs and the capacity to engineer them can be harnessed as a molecular tuning knob, moving to a new regime of programmable soft‐matter control over the properties of quantum‐confined nanomaterials for tailored biotechnological applications. KW - Fluorescence KW - Custer KW - Nano KW - Advanced material KW - Characterization KW - Fluorescence quantum yield KW - Integrating sphere spectroscopy KW - Thiol ligands KW - Gold KW - Surface chemistry KW - SWIR KW - Mass spectrometry KW - Protein PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655086 DO - https://doi.org/10.1002/chem.202502991 SN - 0947-6539 SP - 1 EP - 9 PB - Wiley VHC-Verlag AN - OPUS4-65508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wallis, Theophilus A1 - Darvishi Kamachali, Reza T1 - Linking atomistic and phase-field modeling of grain boundaries II: Incorporating atomistic potentials into free energy functional N2 - The density-based phase-field model for grain boundary (GB) thermodynamics and kinetics has offered a broad range of applications in alloy and microstructure design. Originally, this model is based on a potential energy terms that is connected to the cohesive energy of a given substance. A more rigorous approach, however, is a full consideration of an interatomic potential over the possible range of distance and therefore density. In Manuscript I of this series, we developed and thoroughly analyzed the coarse-graining of atomistic GB structures. In this work (Manuscript II), we complete the coupling between atomic and mesoscale modeling of GBs by incorporating the full interatomic potentials into the density-based free energy functional. Using GB energies calculated from atomistic simulations, the coarse-graining approach and the atomistic-integrated density-based Gibbs free energy, we effectively evaluate the density gradient energy coefficient. We found that coupling the density-based model with atomistic potentials reveal physically-sound trends in the GB equilibrium properties. A universal equation was derived to describe the potential energy contribution to the GB energy and the gradient energy coefficient for BCC-Fe and -Mo GBs, similar to the universal equation for GB excess free volume presented in Manuscript I. The proposed approach provides a mesoscale density-based model rooted in atomic-scale characteristics for reliable predictions of GB properties. KW - Density-based model KW - Phase-field KW - Grain boundary structure KW - Grain boundary thermodynamics PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654904 DO - https://doi.org/10.1016/j.actamat.2025.121787 SN - 1359-6454 VL - 305 SP - 1 EP - 17 PB - Elsevier AN - OPUS4-65490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wallis, Theophilus A1 - Ratanaphan, Sutatch A1 - Darvishi Kamachali, Reza T1 - Linking atomistic and phase-field modeling of grain boundaries I: Coarse-graining atomistic structures N2 - The longstanding gap between atomistic and mesoscale simulations partly lies in the absence of a direct, physically grounded connection between atomic structure and mesoscale fields. In this work, we present a robust coarse-graining approach to systematically investigate the connection between phase-field and atomistic simulations of grain boundaries (GBs). The atomistic structures of 408 GBs in BCC-Fe and -Mo were studies to compute and analyze a continuous atomic density field. We discover a fundamental relationship between the GB density---defined as the average atomic density at the GB plane---and the GB excess free volume, an integral property of the boundary. An almost perfect linear correlation between the GB atomic density and GB excess free volume is identified. We also show that the width of BCC GBs, when scaled by the lattice constant, approaches a universal constant value. The relationships among GB density, width, and energy are systematically examined for various GB planes, and the GB energy--density correlations are classified with respect to GB types. It turns out that the atomic planes forming the GB strongly influence both the GB density and excess volume. The current results establish a dependable framework to bridge across scales, enabling density-based phase-field modeling of GBs with atomistic fidelity and enhancing the predictive reliability of mesoscale simulations. KW - Density-based model KW - Grain boundary structure KW - Grain boundary thermodynamic KW - Atomistic simulations PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654872 DO - https://doi.org/10.1016/j.actamat.2025.121786 SN - 1359-6454 VL - 305 SP - 1 EP - 14 PB - Elsevier Inc. AN - OPUS4-65487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pavlidis, Sotirios A1 - Fischer, Eric W. A1 - Opis-Basilio, Amanda A1 - Bera, Ayan A1 - Guilherme Buzanich, Ana A1 - Álvarez-Sánchez, María A1 - Wittek, Severin A1 - Emmerling, Franziska A1 - Ray, Kallol A1 - Roemelt, Michael A1 - Abbenseth, Josh T1 - Ambiphilic Reactivity and Switchable Methyl Transfer at a T-Shaped Bi(NNN) Complex Enabled by a Redox-Active Pincer Ligand N2 - We report the transition-metal-like reactivity of a geometrically constrained, ambiphilic bismuth(III) trisamide. Planarization of the Bi(III) center unlocks Bi−C bond formation when reacted with mild electrophiles (alkyl iodides and triflates) accompanied by two-electron oxidation of the utilized NNN pincer nligand. The preservation of the bismuth oxidation state is confirmed by single-crystal X-ray diffraction and X-ray absorption spectroscopy and corroborated by theoretical calculations. Sequential reduction of the oxidized ligand framework alters the reactivity of a generated Bi−Me unit, enabling controlled access to methyl cation, radical, and anion equivalents. The full [Bi(Me)(NNN)]+/•/− redox series was comprehensively characterized using NMR and EPR spectroscopy as well as spectro-electrochemistry. This work represents the first example of ligand-assisted, redox-neutral C−X bond splitting at bismuth, establishing a new paradigm for synthetic bismuth chemistry. KW - Pincer ligand KW - XAS KW - Redox PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654948 DO - https://doi.org/10.1021/jacs.5c18955 SN - 0002-7863 VL - 148 IS - 2 SP - 2683 EP - 2692 PB - American Chemical Society (ACS) AN - OPUS4-65494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, Xingyu A1 - Antunes, Margarida M. A1 - Guilherme Buzanich, Ana A1 - Cabanelas, Pedro A1 - Valente, Anabela A. A1 - Pinna, Nicola A1 - Russo, Patrícia A. T1 - Formation, Phase Transition, Surface, and Catalytic Properties of Cubic ZrO 2 Nanocrystals N2 - Pseudocapacitance-type transition metal oxides have been extensively investigated as anodes for lithium-ion batteries (LIBs). Currently, they are also gaining attention for sodium-ion batteries (SIBs) due to their low volume change and safety. However, their performance in sodium storage remains limited, primarily due to the larger Na+ ion radius. Here, for the first time, an iron niobate is reported with a columbite structure as a high-Performance sodium storage anode. The presence of iron triggers the loss of long-rangeorder through disorder of the FeO6 octahedra local structure, subsequentlyallowing reversible sodium storage in an amorphous phase. Simultaneously, the formation of short-range ordered zigzag-chain structures within the NbO6 planes creates a “skeleton” that offers abundant active sites forpseudocapacitive ion storage and enhanced ion diffusion pathways. These characteristics of FeNb2O6 make it an effective intercalation host, offering high capacity along with fast Na+ kinetics, as demonstrated through operando and ex situ characterizations. It leads to an applicable reversible capacity (>300 mAh g−1) with a favorable average voltage of ≈0.6 V and excellent rate capability (180.4 mAh g−1 at a current density of 2 A g−1). This study provides insights into the development of intrinsically active transition metal oxides for Na+-ion intercalation. KW - XAS KW - Sodium-ion Batteries PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654955 DO - https://doi.org/10.1021/acs.chemmater.5c01483 SN - 0897-4756 VL - 37 IS - 21 SP - 8568 EP - 8580 PB - American Chemical Society (ACS) AN - OPUS4-65495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, Yanchen A1 - Guilherme Buzanich, Ana A1 - Alippi, Paola A1 - Montoro, Luciano A. A1 - Lee, Kug‐Seung A1 - Jeon, Taeyeol A1 - Weißer, Kilian A1 - Karlsen, Martin A. A1 - Russo, Patrícia A. A1 - Pinna, Nicola T1 - FeNb 2 O 6 as a High‐Performance Anode for Sodium‐Ion Batteries Enabled by Structural Amorphization Coupled with NbO 6 Local Ordering N2 - Pseudocapacitance-type transition metal oxides have been extensively investigated as anodes for lithium-ion batteries (LIBs). Currently, they are also gaining attention for sodium-ion batteries (SIBs) due to their low volume change and safety. However, their performance in sodium storage remains limited, primarily due to the larger Na+ ion radius. Here, for the first time, an iron niobate is reported with a columbite structure as a high-performance sodium storage anode. The presence of iron triggers the loss of long-range order through disorder of the FeO6 octahedra local structure, subsequently allowing reversible sodium storage in an amorphous phase. Simultaneously, the formation of short-range ordered zigzag-chain structures within the NbO6 planes creates a “skeleton” that offers abundant active sites for pseudocapacitive ion storage and enhanced ion diffusion pathways. These characteristics of FeNb2O6 make it an effective intercalation host, offering high capacity along with fast Na+ kinetics, as demonstrated through operando and ex situ characterizations. It leads to an applicable reversible capacity (>300 mAh g−1) with a favorable average voltage of ≈0.6 V and excellent rate capability (180.4 mAh g−1 at a current density of 2 A g−1). This study provides insights into the development of intrinsically active transition metal oxides for Na+-ion intercalation. KW - SIB KW - XAS KW - Sodium-ion Batteries PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654931 DO - https://doi.org/10.1002/adma.202504100 SN - 0935-9648 VL - 37 IS - 46 SP - 1 EP - 13 PB - Wiley AN - OPUS4-65493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faustino, Leandro A. A1 - de Angelis, Leonardo D. A1 - de Melo, Eduardo C. A1 - Farias, Giliandro A1 - dos Santos, Egon C. A1 - Miranda, Caetano R. A1 - Buzanich, Ana G. A1 - Torresi, Roberto M. A1 - de Oliveira, Paulo F.M. A1 - Córdoba de Torresi, Susana I. T1 - Urea synthesis by Plasmon-Assisted N2 and CO2 co-electrolysis onto heterojunctions decorated with silver nanoparticles N2 - The N2 + CO2 co-electrolysis to urea synthesis has become a promising alternative to the energy intensive traditional processes for urea production. However, there are still challenges in this approach, especially due to the competition with HER (Hydrogen Evolution Reaction) leading to low efficiency. Electrochemistry assisted by localized surface plasmon resonance (LSPR) using metal nanoparticles has been reported to enhance different electrochemical reactions. Here we report an electrochemical LSPR assisted urea synthesis using Ag nanoparticles (NPs) supported on BiVO4/BiFeO3 catalyst mechanochemically synthesized. The electrochemical experiments were performed under dark and upon plasmon excitation at the LSPR region of Ag NPs. Our results demonstrated that exciting in the LSPR range, urea yield rate and Faradic efficiency were considerably improved with reduced overpotential, 19.2 μmol h− 1 g− 1 and FE 24.4% at +0.1 V vs RHE compared to 9.6 μmol h− 1 g− 1 and FE 9.4% at − 0.2 V vs RHE under dark conditions. Further in situ FTIR-RAS experiments for mechanism investigation revealed the presence of N-H and C-N intermediates and the real effect of Ag plasmon excitation on HER and N2 + CO2 co-electrolysis. Theoretical calculations confirm the energy of the species involved in C-N coupling as well the role of the complex catalytic sites, which agrees with XAS measurements. KW - Plasmon-assited KW - XAS KW - Urea KW - Electrocatalysis PY - 2025 DO - https://doi.org/10.1016/j.cej.2025.163072 SN - 1385-8947 VL - 513 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-65492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -