TY - JOUR A1 - Askar, Enis A1 - Schröder, Volkmar T1 - The influence of strong ignition sources on the explosion and decomposition limits of gases N2 - Explosion and decomposition limits of flammable and chemically unstable gases were determined experimentally in a closed autoclave with an ignition energy higher than the standard 10 J a 20 J. The ignition source was a lightning arc caused by an exploding wire igniter as described in EN 1839 B. With a newly developed ignition system a graded ignition energy between 3 J and 1000 J was generated. Different types of gases were studied with this ignition system: methane as a typical fuel gas and reference gas for some standards for explosion limit determination, the refrigerant R32 (difluoromethane) as a mildly flammable gas with low burning velocity and high minimum ignition energy compared with methane as well as the chemical unstable gases acetylene, nitrous oxide and ethylene oxide, which can decompose explosively in the absence of air or other oxidizers. It was found that the influence of strong ignition sources on explosion and decomposition limits can be very different for different systems. In case of methane only the upper explosion limit was influenced significantly by the ignition energy, whereas the lower explosion limit was constant. In a standard test vessel with an inner volume of 14 dm3 it was difficult to quantify the upper explosion limit of methane exactly with the strong ignition source, because the explosion pressure did not increase abruptly near the explosion limit, but steadily over a large concentration range. Probably a larger explosion vessel is more appropriate in this case. In case of R32 however, it was the lower explosion limit that was influenced significantly by the ignition energy and not the upper explosion limit. A particularly strong dependency from the ignition energy was found for the decomposition limits of the chemically unstable gases in nitrogen. Here special regard is necessary in practical applications, if uncommonly strong ignition sources cannot be excluded. KW - Explosionsgrenzen KW - Zündenergie KW - Zündquellen KW - Chemisch instabile Gase KW - Kältemittel PY - 2019 SN - 978-88-95608-74-7 U6 - https://doi.org/10.3303/CET1977022 SN - 2283-9216 VL - 77 SP - 127 EP - 132 PB - AIDIC - The Italian Association of Chemical Engineering CY - Milano, Italy AN - OPUS4-49936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Schröder, Volkmar T1 - The influence of strong ignition sources on the explosion and decomposition limits of gases N2 - Explosion and decomposition limits of flammable and chemically unstable gases were determined experimentally in a dosed autoclave with varying ignition energy up to 1000 J. The ignition source was a lightning arc caused by an exploding wire igniter as described in EN 1839 B .. In case of methane only the upper explosion limit was influenced significantly by the ignition energy, whereas the lower explosion limit was constant. In case of R32 however. it was the lower explosion limit that was influenced significantly by the ignition energy and not the upper explosion limit. A particularly strong dependency from the ignition energy was found for the decomposition limits of the chemically unstable gases in nitrogen. T2 - 16th International Symposium on Loss Prevention and Safety Promotion in the Process Industries CY - Delft, The Netherlands DA - 16.06.2019 KW - Explosionsgrenzen KW - Zündenergie KW - Chemisch instabile Gase KW - Kältemittel KW - Zündquellen PY - 2019 AN - OPUS4-48993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis T1 - Gasgemische mit geringen Anteilen an Brenngasen in Distickstoffoxid / Sicherheitstechnische Beurteilung von Gasgemischen mit brennbaren und oxidierenden Bestandteilen N2 - Im Vortrag werden zum einen sicherheitstechnische Aspekte bei der Herstellung von Gasgemischen aus geringen Anteilen an Lachgas und brennbaren Gasen diskutiert. Zum anderen werden allgemein Vorgehensweisen und Berechnungsmethoden zur sicherheitstechnischen Beurteilung der Herstellung von Gasgemischen mit brennbaren und oxidierenden Komponenten vorgestellt. T2 - 17. Sitzung der Expertengruppe Spezialgase des IGV CY - Berlin, Germany DA - 11.02.2016 KW - Explosionsschutz KW - Herstellung von Gasgemischen KW - Chemisch instabile Gase KW - Spezialgase PY - 2016 AN - OPUS4-38008 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zeps, Robert A1 - Askar, Enis A1 - Ferrero, Fabio A1 - Kluge, Martin T1 - Zündtemperatur von Gasen/ Gasgemischen bei erhöhten Anfangsdrücken in Abhängigkeit vom Behältervolumen N2 - Zur Einschätzung der Wirksamkeit einer heißen Oberfläche als Zündquelle für ein Gas oder ein Gasgemisch werden in der Praxis Zündtemperaturen experimentell bestimmt. Die Zündtemperatur gemäß dem europäischen Standardverfahren EN 14522 wird bei Atmosphärendruck bestimmt und ist vor allem dazu geeignet die Wirksamkeit einer heißen Oberfläche als Zündquelle bei einem unerwünschten Stoffaustritt aus einer geschlossenen Anlage einzuschätzen. Eine Aussage bzgl. der der Zündfähigkeit an heißen Oberflächen innerhalb einer geschlossenen Anlage, z. B. in größeren Behältern bei bestimmten Gemischzusammensetzungen und höheren Anfangsdrücken, kann anhand der Zündtemperatur gemäß EN 14522 nicht getroffen werden. Die Bestimmung nach dem europäischen Standard erfolgt in einem offenen System, bei atmosphärischem Druck und in Luft als Oxidationsmittel. T2 - 11. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit CY - Köthen, Germany DA - 07.11.2013 KW - Sicherheitstechnische Kenngrößen KW - Chemisch instabile Gase KW - Zerfallsfähige Gase KW - Explosion KW - Ethylenoxid KW - Tetrafluorethylen KW - Acetylen PY - 2013 SN - 978-3-86011-058-4 IS - F-02 SP - 1 EP - 14 AN - OPUS4-29534 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilrich, Cordula A1 - Holtappels, Kai T1 - Die Einstufung von chemisch instabilen Gasen gemäß UN-GHS und CLP-Verordnung N2 - In einer von Deutschland geleiteten Arbeitsgruppe des UN Sub-Committee zum UN-GHS [1] wurden Kriterien, eine Prüfmethode und Kennzeichnungselemente für chemisch instabile Gase erarbeitet. Im Ergebnis sind in der 4th revised edition von 2011 des UN-GHS chemisch instabile Gase neu aufgenommen worden. Danachwerden chemisch instabile Gase innerhalb der Gefahrenklasse für entzündbare Gase in zwei zusätzliche Kategorien A und B eingestuft. Kategorie A ist für Gase, die bereits bei Standardbedingungen chemisch instabil sind und Kategorie B für Gase, die bei erhöhter Temperatur und/oder erhöhtem Druck chemisch instabil sind. Mit der Veröffentlichung der 4. ATP zur CLP-Verordnung im Mai 2013 sind die entsprechenden Einstufungskriterien und Kennzeichnungsvorschriften nun auch in die CLP-Verordnung übernommen worden und müssen gemäß den Übergangsvorschriften für reine Gase (Stoffe) spätestens ab dem 1. Dezember 2014 und für Gemische spätestens ab dem 1. Juni 2015 angewendet werden. Der vorliegende Beitrag stellt Einstufungskriterien, Konzentrationsgrenzen, die Prüfmethode und die Kennzeichnung der chemisch instabilen Gase vor. KW - Chemisch instabile Gase KW - GHS KW - CLP-Verordnung KW - Einstufung und Kennzeichnung gefährlicher Stoffe PY - 2013 SN - 2191-0073 VL - 3 IS - 10 SP - 35 EP - 38 PB - Springer-VDI-Verl. CY - Düsseldorf AN - OPUS4-29317 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Molnarne, Maria A1 - Wilrich, Cordula A1 - Holtappels, Kai T1 - Chemically unstable gases and gas mixtures - new categories in the GHS N2 - In connection with the use of chemically unstable gases (especially acetylene and ethylene oxide) accidents keep on happening - amongst them also quite serious ones. These gases are known to be chemically unstable. A chemically unstable sas is a flammable gas that is able to react exolosivelv even in the absence of air or oxveen. The investigation of accidents showed that the Chemical instability of flammable gases played an important role in the severity of accidents. Therefore, this hazardous property was included in the global harmonizatiön of the Classification of Chemicals. The Classification of chemically unstable flammable gases and mixtures is an amendment to Chapter 2.2 “Flammable gases” of the UN Globally Harmonized System of Classification and Labelling of Chemicals (GHS), because most chemically unstable gases are flammable as well. The proposal to add them to the GHS originated from the experts of an informal working group of the UN Sub-Committee of Expert on the GHS (UNSCEGHS) headed by BAM, Germany. The UNSCEGHS has decided to include it in the Fourth Revised Edition of the GHS. The respective method for determining whether a gas is chemically unstable or not, is included in the UN Manual of Tests and Criteria. This paper presents some experimental investigations of these gases, the test methods, examples of new classifications and results from CHEMSAFE T2 - 14th Annual symposium, Mary Kay O´Connor process safety center - Beyond regulatory compliance: making safety second nature CY - College Station, TX, USA DA - 25.10.2011 KW - Chemically unstable gases KW - GHS KW - Chemisch instabile Gase PY - 2011 SP - 871 EP - 882 AN - OPUS4-24913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Molnarne, Maria T1 - Explosion protection by using the database CHEMSAFE T2 - AIChE 2007 - Spring National Meeting CY - Houston, Texas, USA DA - 2007-04-22 KW - CHEMSAFE KW - TRIANGLE Programm KW - Explosion KW - Dreistoffsysteme KW - Chemisch instabile Gase KW - Berechnungsmethode PY - 2007 SN - 978-0-816910-14-4 N1 - Serientitel: P / AIChE, American Institute of Chemical Engineers – Series title: P / AIChE, American Institute of Chemical Engineers IS - 237 SP - 465 EP - 474 PB - AIChE CY - New York AN - OPUS4-14807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Askar, Enis T1 - Experimentelle Bestimmung und Berechnung sicherheitstechnischer Kenngrößen ethylenoxidhaltiger Gasphasen N2 - Ethylenoxid ist vor allem aufgrund seiner hohen Reaktivität ein wichtiges organisches Zwischenprodukt der chemischen Industrie und in vielen Fällen bisher unersetzbar. Da es auch in Abwesenheit jeglicher Reaktionspartner explosionsartig zerfallen kann, ist der Umgang mit ethylenoxidhaltigen Gemischen jedoch nur mit besonderen sicherheitstechnischen Maßnahmen möglich. Für die sicherheitstechnische Beurteilung der Lagerung, des Transports sowie der Verarbeitung von ethylenoxidhaltigen Gasgemischen und die Ableitung angemessener sicherheitstechnischer Maßnahmen ist die Kenntnis der sicherheitstechnischen Eigenschaften von ethylenoxidhaltigen Gasgemischen unbedingt erforderlich. In der Vergangenheit wurden sicherheitstechnische Kenngrößen von Ethylenoxid immer wieder vereinzelt nur für bestimmte Prozessbedingungen und zum Teil mit unterschiedlichen Methoden durchgeführt. Insbesondere beschränken sich die bisher veröffentlichten Untersuchungen fast ausschließlich auf atmosphärische und nur leicht erhöhte Drücke, obwohl höhere Ausgangsdrücke für industrielle Prozesse mit Ethylenoxid durchaus relevant sind. Die Anwendbarkeit vorhandener Berechnungsmodelle, durch die der experimentelle Aufwand bei der Bestimmung sicherheitstechnischer Kenngrößen erheblich reduziert werden könnte, wurde bei chemisch instabilen Gasen, wie Ethylenoxid bisher kaum untersucht. Für eine umfangreichere Validierung der Berechnungsmethoden ist die in der Literatur verfügbare Datenbasis an sicherheitstechnischen Kenngrößen von Ethylenoxid nicht ausreichend. In dieser Arbeit werden sicherheitstechnische Kenngrößen ethylenoxidhaltiger Gasgemische systematisch in Abhängigkeit verschiedener Einflussgrößen, mit einheitlichen Bestimmungsmethoden und auch bei höheren Betriebsbedingungen untersucht und Methoden für die Berechnung der in dieser Arbeit ermittelten Kenngrößen entwickelt bzw. weiterentwickelt. Durch die Bestimmung der Explosionsbereiche ternärer Gemische aus Ethylenoxid, einem Inertgas und Luft und der Stabilitätsgrenzkonzentrationen binärer Gemische aus Ethylenoxid und einem Inertgas wird zunächst ausführlich untersucht, in welchen Stoffmengenverhältnissen ethylenoxidhaltige Gemische überhaupt explosionsfähig sind. Die Kenntnis dieser Kenngrößen ist zur Ableitung sogenannter primärer Explosionsschutzmaßnahmen zur Vermeidung explosionsfähiger Gemische, z.B. durch Inertisierung, erforderlich. Insbesondere werden die Einflüsse von Ausgangstemperatur und Ausgangsdruck auf die Explosionsgrenzen systematisch untersucht. Dabei werden vor allem auch die praxisrelevanten höheren Betriebsdrücke berücksichtigt. Gerade für Explosionsgrenzen im Bereich der Zerfallsreaktion kann ein enormer Einfluss des Drucks festgestellt werden. Für die Berechnung der Explosionsgrenzen und Stabilitätsgrenzkonzentrationen von Ethylenoxid wird das halbempirische Modell der konstanten Flammentemperaturen weiterentwickelt. Die Explosionsgrenzen und Stabilitätsgrenzkonzentrationen von Ethylenoxid werden unter der modifizierten Annahme, dass das Profil der berechneten Flammentemperaturen entlang der Explosionsgrenzkurve für verschiedene Systeme unabhängig von Ausgangsdruck, Ausgangstemperatur und Art des Inertgases konstant ist, rechnerisch bestimmt. Dazu wird ein spezielles Rechenprogramm entwickelt, dass die Berechnung der Explosionsgrenzen für ein beliebiges Gemisch aus Brenngas, Inertgas und Luft bei beliebiger Ausgangstemperatur und beliebigem Ausgangsdruck ermöglicht, wenn der gesamte Explosionsbereich für ein einzelnes System aus Brenngas, Inertgas und Luft bekannt ist. Die Explosionsgrenzen und Stabilitätsgrenzkonzentrationen von Ethylenoxid können mit diesem Rechenprogramm mit einer durchschnittlichen Abweichung von weniger als 2 Mol-% berechnet werden. Durch die Bestimmung von Zündtemperaturen für den Zerfall von Ethylenoxid und von definierten Gemischen aus Ethylenoxid und einem Inertgas wird schließlich untersucht, bei welchen Temperaturen ein explosionsartiger Zerfall von Ethylenoxid durch eine heiße Oberfläche in einem geschlossenen System initiiert werden kann. Die Abhängigkeit vom Druck, vom Behältervolumen und vom Stoffmengenanteil an EO werden bei den Untersuchungen berücksichtigt. Anders als die nach standardisierten Verfahren bestimmte Zündtemperatur von Gasen, die in offenen Systemen und ausschließlich für Gemische mit Luft ermittelt wird, kann durch die Bestimmung der bisher nicht standardisierten Zündtemperatur für den Zerfall festgestellt werden, bei welcher Oberflächentemperatur es innerhalb eines geschlossenen Systems bei höheren Drücken und in Abwesenheit von Luft zu einem explosionsartigen Zerfall von chemisch instabilen Gasen kommen kann. Es zeigt sich, dass die Zündtemperatur des Zerfalls von Ethylenoxid bei höheren Drücken auch niedriger sein kann als die nach den Standardverfahren für offene Systeme bestimmte Zündtemperatur von Ethylenoxid. Außerdem zeigt sich, dass der Einfluss von Inertgasen auf die Zündtemperatur für den Zerfall von Ethylenoxid stark von der Art des Inertgases abhängig ist. Die Zündtemperaturen für den Zerfall von Ethylenoxid werden mit verschiedenen Modellen mit unterschiedlichem Grad an Vereinfachungen berechnet. Dabei wird rechnerisch die Wandtemperatur bestimmt, bei der es zu einem thermischen Durchgehen der Reaktion („Runaway“) kommt. Es zeigt sich, dass hinsichtlich der Genauigkeit und des Rechenaufwands eine transiente 0-dimensionale numerische Simulation besonders gut für die rechnerische Bestimmung der Zündtemperatur für den Zerfall von Ethylenoxid in Abhängigkeit des Drucks und des Behältervolumens geeignet ist. Temperaturgradienten innerhalb des Behälters werden bei diesem Modell vernachlässigt und die Wärmeabfuhr wird ausschließlich durch die Temperaturdifferenz zwischen Wand und Reaktionsmasse, die Wärmeaustauschfläche und den inneren Wärmeübergangskoeffizienten bestimmt, der nach einem empirischen Ansatz für den Wärmeübergang an senkrechten Platten bei natürlicher Konvektion berechnet wird. Die Berücksichtigung von lokalen Abhängigkeiten innerhalb des Behälters durch ein 2-dimensionales Modell bringt trotz höheren Rechenaufwands keine weiteren ersichtlichen Vorteile. T3 - BAM Dissertationsreihe - 80 KW - Explosion KW - Entzündung KW - Stabilitätsgrenze KW - Chemisch instabile Gase KW - Zerfall PY - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-789 SN - 978-3-9814634-2-2 SN - 1613-4249 VL - 80 SP - 1 EP - 148 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-78 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -