TY - JOUR A1 - Usmani, Shirin M. A1 - Plarre, Rüdiger A1 - Hübert, Thomas A1 - Kemnitz, E. T1 - Termite resistance of pine wood treated with nano metal fluorides N2 - Fluorides are well-known as wood preservatives. One of the limitations of fluoride-based wood preservatives is their high leachability. Alternative to current fluoride salts such as NaF used in wood protection are low water-soluble fluorides. However, impregnation of low water-soluble fluorides into wood poses a challenge. To address this challenge, low water-soluble fluorides like calcium fluoride (CaF2) and magnesium fluoride (MgF2) were synthesized as nanoparticles via the fluorolytic sol−gel synthesis and then impregnated into wood specimens. In this study, the toxicity of nano metal fluorides was assessed by termite mortality, mass loss and visual analysis of treated specimens after eight weeks of exposure to termites, Coptotermes formosanus. Nano metal fluorides with sol concentrations of 0.5 M and higher were found to be effective against termites resulting in 100% termite mortality and significantly inhibited termite feeding. Among the formulations tested, the least damage was found for specimens treated with combinations of CaF2 and MgF2 with an average mass loss less than 1% and visual rating of “1”. These results demonstrate the efficacy of low water-soluble nano metal fluorides to protect Wood from termite attack. KW - Wood Protection KW - Nano Particles KW - Termites PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-508377 VL - 78 SP - 493 EP - 499 PB - Springer AN - OPUS4-50837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin M. A1 - Plarre, Rüdiger A1 - Hübert, Thomas A1 - Kemnitz, E. ED - Richter, K. ED - Van de Kulien, J.-W. T1 - Termite resistance of pine wood treated with nano metal fluorides N2 - Fluorides are well-known as wood preservatives. One of the limitations of fluoride-based wood preservatives is their high leachability. Alternative to current fluoride salts such as NaF used in wood protection are low water-soluble fluorides. However, impregnation of low water-soluble fluorides into wood poses a challenge. To address this challenge, low water-soluble fluorides like calcium fluoride (CaF2) and magnesium fluoride (MgF2) were synthesized as nanoparticles via the fluorolytic sol−gel synthesis and then impregnated into wood specimens. In this study, the toxicity of nano metal fluorides was assessed by termite mortality, mass loss and visual analysis of treated specimens after eight weeks of exposure to termites, Coptotermes formosanus. Nano metal fluorides with sol concentrations of 0.5 M and higher were found to be effective against termites resulting in 100% termite mortality and significantly inhibited termite feeding. Among the formulations tested, the least damage was found for specimens treated with combinations of CaF2 and MgF2 with an average mass loss less than 1% and visual rating of “1”. These results demonstrate the efficacy of low water-soluble nano metal fluorides to protect wood from termite attack. KW - Holzschutzmittel KW - Nanoparticles KW - Fluorides KW - Termites PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-514325 VL - 78 SP - 493 EP - 499 PB - Springer CY - Berlin AN - OPUS4-51432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Usmani, Shirin M. A1 - Stephan, Ina A1 - Schlischka, Joerg A1 - Klutzny, Kerstin A1 - de Laval, Yvonne A1 - Plarre, Rüdiger A1 - Huebert, Thomas A1 - Saliwan Neumann, Romeo A1 - Kemnitz, Erhard T1 - Wood protection with MgF2 and CaF2 nanoparticles N2 - Sol-gel synthesis was used to prepare nanoparticles of MgF2 and CaF2. These nanoparticles were tested for their application in wood protection. In comparison to control samples, wood specimens treated with MgF2 and CaF2 showed lower mass loss under exposure to termites and fungi. Samples treated with MgF2 performed better at protecting wood from cellulose degradation when exposed to termites. Conversely, in the presence of fungi, mass loss in treated samples was similar irrespective of the chemical composition (MgF2 and CaF2) of the treatment. A possible explanation for this difference in results between termites and fungi could be their different mechanism of cellulose hydrolysis. Thus, future wood preservatives would need to be customized according to their specific application. T2 - 19th International Sol-Gel Conference CY - Liege, Belgium DA - 03.09.2017 KW - Nanoparticles KW - Wood protection KW - Fungi KW - Termites PY - 2017 AN - OPUS4-42541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -