TY - CONF A1 - Miccoli, Lorenzo A1 - Müller, U. A1 - Silva, B. A1 - Da Porto, F. A1 - Hracov, S. A1 - Pospisil, S. A1 - Adami, C.-E. A1 - Vintzileou, E. A1 - Vasconcelos, G. A1 - Poletti, E. ED - Jasienko, J. T1 - Overview of different strengthening techniques applied on walls used in historical structures T2 - SAHC 2012 - 8th International conference on structural analysis of historical constructions CY - Wroclaw, Poland DA - 2012-10-15 KW - Stone masonry KW - Brick masonry KW - Earthen materials KW - Half timbered walls KW - Grouting PY - 2012 SN - 978-83-7125-216-7 SN - 0860-2395 VL - 3 SP - 2870 EP - 2878 PB - DWE CY - Wroclaw, Poland AN - OPUS4-27275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Urs A1 - Miccoli, Lorenzo A1 - Malaga, K. T1 - A new grouting material for the repair of cracks in earthen structures N2 - Traditional earthen structures of cultural value are often damaged by static or dynamic loads. This is usually manifested by the appearance of cracks. All too often these cracks are insufficiently or inappropriately repaired if at all because of lack of knowledge and/or technology. In particular, the behavior of crack repair by grouting poses a challenge in earthen materials and demands specific requirements for the grouting mortar, such as low water content, good water retention, low shrinkage, etc. If dynamic loads, e.g. induced by earthquakes, are expected, the grouting material requires additional specifications such as a compatible strength and modulus of elasticity as well as good adhesion to the earthen materials. The study presents results from the development of a grouting material based on hydraulic lime mortar suitable for the repair of cracks in a variety of earthen building techniques. The goal was to develop a material also compatible with earthen structures exposed to dynamic load. The grouting mortar was designed to be adaptable in strength properties and at the same time to have sufficient robustness for the use on the construction site. First results show a satisfactory performance of the grout concerning fresh and hardened mortar properties as well as injectability. The study is part of our work in the framework of the ongoing project NIKER, funded by the European Commission dealing with improving imovable Cultural Heritage assets against the risk of earthquakes. T2 - Terra 2012 - 11th International conference on the study and conservation of earthen architecture heritage CY - Lima, Peru DA - 2012-04-22 KW - Cracks KW - Grouting KW - Lime mortar KW - Earthen Structures KW - Cracks repair PY - 2012 SN - 978-9972-2885-5-5 IS - Theme 6 - t6_059 SP - 1 EP - 10 AN - OPUS4-30381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -