TY - JOUR A1 - Fink, Friedrich A1 - Stawski, Tomasz M. A1 - Stockmann, Jörg M. A1 - Emmerling, Franziska A1 - Falkenhagen, Jana T1 - Surface Modification of Kraft Lignin by Mechanochemical Processing with Sodium Percarbonate JF - Biomacromolecules N2 - In this article, we present a novel one-pot mechanochemical reaction for the surface activation of lignin. The process involves environmentally friendly oxidation with hydrogen peroxide, depolymerization of fractions with high molecular mass, and introduction of new carbonyl functions into the lignin backbone. Kraft lignin was ground with sodium percarbonate and sodium hydroxide in a ball mill at different time intervals. Analyses by infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), size exclusion chromatography (SEC), dynamic vapor sorption (DVS), and small-angle X-ray scattering (SAXS) showed significant improvements. After only 5 min of reaction, there was a 47% reduction in mass-average molecular weight and an increase in carboxyl functionalities. Chemical activation resulted in an approximately 2.8-fold increase in water adsorption. Principal component analysis (PCA) provided further insight into the correlations between IR spectra and SAXS parameters KW - Kraft Lignin KW - Mechanochemical oxidation KW - SEC KW - FTIR KW - SAXS KW - PCA PY - 2023 DO - https://doi.org/10.1021/acs.biomac.3c00584 SN - 1525-7797 SP - 1 EP - 11 PB - American Chemical Society AN - OPUS4-58074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pütz, E. A1 - Smales, Glen Jacob A1 - Jegel, O. A1 - Emmerling, Franziska A1 - Tremel, W. T1 - Tuning ceria catalysts in aqueous media at the nanoscale: how do surface charge and surface defects determine peroxidase- and haloperoxidase-like reactivity JF - Nanoscale N2 - Designing the shape and size of catalyst particles, and their interfacial charge, at the nanometer scale can radically change their performance. We demonstrate this with ceria nanoparticles. In aqueous media, nanoceria is a functional mimic of haloperoxidases, a group of enzymes that oxidize organic substrates, or of peroxidases that can degrade reactive oxygen species (ROS) such as H2O2 by oxidizing an organic substrate. We show that the chemical activity of CeO2−x nanoparticles in haloperoxidase- and peroxidaselike reactions scales with their active surface area, their surface charge, given by the ζ-potential, and their surface defects (via the Ce3+/Ce4+ ratio). Haloperoxidase-like reactions are controlled through the ζ-potential as they involve the adsorption of charged halide anions to the CeO2 surface, whereas peroxidase-like reactions without charged substrates are controlled through the specific surface area SBET. Mesoporous CeO2−x particles, with large surface areas, were prepared via template-free hydrothermal reactions and characterized by small-angle X-ray scattering. Surface area, ζ-potential and the Ce3+/Ce4+ ratio are controlled in a simple and predictable manner by the synthesis time of the hydrothermal reaction as demonstrated by X-ray photoelectron spectroscopy, sorption and ζ-potential measurements. The surface area increased with synthesis time, whilst the Ce3+/Ce4+ ratio scales inversely with decreasing ζ-potential. In this way the catalytic activity of mesoporous CeO2−x particles could be tailored selectively for haloperoxidase- and peroxidase-like reactions. The ease of tuning the surface properties of mesoporous CeO2x particles by varying the synthesis time makes the synthesis a powerful general tool for the preparation of nanocatalysts according to individual needs. KW - SAXS KW - Ceria KW - Zeta potential PY - 2022 DO - https://doi.org/10.1039/D2NR03172H SP - 1 EP - 12 PB - Royal Society of Chemistry AN - OPUS4-55649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolf, J. A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Thünemann, Andreas A1 - Emmerling, Franziska T1 - Towards automation of the polyol process for the synthesis of silver nanoparticles JF - Scientific Reports N2 - Metal nanoparticles have a substantial impact across diferent felds of science, such as photochemistry, energy conversion, and medicine. Among the commonly used nanoparticles, silver nanoparticles are of special interest due to their antibacterial properties and applications in sensing and catalysis. However, many of the methods used to synthesize silver nanoparticles often do not result in well-defned products, the main obstacles being high polydispersity or a lack of particle size tunability. We describe an automated approach to on-demand synthesis of adjustable particles with mean radii of 3 and 5 nm using the polyol route. The polyol process is a promising route for silver nanoparticles e.g., to be used as reference materials. We characterised the as-synthesized nanoparticles using small-angle X-ray scattering, dynamic light scattering and further methods, showing that automated synthesis can yield colloids with reproducible and tuneable properties. KW - Sillver KW - Nanoparticles KW - Automated synthesis KW - Chemputer KW - Scattering KW - SAXS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546803 DO - https://doi.org/10.1038/s41598-022-09774-w VL - 12 IS - 1 SP - 1 EP - 9 PB - Nature Springer AN - OPUS4-54680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heilmann, Maria A1 - Kulla, Hannes A1 - Prinz, Carsten A1 - Bienert, Ralf A1 - Reinholz, Uwe A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Advances in Nickel Nanoparticle Synthesis via Oleylamine Route JF - nanomaterials N2 - Nickel nanoparticles are an active research area due to their multiple applications as catalysts in different processes. A variety of preparation techniques have been reported for the synthesis of these nanoparticles, including solvothermal, microwave-assisted, and emulsion techniques. The well-studied solvothermal oleylamine synthesis route comes with the drawback of needing standard air-free techniques and often space-consuming glassware. Here, we present a facile and straightforward synthesis method for size-controlled highly monodisperse nickel nanoparticles avoiding the use of, e.g., Schlenk techniques and space-consuming labware. The nanoparticles produced by this novel synthetic route were investigated using small-angle X-ray scattering, transmission electron microscopy, X-ray diffraction, and X-ray spectroscopy. The nanoparticles were in a size range of 4–16 nm, show high sphericity, no oxidation, and no agglomeration after synthesis. KW - Nanoparticle synthesis KW - Nickel nanoparticles KW - SAXS KW - TEM KW - XAS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507531 DO - https://doi.org/10.3390/nano10040713 VL - 10 IS - 4 SP - 713 PB - MDPI AN - OPUS4-50753 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, B. A1 - Meyer, T. A1 - Sieg, H. A1 - Kästner, Claudia A1 - Reichardt, P. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Estrela-Lopis, I. A1 - Burel, A. A1 - Chevance, S. A1 - Gauffre, F. A1 - Jalili, P. A1 - Meijer, J. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Emmerling, Franziska A1 - Fessard, V. A1 - Laux, P. A1 - Lampen, A. A1 - Luch, A. T1 - Characterization of aluminum, aluminum oxide and titanium dioxide nanomaterials using a combination of methods for particle surface and size analysis JF - RSC Advances N2 - The application of appropriate analytical techniques is essential for nanomaterial (NM) characterization. In this study, we compared different analytical techniques for NM analysis. Regarding possible adverse health effects, ionic and particulate NM effects have to be taken into account. As NMs behave quite differently in physiological media, special attention was paid to techniques which are able to determine the biosolubility and complexation behavior of NMs. Representative NMs of similar size were selected: aluminum (Al0) and aluminum oxide (Al2O3), to compare the behavior of metal and metal oxides. In addition, titanium dioxide (TiO2) was investigated. Characterization techniques such as dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) were evaluated with respect to their suitability for fast characterization of nanoparticle dispersions regarding a particle's hydrodynamic diameter and size distribution. By application of inductively coupled plasma mass spectrometry in the single particle mode (SP-ICP-MS), individual nanoparticles were quantified and characterized regarding their size. SP-ICP-MS measurements were correlated with the information gained using other characterization techniques, i.e. transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The particle surface as an important descriptor of NMs was analyzed by X-ray diffraction (XRD). NM impurities and their co-localization with biomolecules were determined by ion beam microscopy (IBM) and confocal Raman microscopy (CRM). We conclude advantages and disadvantages of the different techniques applied and suggest options for their complementation. Thus, this paper may serve as a practical guide to particle characterization techniques. KW - Small-angle X-ray scattering KW - SAXS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-447057 DO - https://doi.org/10.1039/C8RA00205C SN - 2046-2069 VL - 8 IS - 26 SP - 14377 EP - 14388 PB - The Royal Society of Chemistry AN - OPUS4-44705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wuithschick, M. A1 - Paul, B. A1 - Bienert, Ralf A1 - Sarfraz, A. A1 - Vainio, U. A1 - Sztucki, M. A1 - Kraehnert, R. A1 - Strasser, P. A1 - Rademann, K. A1 - Emmerling, Franziska A1 - Polte, J. T1 - Size-controlled synthesis of colloidal silver nanoparticles based on mechanistic understanding JF - Chemistry of materials N2 - Metal nanoparticles have attracted much attention due to their unique properties. Size control provides an effective key to an accurate adjustment of colloidal properties. The common approach to size control is testing different sets of parameters via trial and error. The actual particle growth mechanisms, and in particular the influences of synthesis parameters on the growth process, remain a black box. As a result, precise size control is rarely achieved for most metal nanoparticles. This contribution presents an approach to size control that is based on mechanistic knowledge. It is exemplified for a common silver nanoparticle synthesis, namely, the reduction of AgClO4 with NaBH4. Conducting this approach allowed a well-directed modification of this synthesis that enables, for the first time, the size-controlled production of silver nanoparticles 4–8 nm in radius without addition of any stabilization agent. KW - Silver nanoparticles KW - Growth mechanism KW - SAXS KW - Size control KW - Sodium borohydride PY - 2013 DO - https://doi.org/10.1021/cm401851g SN - 0897-4756 SN - 1520-5002 VL - 25 IS - 23 SP - 4679 EP - 4689 PB - American Chemical Society CY - Washington, DC AN - OPUS4-30194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polte, Jörg A1 - Tuaev, X. A1 - Wuithschick, M. A1 - Fischer, A. A1 - Thünemann, Andreas A1 - Rademann, K. A1 - Kraehnert, R. A1 - Emmerling, Franziska T1 - Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles JF - ACS nano N2 - The formation mechanisms of silver nanoparticles using aqueous silver perchlorate solutions as precursors and sodium borohydride as reducing agent were investigated based on time-resolved in situ experiments. This contribution addresses two important issues in colloidal science: (i) differences and analogies between growth processes of different metals such as gold and silver and (ii) the influence of a steric stabilizing agent on the growth process. The results reveal that a growth due to coalescence is a fundamental growth principle if the monomer-supplying chemical reaction is faster than the actual particle formation. KW - Silver nanoparticle growth KW - Formation mechanisms KW - Nucleation KW - SAXS PY - 2012 DO - https://doi.org/10.1021/nn301724z SN - 1936-0851 VL - 6 IS - 7 SP - 5791 EP - 5802 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-26427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polte, Jörg A1 - Kraehnert, R. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Thünemann, Andreas A1 - Emmerling, Franziska T1 - New insights of the nucleation and growth process of gold nanoparticles via in situ coupling of SAXS and XANES JF - Journal of physics / Conference series N2 - Although metallic nanoparticles play an important role in the area of nanotechnology, a coherent mechanistic explanation for the evolution of the particles during their chemical synthesis has not yet been provided in many cases. To gain a profound understanding of the growth mechanism of colloidal nanoparticles, new approaches using Small Angle X-Ray Scattering (SAXS) combined with X-ray absorption near-edge structure (XANES) are presented. This combination allows for insights into two prominent syntheses routes of gold nanoparticles (GNP): The 'slow' reaction using sodium citrate (30-90 min) as a reducing agent and the 'fast' reaction employing NaBH4 (within few seconds). In the first case data derived with the coupled XANES and SAXS suggests a four-step particle formation mechanism. For the second system a time resolution in the order of 100-200 ms was achieved by coupling a common laboratory SAXS instrument with a microstructured mixer, which allows data acquisition in a continuous-flow mode. The results indicate a coalescence driven growth process. Based on the capabilities to deduce the size, number and polydispersity of the particles, the results of both methods enable the development of mechanistic schemes explaining the different phases of particle formation and growth, thus providing a basis for improved control over the synthesis processes. KW - SAXS KW - XANES KW - Nanoparticle formation PY - 2010 DO - https://doi.org/10.1088/1742-6596/247/1/012051 SN - 1742-6588 SN - 1742-6596 VL - 247 IS - 1 SP - 012051-1 - 012051-10 PB - IOP Publ. CY - Bristol, UK AN - OPUS4-22684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polte, Jörg A1 - Herder, Martin A1 - Erler, Robert A1 - Rolf, Simone A1 - Fischer, A. A1 - Würth, Christian A1 - Thünemann, Andreas A1 - Kraehnert, R. A1 - Emmerling, Franziska T1 - Mechanistic insights into seeded growth processes of gold nanoparticles JF - Nanoscale N2 - A facile approach for the synthesis of monodisperse gold nanoparticles with radii in the range of 7 to 20 nm is presented. Starting from monodisperse seeds with radii of 7 nm, produced in the first step, the addition of a defined amount of additional precursor material permits distinct size regulation and the realization of predicted nanoparticle sizes. These information were derived from ex- and in situ investigations by comprehensive small angle X-ray scattering (SAXS), X-ray absorption near edge structure (XANES) and UV-Vis data to obtain information on the physicochemical mechanisms. The obtained mechanisms can be transferred to other seeded growth processes. Compared to similar approaches, the presented synthesis route circumvents the use of different reducing or stabilizing agents. The size of resulting nanoparticles can be varied over a large size range presented for the first time without a measurable change in the shape, polydispersity or surface chemistry. Thus, the resulting nanoparticles are ideal candidates for size dependence investigations. KW - Gold nanoparticles KW - SAXS KW - XANES KW - Growth mechanism PY - 2010 DO - https://doi.org/10.1039/c0nr00541j SN - 2040-3364 SN - 2040-3372 VL - 2 IS - 11 SP - 2463 EP - 2469 PB - RSC Publ. CY - Cambridge AN - OPUS4-22346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klimakow, Maria A1 - Klobes, Peter A1 - Thünemann, Andreas A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of metal-organic frameworks: A fast and facile approach toward quantitative yields and high specific surface areas JF - Chemistry of materials N2 - The strategy of utilizing mechanochemical synthesis to obtain metal–organic frameworks (MOFs) with high surface areas is demonstrated for two model systems. The compounds HKUST-1 (Cu3(BTC)2, BTC = 1,3,5-benzenetricarboxylate) and MOF-14 (Cu3(BTB)2, BTB = 4,4',4''-benzenetribenzoate) were synthesized by ball milling and characterized by powder X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and thermal analysis (DTA/DTG/MS). The specific surface area (SSA) of both compounds was characterized by nitrogen adsorption. To verify these results and to understand how the synthetic conditions influence the pore structure and the surface area, additional small-angle X-ray scattering (SAXS) experiments were carried out. Our investigations confirm that this synthesis approach is a promising alternative method for distinct MOFs. This facile method leads to materials with surface areas of 1713 m²/g, which is comparable to the highest given values in the literature for the respective compounds. KW - Metal-organic frameworks KW - Mechanochemistry KW - Green-chemistry synthesis KW - Gas adsorption KW - SAXS KW - Specific surface area PY - 2010 DO - https://doi.org/10.1021/cm1012119 SN - 0897-4756 SN - 1520-5002 VL - 22 IS - 18 SP - 5216 EP - 5221 PB - American Chemical Society CY - Washington, DC AN - OPUS4-21999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -