TY - CONF A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Design and fabrication of ceramic springs N2 - Ceramic springs offer versatile possibilities for load bearing or sensor applications in challenging environments. Although it may appear unexpected, a wide range of spring constants can be implemented by material selection and especially by the design of the spring. Based on a rectangular cross-section of the windings, it is possible to design a spring geometry that generates the desired spring constant simply by choosing appropriate diameter, height, widths, and number of windings. In a recent research project the calculation of helical compression springs made of rectangular steel (German standard DIN 2090) was applied for the design of ceramic springs. A manufacturing technology has been worked out to fabricate such springs from hollow cylinders of several highly dense technical ceramics by milling. Ceramic springs with precise rectangular section, without edge damage, and mean surface roughness smaller than 0.2 µm were produced after parameter optimization. Tolerances of less than 10 µm were achieved regarding spring diameter, height, and width of cross section. It is shown that the calculations outlined in the standard are valid for a variety of ceramic materials as well. Demonstrator springs with a wide range of spring constants have been fabricated, including zirconia springs with 0.02 N/mm, alumina springs with 1 N/mm and Si3N4 springs with 5 N/mm. A reproducibility study of six zirconia springs with a constant of 0.3 N/mm showed a relative difference in spring constants of less than +/- 1 %. This combination of a valid calculation approach for spring geometry and a reliable manufacturing technology allows for purposeful development and fabrication of ceramic springs with precise mechanical properties and superior chemical stability. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - Ceramic spring KW - Hard machining KW - Spring constant PY - 2019 AN - OPUS4-48870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten A1 - Schulz, Bärbel A1 - Paulick, C. T1 - Development of ceramic helical springs for sensor applications N2 - At high temperatures and in harsh environments ceramic springs are often superior to metallic ones and allow for innovative solutions. A further application was proposed by using ceramic springs as capacitive force sensor. Lower and upper coil surfaces are coated by electrically conducting layers. Deformation of such spring results in a change of capacity. Sensor application calls for helical springs with rectangular cross-section, a linear stress-strain characteristic over entire deformation range and low manufacturing tolerances relating to inner and outer diameter, coil cross section and spring pitch. Furthermore, complex spring design with integrated connecting elements has to be realized. Alumina, zirconia (Y-TZP) and silicon nitride springs were produced by hard machining starting from sintered hollow cylinders. After external and internal cylindrical grinding the hollow cylinders were filled with hard wax, followed by multi-stage cutting of spring coils with custom-made cutting discs. Finally, hard wax was removed by melting and burnout. Best surface and edge qualities of springs were reached using Y-TZP material and hot isostatic pressed alumina. Y-TZP springs produced with material-specifically selected cutting discs and optimized process parameters show sharp coil edges without spallings and mean roughness values of inner surfaces < 0.2 μm. Manufacturing tolerances of spring diameters, spring pitch, height and width of coil cross section are in the range of ± 10 microns. Good reproducibility of spring geometry by optimized hard machining technology allows for production of Y-TZP springs with spring constants differing less than ± 1 % within a series. According to DIN 2090 spring constant for rectangular coil cross section is proportional to the square of height and width of coil cross section and indirectly proportional to number of active coils and to the cube of the mean spring diameter. Hence, spring constants can be tailored over a range of many orders of magnitude by changing the spring dimensions. Good agreement was reached between calculated target spring constants and measured values on produced springs. Alumina and zirconia springs were characterized relating to deformation behavior under dynamic compression load with various deformation speeds and under static tensile loads over long periods of time. Contrary to alumina springs, a non-linear stress-strain behavior of TZP springs was proved in both test series. It is supposed, that pseudoelasticity caused by stress-induced transformation of tetragonal to monoclinic phase is responsible for this special feature of TZP springs. Therefore, TZP material cannot be used for capacitive spring sensors. T2 - European Ceramic Society Conference (ECerS) CY - Torino, Italy DA - 16.06.2019 KW - Ceramic spring KW - Sensor KW - Spring constant KW - Failure test KW - Microstructure PY - 2019 AN - OPUS4-48610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten A1 - Schulz, Bärbel A1 - Kalinka, Gerhard T1 - Deformation behavior of alumina and zirconia springs at room temperature N2 - At high temperatures and in harsh environments ceramic springs are often superior to metallic springs and allow for innovative solutions. A recently proposed application involves ceramic springs with metallized surfaces as capacitive force sensor. A strictly linear stress-strain characteristic of the spring is a precondition for such a sensor. Helical ceramic springs with rectangular cross-section have been produced from sintered hollow cylinders. Alumina, ATZ, Y-TZP, and Ce-TZP springs with identical dimensions were characterized and compared regarding deformation behavior. Spring deformation was investigated under various load scenarios. Dynamic compression was performed with deformation speeds from 0.3 to 30 mm/min. Spring constants of alumina springs are strain rate independent. By contrast, Y-TZP spring constant increases by approximately 3 % within the experimental framework. A high-precision test facility was developed to characterize spring displacement in nm range under static tensile load over long periods of time. Spring elongation with asymptotic course was observed for zirconia containing materials at room temperature. This effect is particularly strong in the case of Y-TZP. Up to 0.3 % time-dependent elongation was measured after 24 h under constant load. Deformation is completely reversible after unloading. Alumina springs do not show any time-dependent deformation under identical test conditions. Contrary to alumina springs, a non-linear stress-strain behavior of TZP springs at room temperature was proved in both test series. It is supposed, that pseudo-elasticity caused by stress-induced phase transformation from tetragonal to monoclinic is responsible for this special behavior of TZP springs. T2 - D-A-CH Keramiktagung CY - Leoben, Austria DA - 06.05.2019 KW - Phase transformation KW - Ceramic spring KW - Force-distance diagram KW - Deformation behavior PY - 2019 AN - OPUS4-48026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Bärbel A1 - Rabe, Torsten A1 - Salehi, Mahdi T1 - High-temperature stability of ceramic springs N2 - Metallic springs undergo oxidation and creep at elevated temperatures and their use is limited to temperature of about 650°C. Therefore, there is a need for stable materials which can easily withstand temperatures up to 1000°C for long periods in different atmospheres. Ceramic materials have been drawing attention due to their excellent properties. This work aimed at investigating the high-temperature stability of zirconia and alumina ceramic springs at elevated temperatures under different atmospheres (air, N2 and H2) in order to determine the limitation of use of these ceramic springs. T2 - DKG 2017 CY - Berlin, Germany DA - 20.03.2017 KW - Ceramic spring KW - High-temperature stability KW - Harsh environments KW - Spring constant PY - 2017 AN - OPUS4-40289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -