TY - JOUR A1 - Hartmann, S A1 - Sturm, Heinz A1 - Blaudeck, T A1 - Hoelck, O A1 - Hermann, S A1 - Schulz, SE A1 - Wunderle, B. T1 - Experimental and computational studies on the role of surface functional groups in the mechanical behavior of interfaces between single-walled carbon nanotubes and metals N2 - To study the mechanical interface behavior of single-walled carbon nanotubes (CNTs) embedded in a noble metal, we performed CNT-metal pull-out tests with in situ scanning electron microscope experiments. Molecular dynamics (MD) simulations were conducted to predict force-displacement data during pull-out, providing critical forces for failure of the system. In MD simulations, we focused on the influence of carboxylic surface functional groups (SFGs) covalently linked to the CNT. Experimentally obtained maximum forces between 10 and 102 nN in palladium and gold matrices and simulated achievable pulling forces agree very well. The dominant failure mode in the experiment is CNT rupture, although several pull-out failures were also observed. We explain the huge scatter of experimental values with varying embedding length and SFG surface density. From simulation, we found that SFGs act as small anchors in the metal matrix and significantly enhance the maximum forces. This interface reinforcement can lead to tensile stresses sufficiently high to initiate CNT rupture. To qualify the existence of carboxylic SFGs on our CNT material, we performed analytical investigation by means of fluorescence labeling of surface species and discuss the results. With this contribution, we focus on a synergy between computational and experimental approaches involving MD simulations, nano scale testing, and analytics (1) to predict to a good degree of accuracy maximum pull-out forces of single-walled CNTs embedded in a noble metal matrix and (2) to provide valuable input to understand the underlying mechanisms of failure with focus on SFGs. This is of fundamental interest for the design of future mechanical sensors incorporating piezoresistive single-walled CNTs as the sensing element. KW - Oxygen-containing functionalities KW - Molecular-dynamics KW - Structural characterization KW - Reinforced composites KW - Raman spectroscopy KW - Shear strength KW - Polymer matrix KW - Pull-out KW - Simulation KW - Purification PY - 2016 U6 - https://doi.org/10.1007/s10853-015-9142-6 SN - 0022-2461 SN - 1573-4803 VL - 51 IS - 3 SP - 1217 EP - 1233 AN - OPUS4-35795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rietz, U. A1 - Lerche, D. A1 - Hielscher, Stefan A1 - Beck, Uwe T1 - Centrifugal adhesion testing technology (CATT) - A valuable tool for strength determination N2 - A new technology for strength determination of adhesive-bonded joints based on analytical centrifugatioon is introduced. Tensile as well as shear strength can be measured for multiple test specimens simultaneously within a very short time. The experimental procedure is described from sample preparation, application of adhesives, sample mounting within the centrifuge to testing parameters and sequences. All requirements of DIN EN 15870 are fulfilled and, in addition, a higher throughput and a better reproducibility can be obtained. The experimental results are discussed regarding bonding strength development over time, comparison of tensile and shear strength and various testing conditions. Furthermore, an additional application field of centrifuge technology is described with respect to the determination of the adhesive strength of coatings. The novel centrifuge based technology provides the determination of bonding, adhesive and shear strength on a statistical basis under identical testing conditions for up to eight samples. Moreover, sophisticated two-sided sample clamping, necessary for a tensile testing machine, is replaced by a simple plug-in procedure. KW - Centrifuge technology KW - Adhesive strength KW - Interface strength KW - Bonding strength KW - Adhesion KW - Tensile strength KW - Shear strength KW - Centrifuge KW - Multiple sample testing PY - 2015 SN - 0916-4812 SN - 0001-8201 VL - 51 IS - S1 (Special Issue on WCARP-V) SP - 293 EP - 297 PB - Kyokai CY - Osaka AN - OPUS4-33994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brauser, Stephan A1 - Rethmeier, Michael A1 - Pepke, Lutz-Alexander A1 - Weber, Gert T1 - Influence of production-related gaps on strength properties and deformation behaviour of spot welded trip steel HCT690T N2 - In this study, the influence of production-related gaps on the shear tension strength and fatigue performance was investigated for resistance spot welded TRIP steel HCT690. Furthermore, the local strain distribution in shear tension test was calculated by the digital image correlation technique (DIC). The static shear tension strength was found to be almost independent of gaps up to 3 mm. The maximum local strain in the spot weld region however decreases depending on which sample side (deformed or undeformed) is considered. In addition, it has been ascertained that gaps of 3 mm lead to a significant drop in fatigue life compared to gap-free shear tension samples. This fact could be attributed to decreased stiffness, higher transverse vibration and higher rotation (θ) between the sheets as well as increased local stress calculated by 2 dimensional FE simulation. KW - Deformation KW - Fatigue life KW - Finite element analysis KW - Gap KW - Resistance spot welding KW - Shear strength PY - 2012 SN - 0043-2288 SN - 1878-6669 VL - 56 IS - 03-04 SP - 115 EP - 125 PB - Springer CY - Oxford AN - OPUS4-27590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Werner T1 - Zur inneren Scherfestigkeit von Kunststoff-Dränelementen N2 - Kunststoff-Dränelemente werden auch in Böschungen eingebaut. Da sie in der Regel aus mehreren Komponenten, nämlich mindestens aus einem Dränkern und einem Filtervliesstoff bestehen, hängt die Standsicherheit u. a. von der inneren Scherfestigkeit der Produkte ab. Diese kann entweder durch die reine Reibung der Komponenten untereinander oder durch die mechanische Festigkeit von Fügestellen zwischen den Komponenten bedingt sein, die schon bei der Produktion hergestellt werden. Im letzteren Fall ist nicht klar, wie Ergebnisse von Reibungsversuchen im Rahmenschergerät zu interpretieren sind. Vor diesem Hintergrund wird gezeigt, wie die Druck- und Scherkräfte, die ein Produkt langfristig aushalten kann, aus einem Reibungsversuch im Zusammenhang mit Kriechversuchen abgeleitet werden können. Dieses Vorgehen wird bei der Zulassung nach der Deponieverordnung für den Einsatz in Deponieabdichtungen angewendet.----------------------------------------------------------------------------------------------------- Geocomposite drains (GCD) are used on long and steep slopes. Since they are usually composed of different components, at least a drain core in connection with a nonwoven filter geotextile, the internal shear strength is of significant relevance for the slope stability. The internal shear strength may be due to pure friction forces between the different components or due to the mechanical strength of the bonding between the components achieved in a special production process. In the latter case the interpretation of the results of friction shear box tests is quite unclear. Against this background it is shown how the pressure and shear forces, which are acceptable for a product in the long run, may be derived from such a shear box test in combination with long-term creep tests. The procedure is used within the framework of the certification of the products for landfill cover systems according to the German landfill ordinance. KW - Kunststoff-Dränelement KW - Scherfestigkeit KW - Reibungsversuch KW - Standsicherheit KW - Deponieverordnung KW - Geocomposite drain KW - Shear strength KW - Shear box test KW - Slope stability KW - German landfill ordinance KW - Deponietechnik - Landfills KW - Geokunststoffe - Geosynthetics KW - Laborversuche - Laboratory tests PY - 2012 U6 - https://doi.org/10.1002/gete.201200003 SN - 0172-6145 SN - 1865-7362 SN - 2190-6653 VL - 35 IS - 4 SP - 257 EP - 262 PB - VGE Verl. GmbH CY - Essen AN - OPUS4-27565 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Werner A1 - Jakob, Ines A1 - Seeger, Stefan A1 - Tatzky-Gerth, Renate T1 - Long-term shear strength of geosynthetic clay liners N2 - Geosynthetic clay liners (GCLs) often have a sandwich-like multilayer structure, e.g. bentonite encased between two geotextile layers connected by fibers or yarns, either by needle-punching or stitch-bonding. Therefore, the internal shear strength of the GCL depends on the strength of reinforcing fiber bundles or yarns and their anchoring strength in the cover and carrier geotextiles. When used on long and steep slopes and covered with thick soil layers, the GCL is permanently exposed to a combined action of compressive and shear stress. Such load conditions are characteristic for landfill covers and the slope stability of the overall cover system in the long run strongly depends on the long-term internal shear strength of the GCL. A new test method was developed to study this long-term shear behavior. The focus was not only on creep, as it is normally done, but on aging effects. The shear test devices allow the measurement of creep curves and times-to-failure at elevated temperatures in different media (tap water and de-ionized water). In this publication, the main findings of the experiments on needle-punched GCLs with and without thermal treatment are summarized. Tap water as a test medium was essential to ensure sodium to calcium ion exchange in the bentonite layer. Under this condition extremely long test durations without failure were achieved. Sliding failure occurred when de-ionized water was used. Two failure modes were observed: brittle failure of the GCLs with thermal treatment and slow disentanglement of fiber bundles for untreated GCLs. Short-term shear strength (e.g. peel strength) is unrelated to the actual long-term shear strength, i.e. to the times-to-failure achieved in long-term shear strength test. Hence, short-term shear strength alone will not provide reliable dimensioning data for product design and choice of resins. Therefore, the often suggested approach, namely, restriction to short-term tests only and application of factors of safety, is challenged by these results. KW - Geosynthetic clay liner KW - Shear strength KW - Oxidative resistance KW - Test methods KW - Long-term testing PY - 2008 U6 - https://doi.org/10.1016/j.geotexmem.2007.08.001 SN - 0266-1144 VL - 26 IS - 2 SP - 130 EP - 144 PB - Elsevier CY - Amsterdam AN - OPUS4-16710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -