TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Stable isotope amount ratio analysis by using high-resolution continuum source molecular absorption spectrometry N2 - Analysis of stable isotopes has been used as proof of provenance of mineral and biological samples, to estimate a contamination source and to determine geological processes. This kind of analysis needs high accuracy and precision for reliable conclusions. Currently, stable isotope analysis is dominated by mass spectrometric techniques that are time consuming and expensive. Here we present a fast and low cost alternative for isotope analysis of boron and magnesium: high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). Two stable isotope systems were evaluated separately: boron (10B:11B) and magnesium 24Mg:25Mg:26Mg). Their isotope amount ratios were estimated by monitoring their absorption spectra in-situ generated monohydrides. The molecular absorption spectrum of a XH molecule (X= B or Mg) with n isotopes would be a linear combination of n isotopologue spectra and the amount of each component (isotope) could be calculated by a multivariate regression (n= 2 and 3 for B and Mg respectively). For the Analysis of boron certified reference materials (CRM), the band 1→1 for the electronic transition X1Σ+ → A1Π was measured around wavelength 437.1 nm. Since boron has a Memory effect in graphite furnaces, a combination of 2 % (v/v) hydrogen gas in argon, 1 % trifluoromethane in argon, an acid solution of calcium chloride and mannitol as chemical modifiers were used during the BH vaporization at 2600 °C. Partial least square regression (PLS) for analysis of samples was applied. For this, a spectral library with different isotope ratios for PLS regression was created. Magnesium does not have memory effect. Therefore, only 2 % of hydrogen in argon as gas modifier during vaporization at 2500 °C was employed for analysis of magnesium CRM. Absorption spectra of MgH for the X2Σ→A2Π electronic transition (band 0→0) were recorded around wavelength 513.45 nm. A similar PLS procedure to the BH was applied. Results for B and Mg CRM are metrologically compatible with those reported by mass spectrometric methods. An accuracy of 0.08 ‰ for B and 0.1 ‰ Mg was obtained as the average deviation from the isotope CRM. Expanded uncertainties with a coverage factor of k = 2 range between 0.10 - 0.40 ‰. T2 - SAS meeting FACSS / SciX Conference 2017 CY - Reno, NV, USA DA - 08.10.2017 KW - Boron isotopes KW - High-Resolution Continuum Source Molecular Absorption Spectrometry KW - Graphite furnace KW - Molecular absorption PY - 2017 AN - OPUS4-43528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Redefining stable isotope analysis by molecular absorption spectrometry N2 - Variations in the isotope amount composition of some elements like lithium, boron, magnesium, calcium, copper and strontium have been used as proof of provenance of a sample and to describe geological processes. Routinely, isotope compositions are determinate by mass spectrometry; the working horse of the isotope analysis. However, mass spectrometric methods are expensive, time consuming and they require a high qualified analysist. Here an alternative faster and low cost optical method for isotope ratio determination is proposed: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Stable isotope amount composition of X= Li, B, Mg, Ca, Cu and Sr have been determined by monitoring the absorption spectrum of their monohydride (XH) in graphite furnace HR-CS-MAS. For example, for the three Mg isotopes (24Mg, 25Mg and 26Mg) band (0→0) for the electronic transition X1Σ+ → A1Π was evaluated around wavelength 513.4 nm (Fig. 1). Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression were built. Results are metrological compatible with those reported by mass spectrometric methods. T2 - Adlershofer Forschungsforum 2017 CY - Berlin, Germany DA - 10.11.2017 KW - Isotopes KW - High-Resolution Continuum Source Molecular Absorption Spectrometry KW - HR-CS-MAS KW - Isotopic shift KW - Metal hydrides KW - Graphite furnace KW - Molecular absorption PY - 2017 AN - OPUS4-43342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers N2 - Boron isotope amount ratios n(10B)/n(11B) have been determined by monitoring the absorption spectrum of boron monohydride (BH) in a graphite furnace using high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Bands (0→0) and (1→1) for the electronic transition X1Σ+ → A1Π were evaluated around wavelengths 433.1 nm and 437.1 nm respectively. Clean and free of memory effect molecular spectra of BH were recorded. In order to eliminate the memory effect of boron, a combination of 2% (v/v) hydrogen gas in argon and 1% trifluoromethane in argon, an acid solution of calcium chloride and mannitol as chemical modifiers was used. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained around the 433.1 nm and 437.1 nm spectral regions are metrologically compatible with those reported by mass spectrometric methods. Moreover, for the evaluated region of 437 nm, an accuracy of 0.15‰ is obtained as the average deviation from the isotope reference materials. Expanded uncertainties with a coverage factor of k = 2 range between 0.15 and 0.44‰. This accuracy and precision are compatible with those obtained by mass spectrometry for boron isotope ratio measurements. KW - Boron isotopes KW - Isotope ratios KW - Boron monohydride KW - Molecular absorption KW - High-resolution continuum source absorption spectrometry KW - Graphite furnace KW - Memory effect KW - HR-CS-MAS PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0584854717302537 U6 - https://doi.org/10.1016/j.sab.2017.08.012 SN - 0584-8547 VL - 136 SP - 116 EP - 122 PB - Elsevier CY - Amsterdam, The Netherlands AN - OPUS4-42071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Molecular absorption spectrometry: a fast and accurate optical method for boron isotope analysis comparable to mass spectrometry N2 - Boron presents two stable isotopes, 10B and 11B and due to their relatively large mass difference (~ 10%) isotope fractionation leads to considerable isotope amount ratio variations n(10B)/n(11B) in natural occurrence. These have been used as a proof of provenance of mineral and biological samples, to estimate a contamination source and to the determination of geological processes by erosion or subduction. Additionally, boron is employed in the nuclear industry due to the capability of its isotope 10B to thermal-neutron capture and therefore 10B enriched boric acid solutions are used in the cooling system of thermonuclear facilities and in the alloying of steel and carbides for protective shielding. Usually, isotope ratio variations are determined by mass spectroscopic methods. Here an alternative faster and low cost method for isotope ratio determination is proposed: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Boron isotope amount ratios have been determined by monitoring the absorption spectrum of boron monohydride (BH) in graphite furnace HR-CS-MAS. Bands (0→0) and (1→1) for the electronic transition X1Σ+ → A1Π were evaluated around wavelengths 433.1 nm and 437.1 nm respectively. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained around the 433.1 nm and 437.1 nm spectral regions are metrologically compatible with those reported by mass spectrometric methods. Moreover, a precision and accuracy of the method of ± 0.5 ‰ for the evaluated spectral region around 437.1 nm is reported here. This accuracy and precision is comparable with those obtained by thermal ionization mass spectrometry (TIMS) and multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) for boron isotope ratio measurements. T2 - 30. Tag der Chemie CY - Berlin, Germany DA - 05.07.2017 KW - Boron isotopes KW - High-Resolution Continuum Source Molecular Absorption Spectrometry KW - HR-CS-MAS KW - Isotopic shift KW - Boron monohydride KW - Isotope ratio KW - Molecular absorption KW - Memory effect KW - Graphite furnace PY - 2017 AN - OPUS4-41060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, H.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Molecular absorption spectrometry: a fast and accurate optical method for boron isotope analysis comparable to mass spectrometry N2 - Boron presents two stable isotopes, 10B and 11B and due to their relatively large mass difference (~ 10%) isotope fractionation leads to considerable isotope amount ratio variations n(10B)/n(11B) in natural occurrence. These have been used as a proof of provenance of mineral and biological samples, to estimate a contamination source and to the determination of geological processes by erosion or subduction. Additionally, boron is employed in the nuclear industry due to the capability of its isotope 10B to thermal-neutron capture and therefore 10B enriched boric acid solutions are used in the cooling system of thermonuclear facilities and in the alloying of steel and carbides for protective shielding. Usually, isotope ratio variations are determined by mass spectroscopic methods. Here an alternative faster and low cost method for isotope ratio determination is proposed: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Boron isotope amount ratios have been determined by monitoring the absorption spectrum of boron monohydride (BH) in graphite furnace HR-CS-MAS. Bands (0→0) and (1→1) for the electronic transition X1Σ+ → A1Π were evaluated around wavelengths 433.1 nm and 437.1 nm respectively. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained around the 433.1 nm and 437.1 nm spectral regions are metrologically compatible with those reported by mass spectrometric methods. Moreover, a precision and accuracy of the method of ± 0.5 ‰ for the evaluated spectral region around 437.1 nm is reported here. This accuracy and precision is comparable with those obtained by thermal ionization mass spectrometry (TIMS) and multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) for boron isotope ratio measurements. T2 - 30. Tag der Chemie CY - Berlin, Germany DA - 05.07.2017 KW - Boron isotopes KW - High-Resolution Continuum Source Molecular Absorption Spectrometry KW - HR-CS-MAS KW - Isotopic shift KW - Boron monohydride KW - Isotope ratio KW - Molecular absorption KW - Memory effect KW - Graphite furnace PY - 2017 AN - OPUS4-41059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, M. D. A1 - Becker-Ross, H. A1 - Florek, S. A1 - Abad Andrade, Carlos Enrique A1 - Okruss, M. T1 - Investigation of high-resolution absorption spectra of diatomic sulfides of group 14 elements in graphite furnace and the comparison of their performance for sulfur determination N2 - For the purpose of finding suitable molecules applicable to sulfur determination and to compare their analytical sensitivity systematically, high-resolution overview molecular absorption spectra of sulfides of group 14 elements produced in a graphite furnace were investigated. To that end a modular simultaneous echelle spectrograph (MOSES) was used, which allows recording sub-ranges of spectra out of a total wavelength range from 190 nm to 735 nm. The combined overview spectra show a complex structure with many vibrational bands, each of them consisting of a multitude of sharp rotational lines. The absorption of rotational lines of SiS (282.910 nm), GeS (295.209 nm), SnS (271.578 nm), and PbS (335.085 nm) has been analyzed for optimizing the particular experimental conditions regarding to the sulfur determination. Using the commercial CS AAS instrument contrAA 600 under optimized conditions such as the temperature program, the modification of the platform with Zr and the use of chemical modifiers, the achieved characteristic masses for sulfur are 12 ng (CS), 15.7 ng (SiS), 9.4 ng (GeS), 20 ng (SnS), and 220 ng (PbS). The first four sulfides provide an analytical sensitivity with roughly the same level, but the GeS molecule seems to be the best one with respect to analytical sensitivity and flexibility in molecular formation control. The PbS molecule provides the lowest analytical sensitivity, and together with its low bond strength it is not recommended for sulfur determination. KW - Sulfur determination KW - Sulfides of group 14 elements KW - Molecular absorption KW - High-resolution continuum source absorption spectrometry KW - Graphite furnace PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0584854717302215 U6 - https://doi.org/10.1016/j.sab.2017.06.012 SN - 0584-8547 VL - 135 SP - 15 EP - 21 PB - Elsevier B.V. CY - Amsterdam, The Netherlands AN - OPUS4-40771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Isotope analysis by molecular absorption spectrometry N2 - The use of molecular absorption spectrometry (MAS) for the determination of isotope amount ratios is here discussed. Preliminary results on the determination of isotope ratios of boron, copper and magnesium in reference materials are here presented and compared with their certificates. T2 - Adlershofer Kolloquium Analytik CY - Berlin, Germany DA - 13.06.2017 KW - Isotope KW - Molecular absorption KW - HR-CS-MAS KW - Isotopic shift KW - Spectrometry KW - Isotope ratio PY - 2017 AN - OPUS4-40574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Analytical applications of high resolution continuum source molecular absorption spectrometry N2 - High-resolution continuum source molecular absorption spectrometry (HR-CS-MAS) has been apply for the determination of non-metals and isotope analysis, extending so the application range of atomic absorption spectrometry (AAS). This seminar is divides in two main parts. First, here is presented a comprehensive mechanistic study of molecule formation in graphite furnaces, a key step into the recovery of analytical signals in AAS and MAS. Therefore, a well-known system for fluorine determination was studied: the molecule formation of CaF, with Zr as permanent modifier. Through a kinetic approach, an Arrhenius behaved pseudo first order reaction respect to F- was observed and by spectroscopic methods (XPS, XAS, EDX) an intermediate state was possible to be elucidated. Here it is proposed a mechanism, where zirconium works as heterogeneous catalyst: after a pyrolytic step, it is activated the intermediate ZrO(OCaF) and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. Second, we have developed analytical methods using HR-CS-MAS as detector for quantification of fluorine in consume-care products with declared per-fluorinated ingredients. Ad, the high resolution of the instrumentation allows identify isotopic shifts in some observed molecular spectra. Consequently, the molecular spectra of enriched isotopes of B were investigated and so the potential of HR-CS-MAS for the determination of isotopic ratios is established. T2 - Brown Bag Lecture SALSA Humboldt Universität zu Berlin CY - Berlin, Germany DA - 18.04.2017 KW - Fluorine KW - Molecular absorption KW - Graphite furnace KW - Isotopes KW - Boron PY - 2017 AN - OPUS4-40075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -