TY - CONF A1 - Bernegger, Raphael A1 - Altenburg, Simon A1 - Maierhofer, Christiane T1 - Iterative numerical 2D-modeling for quantification of material defects by pulsed thermography N2 - Pulsed thermography is a well-known non-destructive testing technique and has proven to be a valuable tool for examination of material defects. Typically, analytical 1D models are used to determine the defect depth of flat-bottom holes (FBH), grooves or delamination. However, these models cannot take into account lateral heat flows, or only to a limited extent. They are therefore limited by the FBHs aspect ratio (diameter to remaining wall thickness), to ensure that the heat flow above the defect can still be described one-dimensionally. Here, we present an approach for quantitative determination of the geometry for FBH or grooves. For this purpose, the results of a numerical 2D model are fitted to experimental data, e.g., to determine simultaneously the defect depth of a groove or FBH and its diameter of width. The model takes lateral heat flows into account as well as thermal losses. Figure 1 shows the temperature increase of a pulsed thermography measurement at three different locations on the sample. The numerical model is fitted to the experimental data (red lines) to quantify the groove. The numerical simulation matches the experimental data well. T2 - 45th Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Burlington, VT, USA DA - 15.07.2018 KW - Opaque materials KW - Pulse thermography KW - Numerical modelling KW - 2D model KW - Data reconstruction KW - Flat bottom holes KW - Notches PY - 2018 AN - OPUS4-46353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernegger, Raphael A1 - Altenburg, Simon A1 - Maierhofer, Christiane T1 - Numerical 2D model to quantify defects in semitransparent materials by pulsed thermography N2 - Pulsed thermography is a well-known non-destructive testing technique and has proven to be a valuable tool for evaluation of material defects. Material defects are often simulated by flat-bottom holes (FBH) or grooves. Typically, analytical 1D models are used to determine the defect depth of FBHs, grooves or delaminations. However, these models cannot take into account lateral heat flows, or only to a limited extent (semi-empirical model). Their applicability is therefore limited by the FBHs aspect ratio (diameter to remaining wall thickness), to ensure that the heat flow above the defect can still be described one-dimensionally. Additionally, the surfaces of semi-transparent materials have to be blackened to absorb the radiation energy on the surface of the material. Without surface coatings, these models cannot be used for semi-transparent materials. Available 1D analytical models for determination of sample or layer thicknesses also do not take into account lateral heat flows. Here, we present an approach for quantitative determination of the geometry of FBHs or grooves in semi-transparent materials by considering lateral heat flow. For this purpose, the results of a numerical 2D model are fitted to experimental data, e.g., to determine simultaneously the defect depth of a FBH or groove and its diameter or width, respectively. The model considers semi-transparency of the sample within the wavelength range of the excitation source as well as of the IR camera and thermal losses at its surfaces. Heat transport by radiation within the sample is neglected. It supports the use of an arbitrary temporal shape of the heating pulse to properly describe the measurement conditions for different heat sources. T2 - Progress in Photoacoustic & Photothermal Phenomena CY - Erice, Italy DA - 06.09.2018 KW - Pulse thermography KW - Numerical modelling KW - 2D model KW - Data reconstruction KW - Flat bottom holes KW - Notches KW - Semitrasnparent materials PY - 2018 AN - OPUS4-46105 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernegger, Raphael A1 - Altenburg, Simon A1 - Maierhofer, Christiane T1 - Quantitative determination of the geometry of defects by pulse thermography N2 - Pulsed thermography is a well-known non-destructive testing technique and has proven to be a valuable tool for examination of material defects. Material defects are often simulated by flat-bottom holes (FBH) or grooves. Typically, analytical 1D models are used to determine the defect depth of FBHs, grooves or delaminations. However, these models cannot take into account lateral heat flows, or only to a limited extent (semi-empirical model). They are therefore limited by the FBHs aspect ratio (diameter to remaining wall thickness), to ensure that the heat flow above the defect can still be described one-dimensionally. Here, we present an approach for quantitative determination of the geometry of FBH or grooves. For this purpose, the results of a numerical 2D model are fitted to experimental data, e.g., to determine simultaneously the defect depth of a FBHs or groove and its diameter or width, respectively. The model takes lateral heat flows into account as well as thermal losses. Figure 1 shows the temperature increase of a pulsed thermography measurement at three different locations on the sample. The numerical model is fitted to the experimental data (red lines) to quantify the groove. The numerical simulation matches the experimental data well. T2 - Progress in Photoacoustic & Photothermal Phenomena CY - Erice, Italy DA - 06.09.2018 KW - Pulse thermography KW - Numerical modelling KW - 2D model KW - Data reconstruction KW - Flat bottom holes KW - Notches KW - Opaque materials PY - 2018 AN - OPUS4-46103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernegger, Raphael A1 - Altenburg, Simon A1 - Roellig, Mathias A1 - Maierhofer, Christiane T1 - Applicability of a 1D analytical model for pulse thermography of laterally heterogeneous semitransparent materials JF - International Journal of Thermophysics N2 - Pulse thermography (PT) has proven to be a valuable non-destructive testing method to identify and quantify defects in fiber-reinforced polymers. To perform a quantitative defect characterization, the heat diffusion within the material as well as the material parameters must be known. The heterogeneous material structure of glass fiber-reinforced polymers (GFRP) as well as the semitransparency of the material for optical excitation sources of PT is still challenging. For homogeneous semitransparent materials, 1D analytical models describing the temperature distribution are available. Here, we present an analytical approach to model PT for laterally inhomogeneous semitransparent materials.We show the validity of the model by considering different configurations of the optical heating source, the IR camera, and the differently coated GFRP sample. The model considers the lateral inhomogeneity of the semitransparency by an additional absorption coefficient. It includes additional effects such as thermal losses at the samples surfaces, multilayer systems with thermal contact resistance, and a finite duration of the heating pulse. By using a sufficient complexity of the analytical model, similar values of the material parameters were found for all six investigated configurations by numerical fitting. KW - Absorption coefficient KW - Analytical model KW - GFRP KW - Heterogeneous KW - Pulse thermography KW - Semitransparent PY - 2018 DO - https://doi.org/10.1007/s10765-018-2362-7 SN - 0195-928X SN - 1572-9567 VL - 39 IS - 3 SP - Article 39, ICPPP 19, 1 EP - 17 PB - Springer International Publishing AG AN - OPUS4-44003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernegger, Raphael A1 - Altenburg, Simon A1 - Röllig, Mathias A1 - Maierhofer, Christiane T1 - Thickness determination in active thermography for one and multilayer semitransparent materials N2 - Flash thermography is a well-known non-destructive testing technique and has proven to be a valuable tool to examine material defects and to determine thermal material parameters and the thickness of test specimens. However, its application to semitransparent materials is quite new and challenging, especially for semitransparent multilayer materials like glass fiber reinforced polymer (GFRP). Here, in order to deduce the thickness of coated and uncoated semitransparent specimens as well as the depth of defects in such specimens by means of flash thermography, we apply an analytical model based on the quadrupole method by Maillet et al. to calculate the temperature development during the flash thermography experiment. The model considers semitransparency of the sample and thermal losses at its surface. It supports the use of an arbitrary temporal shape of the heating pulse to properly describe the measurement conditions for different heat sources. By fitting the results of the analytical model to experimental data it is possible to determine the thickness of the specimen, provided the thermal material parameters are known, e.g., by calibration experiments with samples of the same material with known thickness. We will show that thickness determination of semitransparent test specimens is possible both for transmission and reflection configuration, with and without a blackened sample surface at either front or back side of the sample. As an example, Figure 1 shows the experimentally obtained temperature differences of the surface of a blackened GFRP sample in transmission configuration with the coating facing the flash lamp (usual configuration, (a)) or the infrared camera (unusual configuration, (b)). Using the proposed method, the thickness of the sample can be determined for both configurations. T2 - 19th International Conference on Photoacoustic and Photothermal Phenomena CY - Bilbao, Spain DA - 16.07.2017 KW - Semitransparent KW - Pulse thermography KW - Absorption coefficient KW - GFRP KW - Heterogeneous KW - Analytical model PY - 2017 AN - OPUS4-43409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Regina A1 - Maierhofer, Christiane A1 - Kreutzbruck, Marc T1 - Numerical method of active thermography for the reconstruction of back wall geometry JF - NDT & E international N2 - The paper presents a numerical method to detect and characterise defects and inhomogeneities by means of active thermography. The objective was to determine the wall thickness of structure elements with an inaccessible back wall, e.g., elements of pipes or containers. As test specimens we used PVC samples with the thickness of about 2 cm that had spatial variations in the back wall geometry. Flash lamps provided the heating. To measure the thickness of the wall, we employed the Levenberg–Marquardt method, which we applied here to experimental thermographic data for non-destructive testing. We started the inversion procedure by making a rough first estimation of the back wall geometry following the echo defect shape method, and then we calculated the thickness of the back wall. We found reasonable reconstruction results which differed from the real value significantly below 1 mm at the defect centre, whereas the error wais increased at the edge of the defect, depending on its shape and depth. KW - Pulse thermography KW - Wall thickness KW - Inverse problems KW - Reconstruction KW - Defects KW - Rekonstruktion KW - Inverse Probleme KW - Defekte PY - 2013 DO - https://doi.org/10.1016/j.ndteint.2012.10.010 SN - 0963-8695 VL - 54 SP - 189 EP - 197 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-28895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -