TY - CONF A1 - Weltschev, Margit A1 - Werner, Jan A1 - Jochems, Frank A1 - Heming, Frank T1 - Change in properties of sealing materials in biofuels, biodiesel-heating oil blends, diesel and premium grade fuel at different temperatures T2 - EUROCORR 2015 - European corrosion congress (Proceedings) N2 - Materials compatibility is a major concern whenever the fuel composition is changed in a fuel system. Therefore frequently used sealing materials such as FKM (fluorocarbon rubber), FVMQ (methyl-fluoro-silicone rubber), VMQ (methyl-vinyl-silicone rubber), EPDM (ethylene-propylene-diene rubber), CR (chloroprene rubber), CSM (chlorosulfonated polyethylene), IIR (butyl rubber), PA (polyamides), N8R (acrylonitrile-butadiene rubber) and PUR (polyester urethane rubber) were exposed to E1 0, diese I fuel with 5% biodiesel, non-aged and 2 year aged 810 (heating oil with 10% biodiesel), and for comparison to pure diese! fuel, standard heating oil and Super plus without bioethanol at 20 °C, 40 oc and 70 oc for 84 days. Mass, tensile strength and breaking elongation of the test specimens were determined before and after the exposure. The visual examination of some elastomer test specimens clearly showed the great volume increase until break or partial dissolution. Shore hardness A and D (for PA) were determined before and after exposure of the test specimens to the biofuels for 42 days. There is not determined a threshold for the reduction in tensile properties and Shore hardness in the international standards. Therefore a threshold of 15% was determined for the evaluation of the compatibility. The sealing materials FKM, EPDM, N8R, FMVQ, CSM and PA were evaluated on the basis of this threshold as resistant in E1 0 at 20 oc and 40 °C. FKM, FVMQ and PA were resistant at 40 oc , and none of the materials were resistant at 70 °C. FKM and FVMQ absorbed much less 810 and swelled less. CR, CSM, EPDM, IIR, N8R and VMQ were not resistant to 810 at all at 20 oc, 40 oc and 70 oc as the decrease in the tensile properties was significantly over 50%. FVMQ and PA could be evaluated as resistant in non-aged and two year aged 810 at 20 oc and 40 oc, whereas FKM was resistant up to 70 °C. FKM, PA and PUR were evaluated as resistant in standard heating oil and pure diese! fuel at temperatures up to 40°C, only FKM was resistant up to 70°C. FVMQ, FKM, N8R, VMQ, CR and IIR can be evaluated as resistant in premium grade fuel Super plus without ethanol at 20 oc. FKM, FVMQ, VMQ and IIR were still resistant at 40 °C. FKM and FVMQ were evaluated as resistant with restrictions at 70 °C. ln summary, it can be therefore stated that the chemical resistance of the fluoropolymers FKM and FVMQ in fuels and biofuels is the best one. T2 - EUROCORR 2015 - European corrosion congress CY - Graz, Austria DA - 06.09.2015 KW - Compatibility KW - Sealing materials KW - Biofuels KW - Tensile properties KW - Shore hardness PY - 2015 SP - Paper 16_173, 1 EP - 11 AN - OPUS4-34204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Kohl, Anka A1 - Haufe, Manuela A1 - Heyer, Martina T1 - Compatibility of polyehtylene grades with biofuels and biodiesel-heating oil blends T2 - Corrosion 2015 N2 - The aim of this work was to study the interaction between high density polyethylene (HDPE) grades as material for dangeraus goods packagings and biofuels such as E10 (fuel with 10% ethanol), E85 (fuel with 85% ethanol), biodiesei and 810 (heating oil with 10% biodiesel). Jerricans made of two polyethylene grades were filled with these fuels and exposed to temperatures of 20 oc and 40 oc for more than one year. Tensile properlies (tensile strength, breaking elongation and elasticity modulus) and Melt Flow Rate (MFR) were determined, and Fourier Transform Infrared Spectroscopy (FTIR) was used to evaluate changes in the chemical structure. Measurements of the MFR and tensile properlies of the polyethylene grades after exposure to E1 0, E85 and 810 showed only a slightly damaging influence. A n increase in the peak of 1585 cm·1 for the (C=C) stretching vibrations was visible in the FTIR spectra after immersion tests with E85. A n increase in the MFR with the immersion time of the grades in biodiesei was measured - in parlicular, after one year of exposure. The elasticity modulus of the polyethylene grades was reduced with the immersion time too. The FTIR spectra showed a broadening of the C=O peak of 1740 cm·1 and the appearance of the hydroxyl group at 3500 cm·1. T2 - Corrosion 2015 CY - Dallas, TX, USA DA - 15.03.2015 KW - Polyethylene grades KW - Biodiesel KW - E10 KW - E85 KW - B10 KW - Tensile properties KW - FTIR analysis KW - Compatibility KW - Biofuels KW - Change in MFR and tensile properties PY - 2015 SP - Paper No. 5536, 1 EP - 12 AN - OPUS4-32968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Kohl, Anka A1 - Haufe, Manuela T1 - Compatibility of polyethylene grades with biofuels and biodiesel-heating oil blends T2 - EUROCORR 2015 - European corrosion congress (Proceedings) N2 - 8iofuels including ethanol and biodiesel (fatty acid methyl ester) represent an important renewable fuel alternative to petroleum-derived transport fuels. lncreasing biofuels use would bring some benefits, such as a reduction in oil demands and greenhause gas emissions, and an improvement in air quality. T2 - EUROCORR 2015 - European corrosion congress CY - Graz, Austria DA - 06.09.2015 KW - Compatibility KW - Polyethylene grades KW - Biofuels KW - Change in MFR and tensile properties PY - 2015 SP - Paper 16_1074, 1 EP - 11 AN - OPUS4-34203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Heming, Frank A1 - Haufe, Manuela A1 - Heyer, Martina T1 - Compatibility of sealing materials with biofuels and biodiesel-heating oil blends T2 - Corrosion 2015 N2 - Changes in fuel composition and the introduction of alternative fuels often create problems of degradation in materials. The objective of this research is to study the interaction of the sealing materials FKM, EPDM, CR, CSM, N8R, IIR, VMQ, FVMQ and PA and biofuels such as non-aged and 2 year aged biodiesel (FAME), E1 0 (fuel with 10% ethanol, E85 (fuel with 85% ethanol} and non-aged and 1 year aged 810 (heating oil with 10% biodiesel) in comparison with premium grade fuel without ethanol. Exposure tests were performed with test specimens at 20 °C, 40 oc and 70 oc for 84 days to document the changes in mass, volume and tensile properties. The sealing materials FKM, FVMQ and PA were evaluated as resistant in E10, and FVMQ, VMQ and PA as resistant in E85 at 20 oc and 40 oc. S welling resulted from the high absorption by the elastemers CR, CSM, EPDM, IIR and N8R in comparison to their dissolution in non-aged biodiesei at 40 °C. FKM was still resistant in aged biodiesei at 40 oc but only to a limited degree at 70 °C. The sealing materials CR, CSM, EPDM, IIR and N8R were damaged to a high extent in non-aged and aged 810. Of all the sealing materials, FKM and FVMQ showed high compatibility with these biofuels up to 70 °C. T2 - Corrosion 2015 CY - Dallas, TX, USA DA - 15.03.2015 KW - Biofuels KW - Sealing materials KW - Compatibility KW - Change in tensile properties KW - Change in mass PY - 2015 SP - Paper No. 5535, 1 EP - 13 AN - OPUS4-32969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -