TY - CONF A1 - Rurack, Knut T1 - Empowering test strips for rapid, highly sensitive and multiplexed analysis of small molecule analytes at a point-of-need N2 - In particular, the rapid development of lateral flow assays as indispensable tools for everyone to contain the SARS-CoV-2 pandemic has fuelled the global demand for analytical tests that can be used outside dedicated laboratories. In addition to their use in medical diagnostics, rapid tests and assays have become increasingly important in various fields such as food safety, security, forensics, and environmental management. The advantage is obvious: taking the assay directly to the sample minimizes the time between suspicion and decision-making, allowing faster action. Especially today, when mobile communication devices with powerful computing capabilities and built-in cameras are ubiquitous, more people than ever before around the world have the basic skills to operate a powerful detector at their fingertips. This sets the stage for a much wider use of analytical measurements in terms of prognosis and prevention, enabling professional laypersons in particular. However, current strip-based systems are primarily focused on single parameter analysis, whether it is SARS-CoV-2 biomarkers, blood glucose levels, or lead concentrations in water samples. Industrial applications of such methods also often still rely on single-parameter assays, requiring multiple runs even for a limited number of key parameters. Overcoming these limitations depends on developing low-number multiplexing strategies that ensure robustness, reliability, speed, ease of use, and sensitivity. This lecture will give an overview of several generic approaches developed in recent years to address these challenges. It will highlight how the synergy of supramolecular (bio)chemistry, luminescence detection, hybrid (nano)materials and device miniaturization can result in powerful (bio)analytical assays that can be used at a point-of-need.1-5 Selected examples will introduce key aspects of such systems that include tailored signaling mechanisms and recognition elements, materials functionalization and device integration, including hybrid nanomaterials, gated indicator release systems, strip modification, and smartphone-based analysis. T2 - 15th Rapid Methods Europe Conference CY - Amsterdam, Netherlands DA - 06.11.2023 KW - Test strips KW - Lateral flow assays KW - Explosives KW - Pesticides KW - Rapid testing KW - Multiplexing PY - 2023 AN - OPUS4-58816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - Approaches to Sensitive and Multiplexed Assays for Robust, Reliable and User-friendly Point-of-Need Analysis N2 - Analytical assays that can be used outside of a dedicated laboratory environment have received unprecedented attention all around the globe during the last one and a half years, in which the world was struggling with and trying to contain the SARS-CoV-2 pandemic. However, besides their current prominence in the field of medical diagnostics, rapid tests and assays have also become increasingly important in other areas ranging from food and feed via security and forensics to environmental management. The advantage is obvious: taking the assay to the sample instead of bringing the sample to the laboratory minimizes the time between first suspicion and first decision taking. Especially today, where mobile communication devices with powerful computing capabilities and onboard cameras are omnipresent, the majority of the global population possesses the basic skills of operating a powerful detector, ready at their fingertips. The stage is thus set for a much broader use of analytical measurements in terms of prognostics and prevention. Today, however, tests for single parameters are still prevailing, whether it is a SARS-CoV-2 biomarker, the glucose level in blood or the concentration of lead in a water sample. Also, for industrial use, many mobile analytical systems still target a single parameter, and several separate runs or tests have to be used even if one wants to screen for only a small number of key parameters. Current challenges in the field thus lie with the development of low-number multiplexing strategies while allowing for robust, reliable, fast, and user-friendly operation and while still reaching the required sensitivities. This lecture will give an overview of various generic approaches developed in BAM’s Chemical and Optical Sensing Division over the years to address these challenges. In particular, it will highlight how the combination of supramolecular (bio)chemistry, luminescence detection, hybrid (nano)materials and device miniaturization can result in powerful (bio)analytical assays that can be used at a point-of-need. Selected examples will introduce key aspects of such systems like tailored signaling mechanisms and recognition elements, materials functionalization and device integration, including hybrid mesoporous nanomaterials, gated indicator release systems, molecularly imprinted polymers, microfluidic devices, test strips and smartphone-based analysis. T2 - Advanced Analytical Technologies Seminar CY - Online meeting DA - 08.12.2021 KW - Rapid tests KW - Multiplexing KW - Trace analysis PY - 2021 AN - OPUS4-54002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Climent Terol, Estela A1 - Biyikal, Mustafa A1 - Gröninger, Delia A1 - Weller, Michael G. A1 - Martínez-Máñez, Ramón A1 - Rurack, Knut T1 - Fluorescence-based multiplexed detection on single test strips with antibody-gated mesoporous materials N2 - Rapid testing methods for the use directly at a point-of-need are expected to unfold their true potential especially when offering adequate capabilities for the simultaneous measurement of multiple analytes of interest. However, the implementation of multiplexing features while retaining simplicity, performance and portability is one of the prominent challenges in the field. Keeping in mind these challenges, we decided to combine the use of stimuli-responsive materials for small-molecule sensing relying on chemical signal amplification and their incorporation on paper strips for lateral-flow assays in a straightforward manner. Considering the modularity, high sensitivity and selectivity of antibody-gated indicator delivery systems, a multiplexed assay for three small-molecule explosives TATP, TNT and PETN was developed, allowing to detect the analytes simultaneously with a single test strip at lower ppb concentrations in liquid phase in <5 min, using a fluorescence reader or a smartphone for readout. Because of the versatility of the hybrid material and the modularity of the assay architecture, it is obvious that this generic approach should be easily transferable to food or environmental analysis, point-of-care diagnostics and other areas of application in which the rapid screening for multiple parameters from liquid samples without clean-up in a dedicated laboratory is in demand. T2 - 2021 On-line Symposium on Bioluminiscence, Chemiluminiscence and luminescence spectrometry ISLS-ISBC CY - Online meeting DA - 24.06.2021 KW - Multiplexing KW - Hybrid materials KW - Signal amplification KW - Test Strip analysis KW - Explosives PY - 2021 AN - OPUS4-52889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Design and Quantitative Characterization of Functional Molecular Chromophores and Nanomaterials with UV/vis/NIR/IR Emission and Traceable Optical Measurements N2 - Research of division Biophotonics at the Federal Institute for Materials Research and Testing (BAM) covers several topics including photophysics of molecular and nanocrystalline emitters, the development of signal enhancement, multiplexing, and barcoding strategies, surface group quantification, the rational design of different types of stimuli-responsive optical probes, and concepts and reference materials for the validation of optical-spectroscopic measurements. In the following representative examples for each of these topics are given. Also, current developments like single particle spectroscopy and flow cytometry with lifetime detection and newly certified fluorescence quantum yield standards are presented. T2 - Kolloquium BfR CY - Berlin, Germany DA - 12.10.2020 KW - Fluorescence KW - Quantitative spectroscopy KW - Single particle spectroscopy KW - Multiplexing KW - Reference materials KW - Optical probes KW - Sensor molecules KW - Assay KW - Dye KW - Quantum yield KW - Method development KW - surface group analysis KW - synthesis KW - fluorescence standards PY - 2020 AN - OPUS4-51449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Wegner, Karl David A1 - Dhamo, Lorena A1 - Göhde, W. A1 - Resch-Genger, Ute T1 - Luminescence lifetime encoding for flow cytometry with quantum-dot-encoded beads N2 - Spectral encoding of cells or particles and the discrimination of multiple spectral codes are a critical process in flow cytometry (FCM). Typical issues in spectral encoding are, e.g., the spectral overlap of codes, or the increasing complexity of instruments . The exploitation of the photoluminescence lifetime (LT) as an encoding parameter could be used to circumvent both of these issues, as it adds another dimension to the parameter space, or, when used as a stand-alone parameter, requiring only one excitation light source and one detector. While LT encoding was considered already decades ago it is still not implemented as a routine technique in FCM yet, mainly due to the challenge of very few photons being available within the limited transition time of a cell or particle through the laser spot. Recently, we demonstrated LT-FCM based on luminophores with ns LTs in a compact and low-cost flow cytometer. Measurements on polymer microbeads containing luminophores with distinctly different excited state LTs enabled the complete discrimination of three LT codes and five codes in total could be identified. Now, we have extended our approach towards considerably longer LTs by custom-made polymer microbeads loaded with different ratios of InP/ZnS and AgInS2 quantum dots. The use of these materials significantly expands the usable time range for LT encoding to up to several hundred ns. Our studies demonstrate the possibility to further increase the number of viable LT codes for multiplexing in LT-FCM without the need for extensive hardware modifications. T2 - Visions in Cytometry - 29th Annual Conference of the German Society for Cytometry CY - Berlin, Germany DA - 25.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Nirmalananthan-Budau, Nithiya A1 - Pauli, Jutta A1 - Hoffmann, Katrin T1 - Photoluminescence at BAM – Photoluminescence at BAM – Photophysical Studies, Quantum Yield Measurements, Multiplexing Strategies, and Standards N2 - Photoluminescence applications in the life and material sciences require bright molecular and nanocrystalline emitters, stimuli-responsive optical probes, signal enhancement, multiplexing, and barcoding strategies and traceable methods to quantify the signal-relevant optical properties of luminescent materials at the ensemble and single molecule/particle level. In this context, current research at Division Biophotonics of BAM is presented ranging from dye and nanocrystal photophysics, absolute measurements of photoluminescence quantum yields in the UV/vis/NIR/SWIR, lifetime multiplexing, and the development of different types of fluorescence standards for validating optical-spectroscopic measurements. T2 - Institutskolloquium IPHT CY - Jena, Germany DA - 22.10.2019 KW - Surface group analysis KW - NIR KW - SWIR KW - Quantum dot KW - Lanthanide KW - Cleavable probe KW - Lifetime KW - Multiplexing KW - Sensor KW - Assay PY - 2019 AN - OPUS4-49360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Kage, Daniel A1 - Weigert, Florian A1 - Martynenko, Irina A1 - Dhamo, Lorena A1 - Soares, J. X. T1 - Luminescent nanocrystals – Photophysics and applications for lifetime multiplexing N2 - Bioanalytical, diagnostic, and security applications require the fast and sensitive determination of a steadily increasing number of analytes or events in parallel in a broad variety of detection formats.[1,2] Ideal candidates for spectral encoding and multiplexing schemes are luminescent nanocrystals like semiconductor quantum dots (QDs), particularly Cd-containing II/VI QDs with their narrow and symmetric emission bands. With the availability of relatively simple and inexpensive instrumentation for time-resolved fluorescence measurements, similar strategies utilizing the compound-specific parameter fluorescence lifetime or fluorescence decay kinetics become increasingly attractive.[3-5] The potential of different types of QDs like II/VI, III/V and Cd-free ternary QDs such as AgInS (AIS) QDs for lifetime-based encoding and multiplexing has been, however, barely utilized, although the lifetimes of these nanocrystals cover a time windows which is barely accessible with other fluorophores. Here we present a brief insight into the photophysics of AIS QDs and show the potential of dye- and QD-encoded beads for lifetime-based encoding and detection schemes in conjunction with flow cytometry and fluorescence lifetime imaging microscopy T2 - Nanax 2019 CY - Hamburg, Germany DA - 16.09.2019 KW - Nano KW - Microparticle KW - Bead KW - Encoding KW - Lifetime KW - Multiplexing KW - Flow cytometry KW - Bead-based assay KW - Fluorescence KW - Dye KW - LT-FCM KW - Time-resolved flow cytometry KW - Method PY - 2019 AN - OPUS4-49039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Kage, D. A1 - Hoffmann, Katrin A1 - Abbandonatoa, G. A1 - Weigert, F. T1 - Biophotonics and analytics – Quantum Yields of Single Emitters and Lifetime Multiplexing N2 - An increasing number of (bio)analytical techniques rely on multiparametric analyses and the measurement of a very small number of emitters. While the former implies encoding or labeling by means of easily distinguishable properties like luminescence color or lifetime in conjunction with high-throughput optical-spectroscopic methods such as flow cytometry, the latter requires methods suitable for the characterization of the optical properties of single emitters. Here, we present the use of fluorescence correlation spectroscopy (FCS) for the relative determination of the key parameter photoluminescence quantum yield [5] and first results from flow cytometry measurements in the time-domain with a custom-designed instrument with luminescence lifetime analysis capability. T2 - ICENAP-Projekttreffens CY - Reims, Italy DA - 20.09.2018 KW - Single emitter KW - Semiconductor quantum dot KW - Lifetime KW - Multiplexing KW - Single particle spectroscopy KW - Photoluminescence quantum yield PY - 2018 AN - OPUS4-46385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Carl, Peter A1 - Schneider, Rudolf T1 - Immunoanalytical Methods for Environmental, Food and Clinical Analysis: Immunomicroarrays N2 - This short course offers an introduction in immunomicroarrays and its application in environmental, food and clinical analysis. Basic principles of microarray fabrication, including spotting techniques and immobilization chemistry are presented, as well as different immunoassay formats and data treatment strategies. Furthermore, principles of bead-based suspension arrays are introduced, including principles of ligand and receptor immobilization, encoding and read-out strategies. T2 - Pittcon CY - Chicago, IL, USA DA - 05.03.2017 KW - Bead-based assay KW - Suspension arrays KW - Microarrays KW - Immunoanalytical methods KW - Multiplexing PY - 2017 AN - OPUS4-43490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sarma, Dominik A1 - Rurack, Knut T1 - Hybrid Core-Shell Particles in Diagnostic Applications - a versatile platform for multiplexed cytometric bead assays N2 - Multiplexed bead-based array formats play an increasingly important role in analytical laboratories. Due to the high surface-to-volume ratio, fast reaction kinetics and modular assay design, these sensor formats are applied in clinical diagnostic, drug development and classical biosensors with great success. As the spherical platform, researchers utilize micron sized particles made from polymeric or silica material. Such beads are commercially available from vendors such as BD or Luminex. However, we have encountered several problematic issues which accompany these platforms: first, bigger sized beads, which are required for particle handling reasons, are difficult to prepare with high monodispersity - a key requirement for cytometric application. Second, plain beads, made from either polymer or silica, have each several disadvantages such as inferior scattering properties in case of silica or limited flexibility for coupling strategies in the case of latex beads. In order to overcome this problem, we have developed a versatile core-shell (CS) platform which consists of a polymeric core with a structurally controlled silica shell. In our approach, the core building block can be easily prepared with high yields and high monodispersity in a dispersion polymerization from approximately 500 nm to 1.3 µm. Then, silica is coated in a classical sol-gel process to protect the core with a stable yet modifiable surface (see SEM image in Figure 1, platform). Here, we combine ideal scattering properties and easy preparation of the polymeric core with the chemical flexibility of a silica surface. Moreover, the additional shell domain adds density to the composite, which makes particle handling feasible also for nanometer sized beads. In this contribution we present proof-of-principle results of competitive immunoassays with fluorescence detection using our CS beads – each performed in mix-and-read fashion without washing steps. All sizes are applicable in cytometric read-out which and can be used for size encoding (see Set 1 to 3 in Figure 1, size encoding). However, further multiplexing for a set of at least 20 parameters can be achieved by swelling hydrophobic dyes into the core. To the same time, precise tuning of the surface with mixed silane layers allowed us to improve the selectivity towards small molecules in competitive immunoassays significantly (see example in Figure 1, Application). We believe that our platform allows researchers to gain access to superior assay performance in combination with a low-threshold approach for the synthesis of the spherical platform. T2 - Functional Nanomaterials in Industrial Applications CY - Preston, UK DA - 29.03.2016 KW - Core/shell particles KW - Cytometry KW - Multiplexing KW - Diagnostics KW - Hybrid materials PY - 2016 AN - OPUS4-38797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -