TY - THES A1 - Pistol, Klaus T1 - Wirkungsweise von Polypropylen-Fasern in brandbeanspruchtem Hochleistungsbeton N2 - Das Hauptanliegen der Arbeit besteht in der experimentellen Erforschung der faserbedingten mikrostrukturellen Schädigungsprozesse in brandbeanspruchtem HPC. Dazu werden das thermische Degradationsverhalten von Polypropylen-Fasern (PP-Fasern) mithilfe thermoanalytischer Verfahren aus der Polymerforschung untersucht und die Wechselwirkung der schmelzenden PP-Fasern mit dem umgebenden Betongefüge unter Verwendung hochtemperaturmikroskopischer Methoden analysiert. Des Weiteren werden erstmalig akustische und röntgentomographische Methoden zur zerstörungsfreien Untersuchung der Rissgenese in thermisch beanspruchten Betonproben kombiniert. Zur Validierung der Ergebnisse und zur Visualisierung von mikroskopischen Morphologieänderungen im Faserbereich werden ergänzend Bruchflächen von thermisch geschädigten Proben rasterelektronenmikroskopisch untersucht. Die Ergebnisse zeigen, dass durch die thermische Degradation der PP-Fasern zwischen 160 und 350 °C Kapillarröhren entstehen, die durch eine bei ca. 160 °C einsetzende Mikrorissbildung netzartig verbunden werden. Durch die Mikrorissbildung werden Spannungen im Mikrogefüge des Betons abgebaut (thermomechanischer Effekt) und die Ausbildung eines netzartig verbundenen Transportwegesystems für den ausströmenden Wasserdampf (thermohydraulischer Effekt) ermöglicht. Als Synthese und Abschluss der Arbeit werden zwei Modelle entwickelt, in denen die theoretisch und experimentell gewonnenen Erkenntnisse für die Beschreibung der Wirkungsmechanismen von PP-Fasern zusammenfließen. In einem mikroporomechanischen Modell werden alle an dem Wirkmechanismus der PP-Fasern beteiligten Prozesse den Strukturelementen des Betons (Feststoff, Fluide und Porenraum) zugeordnet. Für eine weitere modellhafte Beschreibung der Wirkungsweise von PP-Fasern wird in einem einfachen thermodynamischen Modell der wassergefüllte Porenraum von HPC als thermodynamisch geschlossenes System idealisiert, bei dem das den Porenraum umgebende Feststoffgerüst die thermodynamische Systemgrenze bildet. Bei dieser Modellvorstellung wird anhand eines Temperatur-Entropie-Diagramms für Wasser gezeigt, dass durch die rissbedingte Öffnung der thermodynamischen Systemgrenze ab ca. 160 °C der thermodynamische Zustand des Porenwasser beeinflusst wird, so dass das Porenwasser bereits bei vergleichsweise niedrigem Druck und niedriger Temperatur vollständig verdampft, ohne den kritischen Grenzdruck von ca. 5 MPa (Zugfestigkeit des Betons) zu erreichen. N2 - The majority of this thesis deals with experimental investigations of Polypropylene fibre (PPfibre) induced microstructural damage processes in fire exposed HPC. For this purpose, the thermal degradation of PP-fibres is investigated by means of thermoanalytical techniques used for polymers. The interaction of the melting PP-fibres with the surrounding cement Matrix is analysed using high-temperature microscopy techniques. Furthermore, acoustic methods as well as x-ray computed tomography are combined for the first time for the nondestructive analysis of the crack formation in heated concrete samples. Additionally, fracture surfaces of thermally damaged samples are investigated by scanning electron microscopy in order to validate the results and to visualize morphological changes in the fibre region. The obtained results show that the thermal decomposition of the PP-fibres between 160 and 350 °C causes the formation of capillary tubes, which are connected by the simultaneous formation of micro-cracks at 160 °C. This enables the relief of micromechanical stresses in heated concrete (thermo-mechanical effect) and the formation of a permeable net-like transport system for the evaporating water (thermo-hydraulic effect). Combining the theoretical and experimental acquired results two models are developed as a synthesis and conclusion of the presented thesis. In a microporomechanical model all processes which are involved in the mode of action of the PP-fibers are related to the basic elements of the microstructure of concrete (solid, fluids and pore space). A further thermodynamic model idealizes the water filled pore spaces of HPC as a closed thermodynamic system. The pore space enclosing the cement matrix represents the boundary of the thermodynamic system. As a result of the micro crack formation at approximately 160 °C the boundary of the system is opening. On the basis of a Temperature-Entropy-Diagram it can be shown that due to the microcracking the thermodynamic state of the pore water is influenced. Thus, the pore water fully evaporates at a comparatively low pressure and temperature without exceeding the critical pressure of 5 MPa (tensile strength of concrete). T3 - BAM Dissertationsreihe - 146 KW - Mikrostruktur KW - Hochleistungsbeton KW - Polypropylen-Fasern KW - Brandschutz KW - Abplatzungen PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-357349 SN - 978-3-9817502-8-7 SN - 1613-4249 VL - 146 SP - 1 EP - 111 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-35734 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pistol, Klaus A1 - Weise, Frank A1 - Meng, Birgit T1 - Polypropylen-Fasern in Hochleistungsbetonen - Wirkungsmechanismen im Brandfall N2 - Bauteile bzw. Tragwerke aus Hochleistungsbetonen müssen in der Regel gegen brandinduzierte Abplatzungen mit geeigneten Maßnahmen geschützt werden, um einen ausreichenden Feuerwiderstand im Brandfall zu gewährleisten. Die bisher wirtschaftlich und technologisch sinnvollste Methode zur Verhinderung von explosionsartigen Betonabplatzungen im Brandfall ist die Zugabe von Polypropylen-Fasern. Die Wirksamkeit der Fasern konnte zwar empirisch gezeigt werden, es stellt sich allerdings die Frage, welche Mechanismen zur Verhinderung der Abplatzungen führen. Der vorliegende Beitrag fasst bisherige Theorien zur Wirkungsweise von Polypropylen-Fasern in brandbeanspruchten Hochleistungsbetonen zusammen und stellt eine innovative Methodologie zur Erforschung der mikrostrukturellen Prozesse vor. Die Ergebnisse zeigen, dass die nach dem Schmelzen und Zersetzen der Polypropylen-Fasern frei werdenden Mikrokanäle durch eine gleichzeitig einsetzende Mikrorissbildung netzartig verbunden werden. Die Mikrorissbildung ermöglicht somit den Abbau von Eigen- und Zwangsspannungen im Beton (mechanischer Effekt) und die Entstehung eines Transportwegesystems für den ausströmenden Wasserdampf (Permeationseffekt).--------------------------------------------------------------------------- Structural members and bearing structures of high performance concrete generally have to be protected against explosive spalling due to fire exposure to guarantee a sufficient fire resistance. Up to now, the economically and technologically most worthwhile method to prevent explosive spalling is the addition of polypropylene fibres. Though the effectiveness of the fibres could be shown empirically, the mechanisms preventing explosive spalling are still debatable. The present article summarizes the existing theories concerning the mode of action of polypropylene fibres in fire exposed high performance concretes and presents an innovative methodology for analysing the micro structural processes. The results show that due to the thermal decomposition of the polypropylene fibres micro channels are created and simultaneously connected due to a netlike micro crack formation. This enables the relief of internal stresses (mechanical effect) and the formation of a permeable transport system for the escaping water vapour (permeation effect). KW - Polypropylen-Fasern KW - Brandschutz KW - Structural fire protection KW - Computertomographie KW - Computed tomography KW - Hochleistungsbeton KW - High performance concrete KW - Messtechnik KW - Mikrorisse KW - Micro cracks KW - Polypropylen-Fasern KW - Polypropylene fibres KW - PP-Fasern KW - Prüfmethoden KW - Rasterelektronenmikroskopie KW - Scanning electron microscopy KW - Risse KW - Schallemissionsanalyse KW - Acoustic emission KW - UHPC KW - Baustoffe KW - Brandschutz KW - Versuche PY - 2012 U6 - https://doi.org/10.1002/best.201200024 SN - 0005-9900 SN - 1437-1006 VL - 107 IS - 7 SP - 476 EP - 483 PB - Ernst CY - Berlin AN - OPUS4-26174 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pistol, Klaus A1 - Weise, Frank A1 - Meinel, Dietmar A1 - Meng, Birgit ED - Rogge, A. ED - Meng, B. T1 - Zur Wirkungsweise von Polypropylen-Fasern in brandbeanspruchten Hochleistungsbetonen T2 - 52. DAfStb-Forschungskolloquium CY - Berlin, Deutschland DA - 2011-11-07 KW - Polypropylen-Fasern KW - Hochfester Beton KW - Schallemissionsanalyse KW - Röntgen 3D-Computertomographie KW - Rasterelektronenmikroskopie PY - 2011 SN - 978-3-9814281-0-0 SP - 134 EP - 140 PB - BAM Bundesanstalt für Materialforschung und -prüfung CY - Berlin AN - OPUS4-25188 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Huismann, Sven T1 - Materialverhalten von hochfestem Beton unter thermomechanischer Beanspruchung N2 - Das Materialverhalten von hochfestem Beton unter thermomechanischer Beanspruchung unterscheidet sich wesentlich von dem des normalfesten Betons. Dies bedeutet, dass bestehende Annahmen sowie Berechnungsverfahren mit zugehörigen Materialparametern, die von einem normalfesten Beton ausgehen, nicht ohne weiteres auf den hochfesten Beton übertragen werden können. Im Rahmen dieser Arbeit wurde daher exemplarisch für einen hochfesten Beton das Verhalten unter thermomechanischer Beanspruchung untersucht. Dabei wurden die Einflüsse verschiedener Randbedingungen bei der Prüfung sowie der Einfluss von Polypropylenfasern (PP-Fasern) im Beton auf die thermomechanischen Materialeigenschaften charakterisiert und ein wesentlicher Beitrag zur Klärung der Ursachen geleistet. Weiterhin wurde mit Hilfe der gewonnenen Kennwertfunktionen ein Materialmodell entwickelt und damit das Trag- und Verformungsverhalten von Stahlbetonstützen aus hoch-festem Beton unter Brandbeanspruchung rechnerisch beschrieben. Anhand eines Bauteilversuchs wurde das Berechnungsverfahren validiert. Die Bearbeitung erfolgte in drei Teilen. In dem ersten Teil dieser Arbeit wurde ein thermomechanischer Prüfstand entwickelt, in dem die Ermittlung der thermomechanischen Materialkennwertfunktionen exemplarisch für einen hochfesten Beton erfolgte. Ein wesentlicher Untersuchungsgegenstand war der Einfluss der Belastungsgeschichte während der Erwärmung auf die Spannungs-Dehnungs-Linien. Dabei wurde eine Reduzierung des temperaturbedingten Abfalls der Festigkeit und des E-Moduls mit zunehmender Belastung und Temperatur festgestellt. Mit zerstörungsfreien und zerstörenden Prüfverfahren konnte gezeigt werden, dass die Belastung während der Erwärmung eine Orientierung der Risse bewirkt und dadurch der Abfall in der Festigkeit und dem E-Modul verringert wird. Der Einfluss hoher lokaler Temperaturgradienten auf die thermomechanischen Kennwertfunktionen wurde ebenfalls untersucht. Zwar entstehen infolge thermomechanischer Spannungen zusätzliche Risse im Betongefüge, diese wirken sich jedoch nicht wesentlich auf die thermomechanischen Kennwertfunktionen aus. Weiterhin wurde der Einfluss von PP-Fasern auf das Verformungsverhalten des Betons bei instationärer Temperaturbeanspruchung untersucht. Mit Hilfe thermogravimetrischer Versuche konnte gezeigt werden, dass die PP-Fasern durch ihre Wirkung im Beton den Feuchtetransport je nach Aufheizrate zwischen 180 °C und 250 °C beschleunigen. Dies führt zum Schwinden des Zementsteins, das der thermischen Dehnung entgegenwirkt und in der Verformungskurve als Stagnation wahrgenommen wird. Ohne PP-Fasern findet der Feuchtetransport wesentlich langsamer statt und eine Stagnation in der Verformungskurve bleibt aus. Bei Temperaturen oberhalb von 300 °C sind die thermischen Dehnungen des Betons mit PP-Fasern geringer und die mechanischen Dehnungen höher als ohne PP-Fasern. In dem zweiten Teil dieser Arbeit wurden Stahlbetonstützen aus dem gleichen Beton, für den die thermomechanischen Kennwertfunktionen ermittelt wurden, unter Brandbeanspruchung geprüft. Nach der Beanspruchung erfolgte zusätzlich die Charakterisierung der Rissbildung mittels 3D-Röntgen-Computertomographie. In dem dritten Teil dieser Arbeit wurde auf der Grundlage der Ergebnisse des ersten Teils ein Materialmodell in Anlehnung an den Eurocode 2 entwickelt. Mit diesem konnte das Trag- und Verformungsverhalten der Stahlbetonstützen aus hochfestem Beton im Brandfall hinreichend genau abgebildet werden. Im Rahmen der Validierung zeigte sich, dass die charakteristischen Kenngrößen des Modells (E-Modul und Festigkeit) zwingend aus den instationären Kriechversuchen abgeleitet werden müssen. Sofern die Festigkeit nur aus den stationären Versuchen abgeleitet wird, wird das Tragverhalten deutlich überschätzt. KW - Hochfester Beton KW - Temperatur KW - Thermomechanik KW - Instationäres Temperaturkriechen KW - Schallemissionsanalyse KW - Ultraschall KW - Polypropylen-Fasern KW - Brand KW - Numerische Simulation KW - Stützen PY - 2010 SN - 0171-7197 IS - 590 SP - 1 EP - 135 PB - Beuth CY - Berlin AN - OPUS4-23005 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -