TY - CONF A1 - Ciornii, Dmitri A1 - Knigge, Xenia A1 - Radnik, Jörg A1 - Thünemann, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Altmann, Korinna T1 - Identification of toxicologically relevant functional groups on micro- and nanoplastic particles’ surface by means of X-Ray photoelectron spectroscopy N2 - Microplastic and nanoplastic particles (MNP) are spread all over the world in various types, shapes and sizes making it very challenging to accurately analyse them. Each sampling procedure, sample preparation method and detection technique needs suitable reference materials to validate the method for accurate results. Furthermore, the effects of these MNPs should be evaluated by risk and hazard assessment with test particles close to reality. To better understand MNP behavior and aid in clarification of their interactions with organisms, we produced several MNP materials by top-down procedure and characterized their properties. Since surface properties mostly determine particles’ toxicity, the aim of the present study was to determine which functional groups are present on MNPs and how the surface can be affected by the production process and particle’s environment. T2 - SETAC 34th Meeting CY - Seville, Spain DA - 05.05.2024 KW - Microplastics KW - Nanoplastics KW - Polypropylene KW - XPS KW - SEM PY - 2024 AN - OPUS4-60037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meurer, Maren A1 - Wiesner, Yosri A1 - Geburtig, Anja A1 - Waniek, Tassilo A1 - Altmann, Korinna T1 - Is olypropylene relevant for microplastic analytics? N2 - Nowadays, in every terrestrial and aquatic ecosystem, even in the remotest areas, small residues of plastics, the so called microplastic (MP) can be found. MPs are particles with a size of 1-1000 µm (ISO/TR 21960:2020), mainly containing synthetic polymers like polyethylene (PE), polypropylene (PP), polystyrene (PS) or polyethylene terephthalate (PET). Even styrene-butadiene rubber (SBR) as an indication for tire wear is included due to similar particle formation. To understand the MPs consequences to the environment, it is of high priority to capture its extent of contamination. It is surprising that in the analysis of polymer masses in environmental samples, PE, PS and SBR are often detected, but only small amounts of PP, although this is the second most commonly produced standard plastic and many MP particles originate from carelessly disposed packaging materials. This presentation provides hypotheses about the reasons of rare PP identification and mass quantification in environmental samples. Different investigations of pristine PP and representative environmental samples, including the pre-treatment by Accelerated Solvent Extraction (ASE) or with density separation followed by the thermal extraction / desorption gas chromatography-mass spectrometry (TED-GC/MS) are presented. The results are discussed according to the material properties and a possible degradation mechanism under different weathering conditions which indicate less stability under relevant storage conditions. T2 - Society of Environmental Toxicology and Chemistry CY - Dublin, Ireland DA - 30.04.2023 KW - Sample preparation KW - Polypropylene KW - Microplastic KW - Degradation PY - 2023 AN - OPUS4-57474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bärmann, F A1 - Dittmann, Daniel A1 - Braun, Ulrike A1 - Jonas, U. A1 - Fuchs, S. T1 - Degradation analysis of polypropylene in the presence of phosphorus and sulfur containing additives - TGA-FTIR N2 - Polyolefins as polypropylene are widely used in packaging, automotive, consumer goods, construction, infrastructure, agricultural film and other film and sheet applications. Due to their molecular structure, polyolefins inherently burn well. The wide and growing usage implements that fire retardancy of polyolefin products is necessary and gains more attention. Sulfurous additives with synergistic flame retarding effects were shown in polymers like polystyrene and polyolefins by Bellin et al. and Fuchs et al. earlier. For polystyrene compounds, Braun et al. revealed that thermal degradation in the presence of phosphorus and sulfurous additives changes massively. The total release, the composition, and the onset temperature of evolved decomposition products changes. For polypropylene, mixtures containing triphenyl phosphate (TPP), sulfur (S8) and poly(tertbutylphenol) disulphide (PBDS) (Table 1) were prepared and investigated via thermogravimetric analysis coupled to Fourier transformed infrared spectroscopy (TGA-FTIR). T2 - FRPM 2019 CY - Turku, Finland DA - 26.06.2019 KW - TGA-FTIR KW - Polypropylene KW - Phosphorus KW - Sulfur PY - 2019 AN - OPUS4-49391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -