TY - JOUR A1 - Kästner, Claudia A1 - Lampen, A. A1 - Thünemann, Andreas T1 - What happens to the silver ions? – Silver thiocyanate nanoparticle formation in an artificial digestion JF - Nanoscale N2 - An artificial digestion of silver nitrate is reported. It is shown that AgSCN nanoparticles emerge from ionic silver in saliva and remain present during the entire digestion process. The particles were characterized by infrared spectroscopy and small- and wide-angle X-ray scattering (SAXS/WAXS) regarding their composition and size distribution. KW - SAXS KW - WAXS KW - Artificial digestion PY - 2018 DO - https://doi.org/10.1039/c7nr08851e SN - 2040-3364 SN - 2040-3372 VL - 10 IS - 8 SP - 3650 EP - 3653 PB - RSC Publ. CY - Cambridge AN - OPUS4-44277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stock, V. A1 - Fahrenson, C. A1 - Thünemann, Andreas A1 - Donmez, M. H. A1 - Voss, L. A1 - Bohmert, L. A1 - Braeuning, A. A1 - Lampen, A. A1 - Sieg, H. T1 - Impact of artificial digestion on the sizes and shapes of microplastic particles JF - Food and chemical toxicology N2 - Current analyses show a widespread occurrence of microplastic particles in food products and raise the question of potential risks to human health. Plastic particles are widely considered to be inert due to their low chemical reactivity and therefore supposed to pose, if at all only minor hazards. However, variable physicochemical conditions during the passage of the gastrointestinal tract gain strong importance, as they may affect particle characteristics. This study aims to analyze the impact of the gastrointestinal passage on the physicochemical particle characteristics of the five most produced and thus environmentally relevant plastic materials polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate and polystyrene. Scanning electron microscopy (SEM) and subsequent image analysis were employed to characterize microplastic particles. Our results demonstrate a high resistance of all plastic particles to the artificial digestive juices. The present results underline that the main stages of the human gastrointestinal tract do not decompose the particles. This allows a direct correlation between the physicochemical particle characteristics before and after digestion. Special attention must be paid to the adsorption of organic compounds like proteins, mucins and lipids on plastic particles since it could lead to misinterpretations of particle sizes and shapes. KW - Artificial digestion KW - Gastrointestinal barrier KW - Microplastic KW - Oral uptake KW - Particle size PY - 2020 DO - https://doi.org/10.1016/j.fct.2019.111010 VL - 135 SP - 111010 PB - Elsevier Ltd. AN - OPUS4-49999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Sieg, H. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Lampen, A. A1 - Thünemann, Andreas T1 - Creating the silver standard: Development and applications of a silver nanoparticle reference material N2 - The utilization of silver nanoparticles in consumer related products has significantly increased over the last decade, especially due to their antimicrobial properties. Today they are used in a high variety of products ranging from food containers over children toys and textiles. Therefore, research on the toxicological potential of silver nanoparticles becomes increasingly important for a high amount of studies. Unfortunately, the results of these studies are extremely diverse and do not lead to a consistent evaluation. The central problem lies in the use of a wide range of silver nanoparticles, which show a broad size distribution. To overcome this problem we report on the synthesis and application of small silver nanoparticles with a narrow size distribution (R = 3.1 nm, σ = 0.6 nm). The poly(acrylic acid) stabilized particles are thoroughly characterized by small-angle X-ray scattering, dynamic light scattering and UV/Vis spectroscopy. The particles are highly stable and show no aggregation for more than six months. It is foreseen to use these thoroughly characterized nanoparticles as reference material to compare the catalytic and biological properties of functionalized silver nanoparticles. As a first step the particles are used in the first world-wide inter-laboratory comparison of SAXS. Furthermore, the stabilizing ligand PAA can be easily exchanged by biomolecules to modify the surface functionality. Replacements of PAA with glutathione (GSH) and bovine serum albumin (BSA) have been performed as examples. With this flexible system first applications regarding biological application in an artificial digestion procedure have been performed. Thereby the changes in size distribution and aggregation state were monitored by SAXS. Additionally these particles show a high catalytic activity of (436 ± 24) L g-1 s-1 in the reduction of 4- nitrophenol to 4-aminophenol. This activity is two orders of magnitude higher than for other silver particles in the literature. T2 - NanoWorkshop 2018 CY - Berlin, Germany DA - 14.05.2018 KW - Silver nanoparticles KW - SAXS KW - Artificial digestion KW - Catalysis PY - 2018 AN - OPUS4-44911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -