TY - CONF A1 - Huschke, Philip A1 - Unger, Jörg F. ED - von Scheven, M. ED - Keip, M.-A. ED - Karajan, N. T1 - Domain decomposition methods for fracture mechanics problems and its application to fiber reinforced concrete N2 - A finite element tearing and interconnecting (FETI) approach for phase-field models and Gradient enhanced damage models is presented. These diffusive crack models can solve fracture mechanics problems by integrating a set of partial differential equations and thus avoid the explicit treatment of discontinuities. However, they require a fine discretization in the vicinity of the crack. FETI methods distribute the computational cost among multiple processors and thus speed up the computation. T2 - 7th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry CY - Stuttgart, Germany DA - 11.10.2017 KW - FETI KW - Domain decomposition methods KW - Fracture mechanics problems PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-436764 VL - 7 SP - 444 EP - 448 PB - Institute for Structural Mechanics, University of Stuttgart CY - Stuttgart AN - OPUS4-43676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huschke, Philip A1 - Unger, Jörg F. T1 - FETI methods - Application to phase-field models N2 - The objective is to apply FETI methods to the phase-field model for brittle fracture in order to speed up the computation time. Due to the fact that the phase-field model yields nonsymmetric, ill-conditioned matrices, special solvers and preconditioners need to be applied to improve robustness and convergence. T2 - ECAM 2017 CY - Kochel am See, Germany DA - 09.10.2017 KW - FETI KW - Phase-field PY - 2017 AN - OPUS4-42606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huschke, Philip A1 - Unger, Jörg F. T1 - Domain decomposition methods for fracture mechanics problems N2 - Strain hardening ultra high performance fiber reinforced cementitious composites (UHPFRCC) exhibit increased strength, ductility, and energy absorption capacity when compared to their quasibrittle, unreinforced counterparts. A mesoscale finite element model can depict the underlying causes for the structural response of UHPFRCC and thus help to optimize the fiber content, the fiber dimensions, and the fiber orientation. The mesoscale model can either be used directly or as a representative volume element for a macroscopic model. We present a two-dimensional and a threedimensional mesoscale finite element model to simulate the structural response of strain hardening UHPFRCC. The mesoscale model employs an implicit gradient enhanced damage model for the cement matrix and a local bond stress-slip model for the bond between the cement matrix and the steel fibers. The steel fibers are modeled discretely as one-dimensional truss elements that are coupled to the cement matrix via bond elements. The tensile stress-strain response of UHPFRCC is a consequence of local matrix cracking and bond failure. Both phenomena can be depicted when modeling the cement matrix, the steel fibers, and the fiber-to-matrix bond explicitly. The second part of the talk deals with the efficient modeling of fracture and the prediction of crack initiation, propagation, merging, and branching through the computational domain. Phase-field models and gradient enhanced damage models can solve fracture mechanics problems by integrating a set of partial differential equations for the system and thus avoid the explicit treatment of discontinuities. The main attributes of these approaches are their simplicity and generality. However, they require a fine discretization in the region where the crack evolves. A finite element tearing and interconnecting (FETI) approach for the diffusive crack models is presented to distribute the computational cost among multiple processors and thus speed up the overall computation. T2 - ICAM 2017 CY - Garching, Germany DA - 20.05.2017 KW - FEM KW - FETI KW - DDM PY - 2017 AN - OPUS4-42605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huschke, Philip A1 - Unger, Jörg F. T1 - Domain decomposition methods for fracture mechanics problems N2 - A finite element tearing and interconnecting (FETI) approach for phase-field models and gradient enhanced damage models is presented. These diffusive crack models can solve fracture mechanics problems by integrating a set of partial differential equations and thus avoid the explicit treatment of discontinuities. However, they require a fine discretization in the vicinity of the crack. FETI methods distribute the computational cost among multiple processors and thus speed up the computation. T2 - GACM 2017 CY - Stuttgart, Germany DA - 11.10.2017 KW - FEM KW - DDM KW - FETI PY - 2017 AN - OPUS4-42604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huschke, Philip A1 - Unger, Jörg F. T1 - Domain decomposition methods for fracture mechanics problems N2 - A finite element tearing and interconnecting (FETI) approach for phase-field models and gradient enhanced damage models is presented. These diffusive crack models can solve fracture mechanics problems by integrating a set of partial differential equations and thus avoid the explicit treatment of discontinuities. However, they require a fine discretization in the vicinity of the crack. FETI methods distribute the computational cost among multiple processors and thus speed up the computation. T2 - COMPLAS 2017 CY - Barcelona, Spain DA - 05.09.2017 KW - FEM KW - FETI KW - DDM PY - 2017 AN - OPUS4-42603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -